Gaussian private quantum channel with squeezed coherent states

K. JEONG, J. KIM, and S.-Y. LEE

School of Computational Sciences, Korea Institute for Advanced Study (KIAS), Korea

Asia-Pacific Conference & Workshop in Quantum Info. Science 2014,
National Cheng Kung University, Taiwan
14 Dec. 2014

Table of contents

- Preliminary
- Private quantum channel (PQC)
- Basics of Gaussian quantum information
- Brádler's Result: CVPQC
- Analysis
- Squeezed Gaussian Private Quantum Channel: GPQC
- Analysis
- Conclusion

Preliminaries

→ Private Quantum Channel (PQC)

- Private quantum channel; quantum one-time pad; random unitary channel;
 ε-randomizing map; unital (qudit) channel
- For any quantum state $\rho \in \mathcal{B}(\mathbb{C}^d)$, suppose that a completely positive and trace-preserving (CPT) map $\mathcal{N} : \mathcal{B}(\mathbb{C}^d) \to \mathcal{B}(\mathbb{C}^d)$ satisfies

$$\left\| \mathcal{N}(\rho) - \frac{1}{d} \right\|_{\rho} \le \frac{\varepsilon}{\sqrt[p]{d^{p-1}}}.$$
 (1)

Then we say that the map \mathcal{N} is ε -randomizing (or PQC) with respect to the Schatten p-norm, where $\|A\|_p = \left(\operatorname{tr}(A^\dagger A)^{p/2}\right)^{1/p}$.

• The map $\mathcal N$ for any ρ can be naturally constructed as follow:

$$\mathcal{N}(\rho) = \frac{1}{m} \sum_{i=1}^{m} U_i \rho U_i^{\dagger},$$

where $U_i \in \mathcal{U}(d)$ are chosen at random, and m depends on the dimension d. (e.g. $m = d^2$: optimal)

Preliminaries

\rightarrow Basics of Gaussian quantum information

- Generally, Gaussian quantum states are represented in phase space.
- Coherent state: It is created by applying the displacement operator $\hat{D}(\alpha) = e^{\alpha \hat{a}^{\dagger} \alpha^* \hat{a}}$ to the vacuum state $|0\rangle$ as

$$|\alpha\rangle = \hat{D}(\alpha)|0\rangle = e^{-\frac{|\alpha|^2}{2}}\sum_{n=0}^{\infty}\frac{\alpha^n}{\sqrt{n!}}|n\rangle.$$

- Note that the complex number $\alpha = re^{i\theta}$; $\alpha_{pq} = r_p e^{i\theta_{pq}}$ for $\theta_{pq} = \frac{\pi}{p}(2q-1) \ \forall p,q \in \mathbb{Z}^+$.
- Squeezed state via squeezing operation $\hat{S}(\xi) = \exp\left[\frac{\xi^*\hat{a}^2 \xi\hat{a}^{\dagger 2}}{2}\right]$ with $\xi = re^{i\phi}$
- \circ e.g., squeezed vacuum and squeezed coherent state; $u=e^{i\phi}$ sinh r and $\phi=\arg(\xi)$

$$|\xi,0\rangle = \hat{S}(\xi)|0\rangle = \frac{1}{\sqrt{\cosh r}} \sum_{n=0}^{\infty} \frac{\sqrt{(2n)!}}{2^n n!} (-e^{i\phi} \tanh r)^n |2n\rangle$$

$$|\xi,\alpha\rangle = \hat{S}(\xi)\hat{D}(\alpha)|0\rangle = \frac{(\nu/2\cosh r)^{m/2}}{\sqrt{\cosh r \cdot m!}}e^{-\frac{1}{2}\left(|\alpha|^2 - \frac{\nu^*\alpha^2}{\cosh r}\right)}H_m\left(\frac{\alpha}{\sqrt{2\nu\cosh r}}\right)|m\rangle$$

Brádler's CVPQC

■ CV maximally mixed state: A CV MMS can be chosen as an integral preformed over all possible single mode states within the boundary circle of radius $r \le b$ in a coherent state $|\alpha\rangle$ (up to a normalization constant $C = \pi b^2$).

$$\mathbb{1}_{b} = \frac{1}{C} \int |\alpha\rangle\langle\alpha|\sigma^{2}\alpha$$

$$= \frac{1}{b^{2}} \sum_{n=0}^{\infty} \left(1 - \sum_{k=0}^{n} \frac{b^{2k}}{k!} e^{-b^{2}}\right) |n\rangle\langle n|.$$
(2)

p-conformation of coherent states:

$$|lpha_{pq}
angle = |r_p e^{i heta_{pq}}
angle = e^{-r_p^2/2} \sum_{m=0}^{\infty} rac{(r_p e^{i heta_{pq}})^m}{\sqrt{m!}} \ (p\in\mathbb{Z}^+ ext{ fixed})$$

$$\rho_{p} := \frac{1}{p} \sum_{q=1}^{p} |\alpha_{pq}\rangle \langle \alpha_{pq}|$$

$$= e^{-r_{p}^{2}} \sum_{m,n=0}^{\infty} \frac{r_{p}^{m+n}}{\sqrt{m! \, n!}} |m\rangle \langle n| \delta_{m,n(\mod p)}, \tag{3}$$

where $\sum_{q=1}^{p} e^{\frac{2\pi i}{p}q(m-n)} = p$ if $m = n \mod p$.

