APCWQIS 2014

Asia Pucific Conference & Workshop on Quantum Information Science 2014

December 12-15, 2014, presented on 13 (Sat)

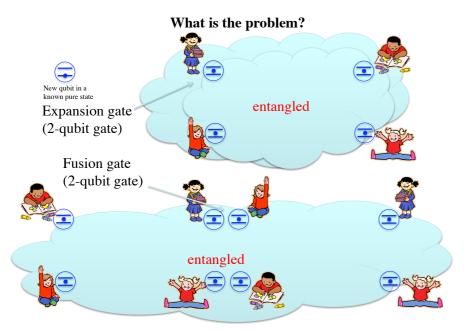
Entanglement Web Expansion

Graduate School of Engineering Osaka University (大阪大学)

Nobuyuki Imoto (井元 信之)

collaborators

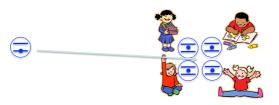
T. Yamamoto, R. Ikuta, T. Tashima, T. Wakatsuki, T. Kitano, E. Matsunaga, T. Kobayashi, S. K. Ozdemir (Washington University in St. Louis), M. Tame (University of KwaZulu-Natal), and M. Koashi (Tokyo Univ)


What is the problem?

Generating a large-scale entanglement at a time is difficult.

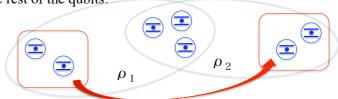
- \rightarrow (1) Put a new qubit (new qubits) to the existing entangled state. and/or
 - (2) Merge two existing entangled states into one.

A trivial (but not easy to do) method: bring all qubits at a place and recreate the desired state.



What is the problem?

Generating a large-scale entanglement at a time is difficult.


- \rightarrow (1) Put a new qubit (new qubits) to the existing entangled state. and/or
 - (2) Merge two existing entangled states into one.

A trivial (but not easy to do) method: bring all qubits at a place and recreate the desired state.

Previous works

When two entangled states share a subset of qubits in the same marginal state, then the two states can be converted by only touching the rest of the qubits.

GHZ_n and GHZ_{n+m} satisfies this. \rightarrow deterministic exp/merge possible. C_n and C_{n+m} satisfies this. \rightarrow deterministic exp/merge possible.

Open questions \downarrow

 W_n and W_{n+m} do not. \rightarrow Is probabilistic expansion possible?

Dicke_n and Dicke_{n+m} do not. \rightarrow Is probabilistic expansion possible?

If so, how large is the maximum probability? Possible within linear optics? If so, how is the probability?

Marginal (partial) density operator of an entangled system

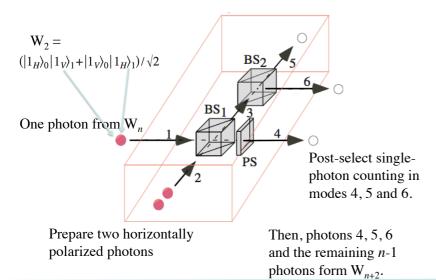
Marginal density operator:
$$\hat{\rho}_{\text{marginal}}^{(A)} = \text{Tr}_{B} [\hat{\rho}^{(AB)}]$$
 (9)

For
$$\hat{\rho}^{(AB)} = \hat{\rho}^{(A)} \otimes \hat{\rho}^{(B)} \Rightarrow \hat{\rho}_{\text{marginal}}^{(A)} = \hat{\rho}^{(A)}$$
 (10)

For a Bell state
$$\Rightarrow$$
 $\hat{\rho}_{\text{marginal}}^{(A)} = \hat{\rho}_{\text{marginal}}^{(B)} = \frac{|0\rangle\langle 0| + |1\rangle\langle 1|}{2}$ (11)

By the way, a Bell state can be transferred to any Bell state by only rotating qubit A (or B).

For a maximally entangled state
$$\frac{|11\rangle_{AB} + |22\rangle_{AB} + \cdots |NN\rangle_{AB}}{\sqrt{N}}$$


$$\Rightarrow \hat{\rho}_{\text{marginal}}^{(A)} = \hat{\rho}_{\text{marginal}}^{(B)} = \frac{|1\rangle\langle 1| + |2\rangle\langle 2| + \cdots + |N\rangle\langle N|}{N}$$
(12)

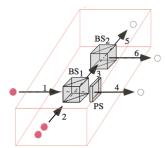
The marginal density operator of a maximally entangled state is a maximally mixed state.

