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Universal gate sets – Unitary operations

• Quantum circuit model
• All unitary operations in Hilbert space of n qubits can be

obtained by concatenation of
- arbitrary single qubit unitaries
- CNOT (or other entangling gate) on any pair of qubits

D. Deutsch et al Proc. Roy. Soc. 
(London) A ’89, ’95; T. Sleator
and H. Weinfurter, PRL ’95; A. 
Barenco et al PRA ’95; A. 
Barenco Proc. R. Soc. Lond. A 
’95; D. P. DiVincenzo PRA ‘95

What about general, non-unitary quantum channels? 



Definitions



Qubit channels

• Bloch ball representation of density matrix of a single qubit:

Nielsen & Chuang

r0=1, r=(r1,r2,r3) Bloch vector
Most general linear map

King et al. `01, 
Ruskai et al. `02,
Bengtsson et al.`06

Composition rule

Pauli matrices



Canonical Form

Concatenate                     � Singular value decomposition of MΦ up 
to global sign � Up to unitary conjugation: 

λi are “signed singular values”
� Bloch ball � ellipsoid

Unital channels have

Fujiwara-Algoet conditions for complete positivity of unital channel: 

A. Fujiwara & P. Algoet PRA 1999

Equality � 4 linear equations � faces of a tetrahedron

� shift of ellipsoid



Unital Channels: t=0

• Vertices: rank r=1 channels (unitaries)
All unitaries needed in universal 
channel set.
• Edges: rank r=2 channels

- Top edge: phase flip channels

- All other edges by concatenation 
with unitaries

An ε-environment of channels close to 
V1 is enough to create all phase flip 
channels by a finite number of 
concatenations and conjugation with σz, 
with exception of ΦFP(1/2).

ΦFP(t)

• Faces: rank r=3 channels
− Indecomposable

All channels on faces must therefore be part of the universal channel set. 
M. Wolf and I. Cirac ‘08

ΦFP(1/2)

λ1

λ2

λ3

I2



Unital Channels: t=0

• Inside of tetrahedron: rank 4 channels 
Can be obtained as concatenation of 
phase flip channels (top edge) and rank 
3 channels (two faces). 
Proof: Concatenations of ΦFP(t), 0� t � 1 
and channels from A1A2 fill brown bow 
tie. Concatenations of ΦFP(t), 0� t � 1 
and channels from A2A4 fill green bow 
tie.  Varying λ3 that defines edges A1A2
and A2A4 therefore fills whole 
tetrahedron.

ΦFP(1/2)

ΦFP(t)

λ1

λ2

λ3



Universal channel set for unital channels



Non-unital qubit channels

Remarks: 
1. Positivity of the qi is equivalent to the complete positivity of the corresponding unital

channel (with t=0), i.e. Fujiwara Algoet conditions.
2. Second inequality restricts how far the ellipsoid to which the Bloch ball is mapped 

can be shifted inside the Bloch sphere. No shift possible for channels on surface of 
tetrahedron. Maximum shift depends on signs of λi.
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Idea of proof of generalized Fujiwara-
Algoet condition

• Positivity of Choi matrix CΦ is equivalent to complete positivity of 
channel

• Analyze positivity of Choi matrix using Descartes’ rule of signs for 
characteristic polynomial



Pure output of qubit channels
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Idea of proof: Geometry + generalized 
Fujiwara Algoet conditions

Pure output in form of a 
circle cannot be produced by 
a qubit channel, as it 
violates complete positivity
Remarks: 
1. This generalizes the “no-

pancake” theorem: the image 
of the Bloch sphere cannot be 
a disk that touches the 
sphere. 

2. The result is implicit in Ruskai
et al. ’02: a quasi-extreme 
qubit channel can have at 
most 2 pure outputs. 

M. B. Ruskai, S. Szarek, E. Werner, Lin. Alg. Appl. 347, 159 (2002)

Blume et al. PRA ‘10

Euklid 3rd century b.C. ; 
T. Olivier, Géométrie
descriptive, Imprimérie de 
l‘Université Royale de France 
(1845)

Uni Jena



Extremal non-unital channels

• Extremal channel: not a convex combination of other channels
• Parametrization by Ruskai et al.: 

• 1 pure output (PO) extremal channel:

- Degenerate (det M=0) iff λ=0

• 2 PO extremal channel:
- Parametrize in terms of latitudes θ,ω of pure inputs (PI) and PO on 

Bloch sphere
- Degenerate (det M=0) iff θ=0

M. B. Ruskai, S. Szarek, E. Werner, Lin. 
Alg. Appl. 347, 159 (2002)

θ
ω



Universal q-channel set of 
extremal qubit channels

Remark: these sets of channels are also necessary in any universal set of 
qubit channels.  
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Idea of proof

• 1 PO degenerate: a single channel (up to U(2)).  Is needed.
• 1 PO non-degenerate:
This allows one to show that one gets all non-degenerate 1PO channels by
concatenation from small initial ε-environment of λ=1.