Brádler's CVPQC

\rightarrow Mixture of all p-conformation

Mixture of all (displaced) *p*-conformation: For all p = (1, ..., N) supposed that $r_p = \frac{(p-1)b}{N} \le b$, then

$$\Gamma_N = \frac{1}{M} \sum_{p=1}^N p \rho_p = \frac{1}{M} \sum_{p=1}^N \sum_{q=1}^p \hat{D}(\alpha_{pq}) |0\rangle\langle 0| \hat{D}^{\dagger}(\alpha), \tag{4}$$

where the total number of unitary operations M = N(N+1)/2.

- One of CV states of Γ_N is chosen at pre-shared random secret key.
- Hilbert-Schmidt distance: $d_{HS}(\rho_1, \rho_2) := \sqrt{\operatorname{tr}(\rho_1 \rho_2)^2}$

Brádler's main result

Theorem 1: Brádler's theorem PRA 72, 042313 (2005)

For sufficiently large N, the Hilbert-Schmidt distance between the CV maximally mixed state $\mathbb{1}_b$ and PQC-encryption of arbitrary coherent states $|\beta\rangle$ is very close, i.e.,

$$d_{HS}(\mathbb{1}_b, \Gamma_N) \approx \sqrt{N^{-2} + O(N^{-4})},\tag{5}$$

where Γ_N denotes the mixture of all conformations of coherent states.

- $\mathcal{N}_N(|\beta\rangle) \neq \Gamma_N$ and $\int \hat{D}(\alpha)|\beta\rangle\langle\beta|\hat{D}^{\dagger}(\alpha)d^2\alpha \simeq \hat{D}(\beta)\mathbb{1}_b\hat{D}^{\dagger}(\beta) = \mathbb{1}_b^{\beta} \neq \mathbb{1}_b$, but (by unitary invariance) $d_{HS}[\mathbb{1}_b^{\beta}, \mathcal{N}_N(|\beta\rangle)] = d_{HS}(\mathbb{1}_b, \Gamma_N)$.
- By definition of Hilbert-Schmidt distance,

$$d_{HS}^{2}(\mathbb{1}_{b}, \Gamma_{N}) = \text{tr}\left[\left(\mathbb{1}_{b} - \Gamma_{N}\right)^{2}\right] = \frac{\text{tr}(\mathbb{1}_{b})^{2} - 2\text{tr}(\mathbb{1}_{b}\Gamma_{N}) + \text{tr}(\Gamma_{N}^{2})}{2} + \frac{e^{2b^{2}} - l_{0}(2b^{2}) - l_{1}(2b^{2})}{b^{2}e^{2b^{2}}} - \frac{4e^{-b^{2}}}{b^{2}N(N+1)} \sum_{p=1}^{N} \frac{p}{e^{r_{p}^{2}}} \sum_{k=1}^{\infty} \left(\frac{b}{r_{p}}\right)^{k} l_{k}(2r_{p}b) + \left(\frac{2}{N(N+1)}\right)^{2} \left[\sum_{p=1}^{N} \frac{p^{2}}{e^{2r_{p}^{2}}} \left(l_{0}(2r_{p}^{2}) + 2\sum_{k=1}^{\infty} l_{pk}(2r_{p}^{2})\right) + \sum_{p_{1} \neq p_{2}} (term)\right]$$

For some fixed r and r_p , the squeezed p-conformation

- (a) non-squeezed 16-th conformation (r = 0)
- (b) squeezed 16-th conformation with $\phi = 0$
- (c) $\phi = \pm \frac{\pi}{2}$
- (d) $\phi = -\frac{\pi}{4}$

in K factor,

$$K = 1 - \tanh r \cdot \cos(2\theta_{pq} - \phi).$$

CV maximally mixed state:

$$\mathbb{1}_b = \frac{1}{C} \int |\alpha\rangle\!\langle\alpha| d^2\alpha = \frac{1}{b^2} \sum_{n=0}^{\infty} \left(1 - \sum_{k=0}^{n} \frac{b^{2k}}{k!} e^{-b^2}\right) |n\rangle\!\langle n|.$$

