Spin Filtering: how to write and read quantum information on mobile qubits

Amnon Aharony

Physics Department and Ilse Katz Nano institute

Ora Entin-Wohlman (BGU), Guy Yasuhiro Tokura (NTT) Shingo Shlomi Mattiyahu (BGU), Robert Sh Seigo Tarucha (U Tokyo)

Guy Cohen (BGU) Shingo Katsumoto (ISSP) Robert Shekhter (Göteborg) a (U Tokyo)

Asía-Pacífíc conference on quantum information, Tainan, December 2014

Conventional computers: information in bits,

0 or 1, +1 or -1, 1 or 🖡

Quantum computers: information in Qubits,

```
Electron described by spinor:
```

$$\psi = \cos \alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + e^{i\gamma} \sin \alpha \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Complex numbers

Spinor is an eigenvector of $\, {f n} \, \cdot \, {m \sigma} \,$, the spin component along $\, {f n} \,$

Static qubits:

Here we discuss **mobile** (or **flying**) qubits, in **mesoscopic semiconductor** devices

The Aharonov-Bohm (AB) Effect

Classical Physics, e.g. Lorentz force

$$m\left(\frac{d^{2}\vec{r}}{dt^{2}}\right) = -e\left[\vec{E} + \frac{\vec{v}}{c} \times \vec{B}\right]$$

Quantum Physics, Schrödinger equation

$$(H_{o} + V)\Psi = \frac{i\hbar\partial\Psi}{\partial t}$$

$$V = -eED \text{ and } H_{o} = \frac{p^{2}}{2m} \text{ , where } \vec{p} = m\vec{v} + \frac{e\vec{A}}{c}$$

with E electric field, D electrode's separation

Aharonov and Bohm (AB), Phys.Rev. 115, 485 (1959)

Phase Shift
$$\Delta \phi = \frac{1}{\hbar} \int L dt = \frac{1}{\hbar} \int \left(m \vec{v} + \frac{e \vec{A}}{c} \right) d\vec{s} - \frac{1}{\hbar} \int eED dt$$

A. Tonomura

Quantum mechanics:

Particle-wave duality

Schrödinger's wave equation

$$i\hbar \frac{\partial}{\partial t}\Psi(\mathbf{r},\,t) = -\frac{\hbar^2}{2m}\nabla^2\Psi(\mathbf{r},\,t) + V(\mathbf{r})\Psi(\mathbf{r},\,t)$$

Dirac's equation: spin and spinor

$$(i\hbar\gamma^{\mu}\partial_{\mu}-mc)\psi=0$$

$$i\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},\,t) = -\frac{\hbar^2}{2m}\nabla^2\Psi(\mathbf{r},\,t) + V(\mathbf{r})\Psi(\mathbf{r},\,t) + \frac{\hbar}{(2M_0c)^2}\nabla V(\mathbf{r})(\hat{\boldsymbol{\sigma}}\times\hat{\mathbf{p}})\Psi(\mathbf{r},\,t)$$

Spin-orbit interactions

Dirac:

$$\hat{H}_{SO} = \frac{\hbar}{(2M_0c)^2} \nabla V(\mathbf{r}) (\hat{\boldsymbol{\sigma}} \times \hat{\mathbf{p}}).$$

Entin-Wohlman, Gefen, Meir, Oreg (1989, 1992)

$$\frac{1}{2m}(\mathbf{p}+e\mathbf{A}_{\mathrm{s.o.}}/c)^2, \quad \mathbf{A}_{\mathrm{s.o.}}=(\hbar/4mc)\boldsymbol{\sigma}\times\mathbf{E}$$

A spinor ψ entering from the left and travelling a distance *L* along the *x*-axis will be multiplied by the 2x2 unitary matrix

$$e^{-i\alpha\sigma_y}$$

$$\alpha = \alpha_R = k_R L$$

Aharonov-Casher

Rotation of spin direction around *y*-axis

Rashba Spin-orbit interactions

$$\hat{H}_{SO} = \frac{\hbar}{(2M_0c)^2} \nabla V(\mathbf{r}) (\hat{\boldsymbol{\sigma}} \times \hat{\mathbf{p}}).$$

Rashba: 2DEG, confined to a plane by an asymmetric potential along z:

Dirac:

$$\mathcal{H}_{\mathrm{R}} = \frac{\hbar k_{R}}{m} (p_{y}\sigma_{x} - p_{x}\sigma_{y})$$

Strength of Rashba term can be tuned by gate voltage!