2-PO degenerate: 

2-PO non-degenerate:
θ1→ ω1=θ2 →ω2=θ2 →…ωn
Allows to create any pair (θ1,ωn)

(θ1, ωn)



Conclusion part I

• Unital qubit channels:
- Found minimal universal channel set

• Non-unital qubit channels:
- Generalization of Fujiwara-Algoet conditions for complete positivity 

of qubit channel to non-unital case: geometrical interpretation in 
terms of maximum shift of image of Bloch sphere

- Classification of qubit channels in terms of pure output
- Found minimal universal channel set for extremal qubit channels

arXiv:1311.7571 - J. Phys. A 47, 135 202 (2014)

WITH
OLIVIER GIRAUD, ION NECHITA, 
CLÉMENT PELLEGRINI, MARKO

ZNIDARIC



Geometrical descriptions of spin-j states

• J=1/2: 
- Bloch sphere picture: Bloch vector determines spin state
- Mixed or pure

• Any J: 
- Majorana representation (roots of overlap with SU(2) coherent

state)
- Pure states only

• Convenient properties: 
- Rigid rotation under SU(2) unitaries
- For SU(2) coherent state, all Majorana points are anti-podal to

coherent state
• Generalization to mixed states of any spin J?

Nielsen & Chuang



Weinberg matrices

• Overcomplete set of matrices: Expand (square of) Lorentz boost operator
in powers of q and identify terms qµ1qµ2…qµN

• E.g. spin-1/2 (N=1): 

• Spin-1 (N=2): 

So 
Bloch sphere picture!

S. Weinberg, PR 1964



Properties of Weinberg matrices

• 4N Hermitian matrices (overcomplete set!)
• Traceless in the relativistic sense

Symmetric Dicke states of N
two level systems with k excitations

Proof: use SU(2) disentangling theorem and SU(2) coherent state representation

Bloch tensor picture
for a spin-j, j=N/2

Corrollary 1: The Weinberg matrices form a 2N – tight frame.
Corrollary 2:



Tight frames



Properties of Bloch tensor

• Rotation under SU(2) transformation:

generalizes rotation of Bloch vector: 
• Coordinates of SU(2) coherent state pointing in direction n: 

• Spin-k reduced density matrix for symmetric state of a multi-qubit system:

• Scalar product



Applications

• A new characterization of anti-coherent spin states:
A spin state is said to be anti-coherent to order t, if
is independent of n for all k=1,…,t. Application e.g. for
unpolarized states of light.

• Theorem: A spin-j state is anti-coherent to order t iff its spin-(t/2) 
reduced density matrix is the maximally mixed state.

• Corrollary: A spin-j state is anti-coherent to order t iff in the SU(2) 
irreducible tensor operator expansion,

• Proof: based on Bloch tensor and expansion in spherical
harmonics

one has



Conclusion part II

• Tensor representation of spin-j states with nice geometrical properties
- Generalizes Bloch vector for spin-1/2
- Based on Weinberg’s covariant matrices

• Proofed that these matrices form a tight frame, and found a simple way 
to calculate them

• First applications to anti-coherent spin states

WITH
OLIVIER GIRAUD, JOHN MARTIN, 

THIERRY BASTIN, DORIAN
BAGUETTE

arXiv:1409.1106



Pure output theorem

• Idea of proof: 
1. Purely geometrical considerations of an ellipsoid touching a 

sphere from the inside lead to the above four cases + the 
possibility of the ellipsoid touching the sphere in a circle. 

2. Using the generalized Fujiwara-Algoet conditions, one shows 
that the pure output in form of a circle does not correspond to a 
completely positive map.

• Remarks: 
1. This generalizes the “no-pancake” theorem: the image of the 

Bloch sphere cannot be a disk that touches the sphere.
2. The result is implicit in Ruskai et al. ’02: a quasi-extreme qubit

channel can have at most 2 pure outputs. 

Blume et al. PRA ‘10

M. B. Ruskai, S. Szarek, E. Werner, Lin. Alg. Appl. 347, 159 (2002)
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