■ Squeezed p-conformation of coherent states:

$$\hat{S}(\xi)|\alpha_{pq}\rangle = \sum_{m=0}^{\infty} \frac{(\nu/2\cosh r)^{m/2}}{\sqrt{\cosh r \cdot m!}} \exp\left[-\frac{1}{2}\left(|\alpha_{pq}|^2 - \frac{\nu^*\alpha_{pq}^2}{\cosh r}\right)\right] H\left(\frac{\alpha_{pq}}{\sqrt{2\nu\cosh r}}\right)|m\rangle$$

$$\rho_p^{\xi} := \frac{1}{p} \sum_{q=1}^{p} \hat{S}(\xi)|\alpha_{pq}\rangle\langle\alpha_{pq}|\hat{S}^{\dagger}(\xi)$$

$$= \sum_{m,n=0}^{\infty} \kappa_{m,n} \exp\left[-\frac{r_p^2}{2}\left\{1 - \tanh r \cdot \cos(2\theta_{pq} - \phi)\right\}\right]|m\rangle\langle n|, \tag{7}$$

where $\theta_{pq} = \frac{\pi}{p}(2q-1)$ and the constant

$$\kappa_{m,n} := \frac{1}{p} \sum_{q=1}^p \frac{(\tanh r/2)^{(m+n)/2}}{\cosh r \sqrt{m!n!}} \exp\left[i\frac{\phi}{2}(m-n)\right] H_m\left(\frac{r_p e^{i(\theta_{pq}-\frac{\phi}{2})}}{\sqrt{\sinh(2r)}}\right) H_n(c.c.)$$

Mixture of squeezed p-conformations: Suppose that $N \ge 1$ and define $r_p = \frac{(p-1)b}{N} \le b$, then

$$\Gamma_N^{\xi} = \frac{1}{M} \sum_{p=1}^{N} \sum_{q=1}^{p} \hat{S}(\xi) \hat{D}(\alpha_{pq}) |0\rangle\langle 0| \hat{D}^{\dagger}(\alpha_{pq}) \hat{S}^{\dagger}(\xi), \tag{8}$$

where M = N(N+1)/2.

Encryption of arbitrary input coherent state (via CPT map N):

$$\mathcal{N}_{N}(\xi, |\beta\rangle\langle\beta|) = \frac{1}{M} \sum_{p=1}^{N} \sum_{q=1}^{p} \hat{S}(\xi) \hat{D}(\alpha_{pq}) \hat{D}(\beta) |0\rangle\langle 0| \hat{D}^{\dagger}(\beta) \hat{D}^{\dagger}(\alpha_{pq}) \hat{S}^{\dagger}(\xi)$$
$$= \hat{S}(\xi) \hat{D}(\beta) \Gamma_{N} \hat{D}^{\dagger}(\beta) \hat{S}^{\dagger}(\xi)$$
$$\neq \Gamma_{N}^{\xi}$$

Squeezed Gaussian private quantum channel

Proposition 2: Our squeezed GPQC submitted

For sufficiently large N and any squeezing of an arbitrary coherent state $|\beta\rangle$, there exists CPT map \mathcal{N}_N such that

$$d_{HS}(\mathbb{1}_b^{(\beta,\xi)}, \mathcal{N}_N(\xi, |\beta\rangle\langle\beta|)) \le d_{HS}(\mathbb{1}_b, \Gamma_N) \approx \sqrt{N^{-2} + O(N^{-4})}.$$
 (9)

Proof:

- Unitary invariance of trace function, $d_{HS}(\mathbb{1}_b^{(\beta,\xi)}, \mathcal{N}_N(\xi, |\beta\rangle\langle\beta|)) = d_{HS}(\mathbb{1}_b, \Gamma_N^{\xi})$
- · Unitary invariance of squeezing operations,

$$\begin{aligned} d_{HS} \big(\Gamma_N^{\xi}, \Gamma_N \big) &= d_{HS} \left(\hat{S}(\xi) \Gamma_N \hat{S}^{\dagger}(\xi), \Gamma_N \right) \\ &= d_{HS} \left(\hat{S}(\xi) |0\rangle \langle 0| \hat{S}^{\dagger}, |0\rangle \langle 0| \right) = \frac{2 \sinh(r/2)}{\sqrt{\cosh r}} \simeq 0 \end{aligned}$$

Norm convexity,

$$d_{HS}(\mathbb{1}_b, \Gamma_N^{\xi}) \le d_{HS}(\mathbb{1}_b, \Gamma_N) + d_{HS}(\Gamma_N^{\xi}, \Gamma_N) \simeq d_{HS}(\mathbb{1}_b, \Gamma_N) \tag{10}$$

• Brádler's result (Theorem 1)

Conclusion

- Our squeezed GPQC well represents the dependance of the displacement and the squeezing elements, $\exp\left[-r_p^2\{1-\tanh r\cdot\cos(2\theta_{pq}-\phi)\}\right]$ whereas <u>Brádler's CVPQC</u> only depends on $\exp(-r_p^2)$ term of a coherent state.
- For sufficiently large N, the squeezed GPQC is secure:

$$d_{HS}\big(\mathbb{1}_b^{(\beta,\xi)},\mathcal{N}_N(\xi,|\beta\rangle\!\langle\beta|)\big) = d_{HS}\big(\mathbb{1}_b,\Gamma_N^\xi\big) \simeq d_{HS}\big(\mathbb{1}_b,\Gamma_N\big) \approx \sqrt{N^{-2} + O(N^{-4})}$$

• Open question: In CV, $d_p(\rho_{thermal}, \Gamma_N) \ll 1$?

 Acknowledgement: This work was supported by the IT R&D program of MOTIE/KEIT [10043464]. SYL acknowledges support from FQXI and the National Research Foundation and Ministry of Education in Singapore.

Thank you for your attention!