A spinor ψ entering from the left and travelling a distance *L* along the *x*-axis will be multiplied by the 2x2 unitary matrix

$$e^{-i\alpha\sigma_y}$$

$$\alpha ~=~ \alpha_R ~=~ k_R L$$

Rotation of spin direction around *y*-axis

Dresselhaus Spin-orbit interactions

Dresselhaus: originates from bulk inversion asymmetry of the crystal structure:

$$\frac{\gamma}{2} \Big[p_z^2 (p_x \sigma_x - p_y \sigma_y) + p_x p_y (p_x \sigma_y - p_y \sigma_x) \Big].$$

Linear Dresselhaus:

$$\mathcal{H}_{\rm SO}^{\rm D} = \alpha_D (p_x \sigma_x - p_y \sigma_y).$$

$$\mathcal{H}_{\rm SO} = U_p \cdot \sigma,$$

$$U_p = \Big[\alpha_D p_x + \alpha_R p_y, -(\alpha_R p_x + \alpha_D p_y) \Big].$$

Spin field effect transistor

Electronic analog of the electro-optic modulator

oVG

m

Supriyo Datta and Biswajit Das School of Electrical Engineering, Purdue University, West Lafayette, Indiana 47907

ASDI. Phys. Lett. 58 (7), 565

12 February 1990

Polarizer

(a)

Analyzer

 $\begin{pmatrix} 1 \\ 1 \\ 1 \\ 45^{\circ} \text{ pot.} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ (1 \text{ pot.}) \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ (1 \text{ pot.}) \end{pmatrix} \cdot P_0 \propto \left| (1 1) \begin{pmatrix} e^{ik_1 L} \\ e^{ik_2 L} \end{pmatrix} \right|^2 = 4 \cos^2 \frac{(k_1 - k_2)L}{2} .$ (45° pol.)

Das and Datta (1990): The Spin field effect transistor

'Writing' on spinor: Spin filtering

Work with **mobile** electrons, Generate **spin-polarized** current out of an unpolarized source

Spin filtering:

Generate **spin-polarized** current out of an **unpolarized** source

Unpolarized electrons filter polarized electrons

Earlier work: usually calculate **spin-dependent conductance**, and generate **partial** polarization, which varies with parameters.

Our aim: obtain **full** polarization, in a **tunable** direction → **quantum networks**

Quantum networks

PRL 97, 196803 (2006)

PHYSICAL REVIEW LETTERS

week ending 10 NOVEMBER 2006

Experimental Demonstration of the Time Reversal Aharonov-Casher Effect

Tobias Bergsten,^{1,3} Toshiyuki Kobayashi,¹ Yoshiaki Sekine,¹ and Junsaku Nitta^{1,2,3} ¹NTT Basic Research Labs, 3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan ²Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8579, Japan ³CREST-Japan Science and Technology Agency, Kawaguchi Center Building, 4-1-8, Hon-cho, Kawaguchi-shi, Saitama 332-0012, Japan

Experimental realization of a ballistic spin interferometer based on the Rashba effect using a nanolithographically defined square loop array

Takaaki Koga,^{1,2,3,*} Yoshiaki Sekine,² and Junsaku Nitta^{2,3,†}

¹PRESTO, Japan Science and Technology Agency, 4-1-8, Honchou, Kawaguchi, Saitama 332-0012, Japan
²NTT Basic Research Laboratories, NTT Corporation, 3-1, Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
³CREST, Japan Science and Technology Agency, 4-1-8, Honchou, Kawaguchi, Saitama 332-0012, Japan

Rashba-Effect-Induced Localization in Quantum Networks

Dario Bercioux,¹ Michele Governale,² Vittorio Cataudella,¹ and Vincenzo Marigliano Ramaglia¹ ¹Coherentia-INFM and Dipartimento di Scienze Fisiche, Università degli studi "Federico II," I-80126 Napoli, Italy ²NEST-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

PHYSICAL REVIEW B 78, 125328 (2008)

Q

Spin filtering by a periodic spintronic device

Amnon Aharony,^{1,*} Ora Entin-Wohlman,^{1,*} Yasuhiro Tokura,² and Shingo Katsumoto³
¹Department of Physics and the Ilse Katz Center for Meso- and Nano-Scale Science and Technology, Ben Gurion University, Beer Sheva 84105, Israel

²NTT Basic Research Laboratories, NTT Corporation, Atsugi-shi, Kanagawa 243-0198, Japan ³Institute of Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan (Received 27 May 2008; revised manuscript received 3 September 2008; published 30 September 2008)

For a linear chain of diamondlike elements, we show that the Rashba spin-orbit interaction (which can be tuned by a perpendicular gate voltage) and the <u>Aharonov-Bohm flux</u> (due to a perpendicular magnetic field) can combine to select only one propagating ballistic mode, for which the electronic spins are fully polarized along a direction that can be controlled by the electric and magnetic fields and by the electron energy. All the other modes are evanescent. For a wide range of parameters, this chain can serve as a spin filter.

Earlier work concentrated on spin-dependent conductance, averaged over electron energies, did not concentrate on spin filtering

Our aim: use simplest quasi-1D model to generate spin filtering

Our main conclusion: can achieve **full filtering** provided we use **both** spin-orbit and Aharonov-Bohm

We use tight-binding quantum networks,

$$(\epsilon - \epsilon_u) |\psi(u)\rangle = -\sum \widetilde{U}_{uv} |\psi(v)\rangle$$

v

 $\widetilde{U}_{uv} \equiv J_{uv}U_{uv}$

2-component spinor at node *u*

2x2 unitary matrix, representing hopping from v to u

Continuum versus tight-binding networks: AA + Ora Entin-Wohlman, J. Phys. Chem. **113**, 3676 (2009); ArXiv: 0807.4088 General solution:

$$\psi_a(n) = \sum_{i=1}^4 A_i e^{iq_i \overline{L}n} \chi_a(q,\mu)$$

4 solutions, which appear in pairs, $\pm q_i$ Real *q*: Unning Solution. Complex *q*: evanescent solution.

Ballistic conductance = $(e^2/h)g(E_F)$ g = number of solutions which run from left to right: g= 0, 1 or 2

For a broad range of parameters, there is only **one** running solution, and then the electrons are fully polarized!

Ballistic conductance *g*

-1.0

0

1

2

 ϕ

To obtain full filtering – Must break both **Time reversal symmetry** (magnetic field) And reflection symmetry (electric field)

Problems:

How to **realize** long chain?

How to read information from spinor?

PHYSICAL REVIEW B 84, 035323 (2011)

Filtering and analyzing mobile qubit information via Rashba–Dresselhaus– Aharonov–Bohm interferometers

Amnon Aharony,1,* Yasuhiro Tokura,2 Guy Z. Cohen,3,† Ora Entin-Wohlman,1,‡ and Shingo Katsumoto4

How to **realize** long chain?

How to **read information from** spinor?

Single loop interferometer

³⁰ Y. Oreg and O. Entin-Wohlman, Phys. Rev. B 46, 2393 (1992).

- ⁴¹ Y. Meir, Y. Gefen and O. Entin-Wohlman, Phys. Rev. Lett. **63**, 798 (1989).
- ⁴² A. G. Aronov and Y. B. Lyanda-Geller, Phys. Rev. Lett. 70, 343 (1993).
- ⁴³ J. Nitta, F. E. Meijer and H. Takanayagi, Appl. Phys. Lett. 75, 695 (1999).
- ⁴⁴ B. Molnár, F. M. Peeters and P. Vasilopoulos, Phys. Rev. B69, 155335 (2004).
- ⁴⁵ D. Frustaglia, and K. Richter, Phys. Rev. B 69, 235310 (2004)
- ⁴⁶ R. Citro, F. Romero and M. Marinaro, Phys. Rev. B 74, 115329 (2006).
- ⁴⁷ V. Marigliano Ramaglia, V. Cataudella, G. De Filippis, and C. A. Perroni, Phys. Rev. B 73, 155328 (2006).
- ⁴⁸ M. J. van Veenhuizen, T. Koga and J. Nitta, Phys. Rev. B 73, 235315 (2006).
- ⁴⁹ N. Hatano, R. Shirasaki, and H. Nakamura, Phys. Rev. A 75, 032107 (2007).

PHYSICAL REVIEW B 74, 115329 (2006)

Zero-conductance resonances and spin filtering effects in ring conductors subject to Rashba coupling

R. Citro, F. Romeo, and M. Marinaro

PHYSICAL REVIEW A 75, 032107 (2007)

Non-Abelian gauge field theory of the spin-orbit interaction and a perfect spin filter

Naomichi Hatano

Institute of Industrial Science, University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan

Ryōen Shirasaki

Department of Physics, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan

Hiroaki Nakamura

Theory and Computer Simulation Center, National Institute for Fusion Science, Oroshi-cho, Toki, Gifu 509-5292, Japan

 $\mathbf{W} = \gamma_b U_b + \gamma_c U_c$

$$(\epsilon - \epsilon_u)\psi(u) = -\sum_v J_{uv}U_{uv}\psi(v)$$

Tight-binding

$$\begin{split} (\epsilon - \epsilon_0) |\psi(0)\rangle &= -\left(\widetilde{U}_{0b} |\psi(b)\rangle + \widetilde{U}_{0c} |\psi(c)\rangle\right) - j |\psi(-1)\rangle \\ (\epsilon - \epsilon_1) |\psi(1)\rangle &= -\left(\widetilde{U}_{b1}^{\dagger} |\psi(b)\rangle + \widetilde{U}_{c1}^{\dagger} |\psi(c)\rangle\right) - j |\psi(2)\rangle, \\ (\epsilon - \epsilon_b) |\psi(b)\rangle &= -\left(\widetilde{U}_{0b}^{\dagger} |\psi(0)\rangle + \widetilde{U}_{b1} |\psi(1)\rangle\right), \\ (\epsilon - \epsilon_c) |\psi(c)\rangle &= -\left(\widetilde{U}_{0c}^{\dagger} |\psi(0)\rangle + \widetilde{U}_{c1} |\psi(1)\rangle\right). \end{split}$$

Eliminate B and c

$$\begin{split} &(\epsilon - \epsilon_0 - \gamma_b - \gamma_c) |\psi(0)\rangle = \mathbf{W} |\psi(1)\rangle - j |\psi(-1)\rangle, \\ &(\epsilon - \epsilon_1 - \gamma_b - \gamma_c) |\psi(1)\rangle = \mathbf{W}^{\dagger} |\psi(0)\rangle - j |\psi(2)\rangle, \end{split}$$

$$\mathbf{W} \equiv \gamma_{0b1} U_{0b} U_{b1} + \gamma_{0c1} U_{0c} U_{c1}$$

Non unitary

Scattering theory

Electron from left:

$$\begin{split} |\psi(n)\rangle &= e^{ikna}|\chi_{in}\rangle + re^{-ikna}|\chi_r\rangle, \quad n \leq 0, \\ |\psi(n)\rangle &= te^{ik(n-1)a}|\chi_t\rangle, \quad n \geq 1, \end{split}$$

$$t|\chi_t\rangle = \mathcal{T}|\chi_{in}\rangle, \quad r|\chi_r\rangle = \mathcal{R}|\chi_{in}\rangle$$

Transmission:

 $\mathcal{T} = 2ij\sin(ka)\mathbf{W}^{\dagger} (Y\mathbf{1} - \mathbf{W}\mathbf{W}^{\dagger})^{-1},$

Reflection:

$$\mathcal{R} = -\mathbf{1} - 2ij\sin(ka)X_1(Y\mathbf{1} - \mathbf{W}\mathbf{W}^{\dagger})^{-1}.$$

 $\mathcal{T} = 2ij\sin(ka)\mathbf{W}^{\dagger} (Y\mathbf{1} - \mathbf{W}\mathbf{W}^{\dagger})^{-1},$

$$\mathcal{R} = -\mathbf{1} - 2ij\sin(ka)X_1(Y\mathbf{1} - \mathbf{W}\mathbf{W}^{\dagger})^{-1}$$

$$\mathbf{W} = d + \mathbf{b} \cdot \boldsymbol{\sigma}, \quad \blacksquare \quad \mathbf{W} \mathbf{W}^{\dagger} = A + \mathbf{B} \cdot \boldsymbol{\sigma}$$

$$\mathbf{W} = \gamma_b U_b + \gamma_c U_c, \quad \blacksquare \quad \mathbf{W} \mathbf{W}^{\dagger} = \gamma_b^2 + \gamma_c^2 + \gamma_b \gamma_c (u + u^{\dagger}),$$

$$u \equiv U_b U_c^{\dagger} = e^{-i\phi + i\omega \cdot \sigma}$$

Unitary matrix transforming spinor after a full walk around the loop

 $\mathbf{W}\mathbf{W}^{\dagger} = \gamma_b^2 + \gamma_c^2 + \gamma_b\gamma_c(u+u^{\dagger}),$

$$u \equiv U_b U_c^{\dagger} = e^{-i\phi + i\omega \cdot \sigma}$$

$$\mathbf{W}\mathbf{W}^{\dagger} = A + \mathbf{B} \cdot \boldsymbol{\sigma} \qquad \begin{aligned} A &= \gamma_b^2 + \gamma_c^2 + 2\gamma_b\gamma_c\cos\omega\cos\phi, \\ \mathbf{B} &= 2\gamma_b\gamma_c\sin\omega\sin\phi\hat{\mathbf{n}}. \end{aligned}$$

$$\mathbf{W}\mathbf{W}^{\dagger}|\pm\hat{\mathbf{n}}\rangle = \lambda_{\pm}|\pm\hat{\mathbf{n}}\rangle \qquad \hat{\mathbf{n}}\cdot\boldsymbol{\sigma}|\hat{\mathbf{n}}\rangle = |\hat{\mathbf{n}}\rangle$$

$\lambda_{\pm} = A \pm |\mathbf{B}| = \gamma_b^2 + \gamma_c^2 + 2\gamma_b\gamma_c\cos(\phi \pm \omega).$

$$\mathbf{W}\mathbf{W}^{\dagger}|\pm\hat{\mathbf{n}}\rangle=\lambda_{\pm}|\pm\hat{\mathbf{n}}\rangle$$

$$\mathbf{W}^{\dagger} \equiv \sqrt{\lambda_{-}} |-\mathbf{n}'\rangle \langle -\mathbf{n}| + \sqrt{\lambda_{+}} |\hat{\mathbf{n}}'\rangle \langle \hat{\mathbf{n}}|$$

 $\mathbf{B}' = 2\operatorname{Re}[d^*\mathbf{b}] - 2[\operatorname{Re}(\mathbf{b}) \times \operatorname{Im}(\mathbf{b})] \equiv |\mathbf{B}|\hat{\mathbf{n}}'|$

$$|\chi_{in}\rangle = c_{+}|\hat{\mathbf{n}}\rangle + c_{-}|-\hat{\mathbf{n}}\rangle \Longrightarrow t|\chi_{t}\rangle = c_{+}t_{+}|\hat{\mathbf{n}}'\rangle + c_{-}t_{-}|-\hat{\mathbf{n}}'\rangle$$

$$t_{\pm} = \frac{2ij\sin(ka)}{Y - \lambda_{\pm}}\sqrt{\lambda_{\pm}}.$$

Full filtering if one eigenvalue vanishes!

$$\lambda_{-} = 0 \quad \blacksquare \quad t |\chi_{t}\rangle = c_{+}t_{+}|\hat{\mathbf{n}}'\rangle \quad \blacksquare \quad T = T_{+}|c_{+}|^{2}$$

Full filtering if one eigenvalue vanishes!

$$\lambda_{\pm} = A \pm |\mathbf{B}| = \gamma_b^2 + \gamma_c^2 + 2\gamma_b\gamma_c\cos(\phi \pm \omega)$$

 $\Lambda_{-} = 0$ only when $\gamma_{b} = \gamma_{c} \equiv \gamma$ and $\cos(\phi - \omega) = -1$

T depends only on ϕ

"Reading" spin information

Incoming electrons polarized,

$$|\chi_{in}\rangle\equiv|\hat{\mathbf{n}}_{0}\rangle$$

$$|c_{+}|^{2} = |\langle \hat{\mathbf{n}} | \hat{\mathbf{n}}_{0} \rangle|^{2} = \frac{1}{2} [1 + \hat{\mathbf{n}}_{0} \cdot \hat{\mathbf{n}}]$$

Can measure the projection of the incoming polarization on that of the filter

Rashba spin orbit

$$\mathcal{H}_{\mathrm{R}} = \frac{\hbar k_{R}}{m} (p_{y}\sigma_{x} - p_{x}\sigma_{y})$$

$$U_{uv} = \exp\left[i\frac{\pi BL}{\Phi_0}\hat{\gamma}_{uv} \times \hat{z} \cdot \mathbf{r}_u + ik_{SO}L\hat{\gamma}_{uv} \times \hat{z} \cdot \boldsymbol{\sigma}\right]$$

$$c = \cos \alpha, \ s = \sin \alpha$$

 $\cos(\phi/2) = s^2 \sin(2\beta)$ $\lambda_{-} = 0$

Independent of energy!

 $c = \cos \alpha, \ s = \sin \alpha$

To obtain full filtering – Must break both **Time reversal symmetry** (magnetic field) And reflection symmetry (electric field)

$$\hat{\mathbf{n}} = \left(2cs\cos\beta, 0, c^2 - s^2\cos(2\beta)\right)/\sqrt{1 - s^4\sin^2(2\beta)}$$

Independent of energy!

$$\hat{\mathbf{n}}' = (-\hat{n}_x, 0, \hat{n}_z)$$

α

π

.

 $\frac{3\pi}{4}$

 $(n_x)'$

 $\frac{\pi}{4}$

1

0.5

0.5

-1

Experimental realization

Two diamonds

$$\begin{split} \mathcal{T} &= 2ij\sin(ka)\mathbf{W}_{B}^{\dagger} \big[Z_{1}X_{0}X_{2}\mathbf{1} + X_{0}\mathbf{W}_{B}\mathbf{W}_{B}^{\dagger} + X_{2}\mathbf{W}_{A}^{\dagger}\mathbf{W}_{A} \big]^{-1}\mathbf{W}_{A}^{\dagger} \\ &= 2ij\sin(ka)\mathbf{W}_{B}^{\dagger} \frac{Z_{1}X_{0}X_{2} + X_{0}A_{B} + X_{2}A_{A} - (X_{0}\mathbf{B}_{B} + X_{2}\mathbf{B}_{A}') \cdot \boldsymbol{\sigma}}{(Z_{1}X_{0}X_{2} + X_{0}A_{B} + X_{2}A_{A})^{2} - (X_{0}\mathbf{B}_{B} + X_{2}\mathbf{B}_{A}')^{2}}\mathbf{W}_{A}^{\dagger} \end{split}$$

$$A_A = A_B$$
 and $\mathbf{B}_A = \mathbf{B}_B'$

$$\mathcal{T} = \frac{2ij\sin(ka)\lambda_+}{z_1X_0X_2 + (X_0 + X_2)\lambda_+} |\hat{\mathbf{n}}_A\rangle \langle \hat{\mathbf{n}}_A|$$

Same incoming and outgoing spin, large transmission

Datta-Das spin FET without ferromagnets!

Are there materials for this device?

$Al_{0.25}In_{0.75}As$ barrier layer

$$k_R = m^* \alpha / \hbar^2 = 9 \times 10^6 \mathrm{m}^{-1}$$

quaternary InGaAsP/InGaAs heterointerface $k_R = 5.55 \times 10^6 \text{m}^{-1}$

 $L = 300 \mathrm{nm}$ $\alpha_R \sim 1.6 - 2.7$

How to confirm filtering?

•Use double interferometer as a Datta-Das device.

Datta-Das spin FET without ferromagnets!

How to confirm filtering?

•Use side quantum dot:

PHYSICAL REVIEW B 79, 195313 (2009)

Detection of spin polarization with a side-coupled quantum dot

Tomohiro Otsuka,* Eisuke Abe, Yasuhiro Iye, and Shingo Katsumoto

How to confirm filtering?

•Use rectification by Pauli exclusion:

1313

Current Rectification by Pauli Exclusion in a Weakly Coupled Double Quantum Dot System

K. Ono,¹ D. G. Austing,^{2,3} Y. Tokura,² S. Tarucha^{1,2,4}*

SCIENCE VOL 297 23 AUGUST 2002

More recent results

* Stability against leaking?

PHYSICAL REVIEW B 87, 205438 (2013)

Robustness of spin filtering against current leakage in a Rashba-Dresselhaus-Aharonov-Bohm interferometer

Shlomi Matityahu,¹ Amnon Aharony,^{1,2,3,*} Ora Entin-Wohlman,^{1,2,3} and Shingo Katsumoto⁴

$$\left(\epsilon - \widetilde{\epsilon}_{uv}\right) \left|\psi_{n}^{uv}\right\rangle = -J_{uv}\left(U_{uv}^{\dagger} \left|\psi_{n-1}^{uv}\right\rangle + U_{uv} \left|\psi_{n+1}^{uv}\right\rangle\right),$$

$$\widetilde{\epsilon}_{uv} = -\frac{|J_{x,uv}|^2 e^{ika}}{j}$$

$$\lambda_{\pm} = A \pm B = \gamma_b^2 + \gamma_c^2 + 2\gamma_b\gamma_c\cos(\phi \mp \omega)$$

$$\gamma_b = |\gamma_b| e^{i\delta_b}$$
 and $\gamma_c = |\gamma_c| e^{i\delta_c}$

$$\begin{aligned} \lambda_{LR,\pm} &= A_{LR} \pm B_{LR} \\ &= |\gamma_b|^2 + |\gamma_c|^2 + 2|\gamma_b||\gamma_c|\cos(\widetilde{\phi} \mp \omega). \\ \\ &\widetilde{\phi} = \phi + \delta_c - \delta_b \end{aligned}$$

Filtering:
$$|\gamma_b| = |\gamma_c| \equiv \gamma$$
, $\cos(\tilde{\phi} + \omega) = -1$

Leaking breaks time reversal symmetry! No need for magnetic field

0.9

1

New Journal of Physics

open access journal for physics

Spin filtering in a Rashba–Dresselhaus–Aharonov–Bohm double-dot interferometer

> Shlomi Matityahu¹, Amnon Aharony^{1,2,3,6}, Ora Entin-Wohlman^{1,2,3} and Seigo Tarucha^{4,5}

$$\begin{split} \tilde{\varepsilon}_{uv} &= \varepsilon_{uv} - J_{uv} \frac{\sin \left[k_{uv}(M-1)\right]}{\sin(k_{uv}M)} \qquad (uv = ab, cd), \\ \tilde{J}_{uv} &= J_{uv} \frac{\sin k_{uv}}{\sin(k_{uv}M)} \qquad (uv = ab, cd), \end{split}$$

$$\tilde{\varepsilon}_{ab}^2 - \tilde{J}_{ab}^2 = \tilde{\varepsilon}_{cd}^2 - \tilde{J}_{cd}^2,$$

$$\omega = \alpha_{cd} - \alpha_{ab} = \phi + \pi.$$

Need to tune only 2 voltages!

PRL 111, 176602 (2013)

Suspended Nanowires as Mechanically Controlled Rashba Spin Splitters

R. I. Shekhter,¹ O. Entin-Wohlman,^{2,3,*} and A. Aharony^{2,3}

$$V_{k(p)} = -J_{L(R)} \exp[-i\psi_{L(R)}],$$

$$\psi_L = \phi_L - \alpha (x_L \sigma_y - y_L \sigma_x),$$

$$\psi_R = \phi_R - \alpha (x_R \sigma_y + y_R \sigma_x).$$

Misbalanced spin population in the leads yields spin-split currents from the wire

vibrations

$$\frac{G_{\text{spin}}/G_0}{\sin^2(\alpha d)\cos^2(\theta_0)} = \begin{cases} 1 - \frac{\beta\omega}{6} \frac{H^2}{H_0^2} & \beta\omega \ll 1\\ \exp[-H^2/H_0^2], & \beta\omega \gg 1. \end{cases}$$

Real-time dynamics of spin-dependent transport through a double-quantum-dot Aharonov-Bohm interferometer with spin-orbit interaction

Matisse Wei-Yuan Tu,¹ Amnon Aharony,^{2,3,*} Wei-Min Zhang,^{1,†} and Ora Entin-Wohlman^{2,3}

Conclusions:

Need **both** Aharonov-Bohm and spin-orbit to maintain **full** filtering.

Spin is **sensitive to parameters**: small changes in parameters switch the direction of the filtered spin.

Can work at **fixed small magnetic field**, with small changes in electric field or in electron energy.

Double diamond = **Datta-Das** spin FET.

* Results robust against leaks, ** can use double dot, *** can use vibrating molecule, **** time evolution generates spin currents in the leads.

Thank you

 $W = J_{0B}J_{B1}/(\epsilon - \epsilon_B) = j^2 e^{i\phi} [\cos(\alpha L) + i\sin(\alpha L)\sigma_1] [\cos(\alpha L) + i\sin(\alpha L)\sigma_2]/(\epsilon - \epsilon_B)$ $= j^2 e^{i\phi} \{\cos^2(\alpha L) + i\sin(2\alpha L)\cos\beta\sigma_y - \sin^2(\alpha L)[\cos(2\beta) + i\sin(2\beta)\sigma_z]\}/(\epsilon - \epsilon_B)$

$$\tilde{\epsilon}_m = \epsilon_m - j^2/(\epsilon - \epsilon_B)$$

$$\begin{split} \overline{W} &= e^{-(H/H_0)^2} \left(1 - \frac{(2\alpha d)^2}{2!} \right. \\ &+ 2i\alpha d\sigma_y + \sigma_z \frac{\lambda}{d} \frac{H}{H_0} \frac{(2\alpha d)^2}{2!} \end{split} \end{split}$$

$$\begin{split} \mathcal{S}(\epsilon,Y) &= -\begin{bmatrix} \mathbf{1} & 0\\ 0 & \mathbf{1} \end{bmatrix} \\ &+ 2iJ\sin(ka) \begin{bmatrix} [\epsilon - \Sigma_1^r(\epsilon)]\mathbf{1} & J_{\text{eff}}\overline{W} \\ J_{\text{eff}}\overline{W}^{\dagger} & [\epsilon - \Sigma_0^r(\epsilon)]\mathbf{1} \end{bmatrix} \mathcal{D}(\epsilon)^{-1} \end{split}$$

$$\mathcal{D} = (\epsilon - \Sigma_1^r)(\epsilon - \Sigma_0^r)\mathbf{1} - [J_{\text{eff}}]^2 \overline{WW}^{\dagger}$$

 $\overline{WW}^{\dagger}\approx \mathbf{1}+4[\lambda H/(dH_{0})](\alpha d)^{2}\sigma_{z}$

More to do:

- How to **measure**?
- Add **Zeeman** field ±Aharonov-Casher? Berry phase?
- **Dissipation**: stochastic noise? phonons? Dephasing?
- Add e-e interactions?
- How can we **combine** beams to perform **computing?**

Choose parameters so that

$$\mathbf{W}^{\dagger}|\chi_{-}^{\mathbf{n}}\rangle = 0 \implies t|\chi_{t}\rangle = c_{+}t_{+}|\chi_{+}^{\mathbf{n}'}$$

Full filtering!

$$\cos(\phi/2) = s^2 \sin(2\beta)$$

Eliminate *b, c:*

$$\begin{split} &\langle \epsilon - \epsilon_0 - \gamma_b - \gamma_c) |\psi(0)\rangle = \mathbf{W} |\psi(1)\rangle - j |\psi(-1)\rangle, \\ &\langle \epsilon - \epsilon_1 - \gamma_b - \gamma_c) |\psi(1)\rangle = \mathbf{W}^{\dagger} |\psi(0)\rangle - j |\psi(2)\rangle, \end{split}$$

$$\begin{aligned} \mathbf{W} &= \gamma_b U_{0b} U_{b1} + \gamma_c U_{0c} U_{c1} = d + b_y \sigma_y + b_z \sigma_z, \\ d &= a_+ [c^2 - s^2 \cos(2\beta)], \\ b_y &= -2ia_+ cs \cos\beta, \quad b_z = ia_- s^2 \sin(2\beta), \end{aligned}$$

Non-unitary!

$$\begin{aligned} c &= \cos \alpha, \ s &= \sin \alpha \\ a_{\pm} &= \gamma_b e^{-i\phi/2} \pm \gamma_c e^{i\phi/2}. \\ \gamma_j &= J^2/(\epsilon - \epsilon_j), \ j &= b, c. \end{aligned}$$

2β

-1

Electron from left:

$$\begin{split} \psi(n) &= e^{ikna}\chi_{in} + re^{-ikna}\chi_r, \quad n \leq 0, \\ \psi(n) &= te^{ik(n-1)a}\chi_t, \quad n \geq 1, \end{split}$$

$$t|\chi_t\rangle = \mathcal{T}|\chi_{in}\rangle$$

Spin-polarized electric currents in quantum transport

O. Entin-Wohlman,^{1,2,*} A. Aharony,^{1,*} Y. Tokura,³ and Y. Avishai¹

Generalized Landauer formula

$$I_x^j = \int \frac{dE}{2\pi} \sum_a f_a(E) \operatorname{Tr} \left\{ \delta_{a,L} \sigma_j - \sum_{nn'} \mathcal{M}_{Ln',an}(E) \sigma_j \right\}$$
$$= \int \frac{dE}{2\pi} \left(f_L(E) - f_R(E) \right) \operatorname{Tr} \sum_{nn'} \mathcal{M}_{Ln',Rn}(E) \sigma_j , \quad (6)$$

$$\mathcal{M}_{Ln',an}(E) \equiv \mathcal{S}_{Ln',an}(E) \mathcal{S}_{Ln',an}^{\dagger}(E)$$

$$\mathcal{M}_{Ln',Rn}(E) = \frac{1}{2} \Big(\mathcal{T}_{n'n}(E) + \mathbf{V}_{n'n}(E) \cdot \boldsymbol{\sigma} \Big)$$

$$\begin{split} t|\chi_t\rangle &= \mathcal{T}|\chi_{in}\rangle\\ \mathcal{T} &= 2ij\sin(ka)\mathbf{W}^{\dagger}(Y - \mathbf{W}\mathbf{W}^{\dagger})^{-1},\\ Y &= (X + \epsilon_0)(X + \epsilon_1), \ X &= \gamma_b + \gamma_c + je^{-ika},\\ \mathbf{W}\mathbf{W}^{\dagger} &= A + \mathbf{B} \cdot \boldsymbol{\sigma},\\ \mathbf{W}\mathbf{W}^{\dagger} &= A + \mathbf{B} \cdot \boldsymbol{\sigma},\\ \mathbf{W}\mathbf{W}^{\dagger}|\chi_{\pm}^{\mathbf{n}}\rangle &= \lambda_{\pm}|\chi_{\pm}^{\mathbf{n}}\rangle \qquad \mathbf{n} \cdot \boldsymbol{\sigma}|\chi_{\pm}^{\mathbf{n}}\rangle &= \pm|\chi_{\pm}^{\mathbf{n}}\rangle\\ \mathbf{n} &= \mathbf{B}/|\mathbf{B}| = (2cs\cos\beta, \ 0, \ c^2 - s^2\cos(2\beta))/\sqrt{1 - s^4\sin^2(2\beta)} \end{split}$$

Depends only on Rashba and on AB flux!

$$\lambda_{\pm} = A \pm |\mathbf{B}|$$

$$|\chi_{in}\rangle = c_+ |\chi_+^{\mathbf{n}}\rangle + c_- |\chi_-^{\mathbf{n}}\rangle$$

$$t|\chi_t\rangle = c_+t_+|\chi_+^{out}\rangle + c_-t_-|\chi_-^{out}\rangle$$

$$|\chi_{\pm}^{out}\rangle = \mathbf{W}^{\dagger}|\chi_{\pm}^{\mathbf{n}}\rangle/\sqrt{|\lambda_{\pm}|}$$

$$|\chi_{\pm}^{out}\rangle \equiv |\chi_{\pm}^{\mathbf{n}'}\rangle$$

$$\mathbf{n}' = (-n_x, 0, n_z)$$

Polarization of outgoing spins

$$|\chi_{in}\rangle = c_+ |\chi_+^{\mathbf{n}}\rangle + c_- |\chi_-^{\mathbf{n}}\rangle$$

$$t|\chi_t\rangle = c_+ t_+ |\chi_+^{\mathbf{n}'}\rangle$$

$$|c_+|^2 = |\langle |\chi_+^{\mathbf{n}}|\chi_{in}\rangle|^2$$

$$|c_+|^2 = \frac{1}{2}[1 + \mathbf{s} \cdot \mathbf{n}]$$

Transmitted currrent Proportional to $|c_+|^2$: Can measure incoming spin polarization Via measurements of the transmission! READING ¶

'Writing' on spinor: Spin filtering:

Work with mobile electrons, Generate spin-polarized current out of an unpolarized source

Textbook method: Stern-Gerlach splitting

Based on **Zeeman** splitting, Requires large fields, separation of beams not easy due to uncertainty

Writing and reading spin information on mobile electronic qubits

Amnon Aharony

Physics Department and Ilse Katz Nano center

Ora Entin-Wohlman (BGU)

Yasuhiro Tokura (NTT)

Shingo Katsumoto (ISSP)

NEW FRONTIERS IN SPINTRONICS, IAS, HUJI, May 2009