An MES is transferred to any other MES by only rotating system A (or B).

For GHZ_N states
$$\Rightarrow$$
 $\hat{\rho}_{\text{marginal}}^{(A)} = \hat{\rho}_{\text{marginal}}^{(B)} = \frac{|0\rangle\langle 0| + |1\rangle\langle 1|}{2}$ (13)

This means that GHZ_N can be enlarged to GHZ_{N+1} by interacting a component qubit with an attached ancilla qubit.

[1] Phys. Rev. A77, 030302(R) (2008): "Elementary optical gate for expanding an entanglement web" T. Tashima, S. K. Ozdemir, T. Yamamoto, M. Koashi & NI

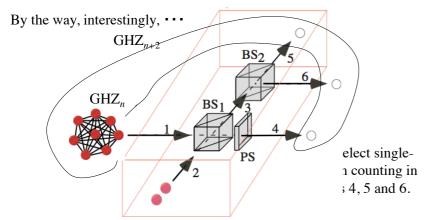

Our work

- [1] T. Tashima, et.al.: PRA77 (2008) 030302. Proposal: An expansion gate (using ordinary BSs) for $W_n \to W_{n+2}$
- [2] T. Tashima, et.al.: NJP11 (2009) 023024. Proposal of an optimal expansion gate for expanding $W_n \to W_{n+1}$
- [3] T. Tashima, et.al.: PRL102 (2009) 130502. Proposal and experimental: A fusion gate that fuses $W_2 + W_2 \rightarrow W_3$
- [4] T. Tashima, et.al.: PRL105 (2010) 210503. Experimental demonstration of [1] $(W_1 \rightarrow W_2 \text{ and } W_2 \rightarrow W_4)$
- [5] R. Ikuta, et.al.: PRA83 (2011) 012314. Proposal of an optimal gate for $W_n \rightarrow W_{n+m}$ with a Fock-state resource
- [6] S. K. Ozdemir, et.al.: NJP (2011) 103003. Proposal of a fusioning W states with/without recycling
- [7] T. Kobayashi, et.al.: NJP (2014) 023005. Proposal of a universal gates that transforms $Dicke(nm) \rightarrow Dicke(kj)$

polarization. We assume that the BS1 is polarization independent, namely, the transformation for V polarization has the same form. Using these relations, we see that the initial states $|1_{H(V)}\rangle_1 \otimes |2_H\rangle_2 = 2^{-1/2} \hat{a}_{1H(V)}^{\dagger} (\hat{a}_{2H}^{\dagger})^2 |0\rangle$ evolve as

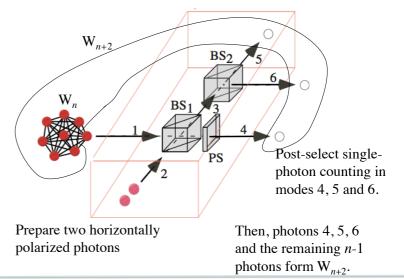
$$\begin{split} |1_{H}\rangle_{1}|2_{H}\rangle_{2} &\to \frac{\sqrt{3}}{2\sqrt{2}}|3_{H}\rangle_{3}|0\rangle_{4} + \frac{1}{2\sqrt{2}}|2_{H}\rangle_{3}|1_{H}\rangle_{4} \\ &- \frac{1}{2\sqrt{2}}|1_{H}\rangle_{3}|2_{H}\rangle_{4} - \frac{\sqrt{3}}{2\sqrt{2}}|0\rangle_{3}|3_{H}\rangle_{4}, \\ |1_{V}\rangle_{1}|2_{H}\rangle_{2} &\to \frac{1}{2\sqrt{2}}|1_{V}2_{H}\rangle_{3}|0\rangle_{4} + \frac{1}{2}|1_{H}1_{V}\rangle_{3}|1_{H}\rangle_{4} \\ &+ \frac{1}{2\sqrt{2}}|1_{V}\rangle_{3}|2_{H}\rangle_{4} - \frac{1}{2\sqrt{2}}|2_{H}\rangle_{3}|1_{V}\rangle_{4} \\ &- \frac{1}{2}|1_{H}\rangle_{3}|1_{H}1_{V}\rangle_{4} - \frac{1}{2\sqrt{2}}|0\rangle_{3}|1_{V}2_{H}\rangle_{4}. \end{split}$$

For the gate operation to be successful, there must be two photons in mode 3 and one photon in mode 4. Hence we are for expanding an entanglement web" interested only in the underlined terms. The states $|2_H\rangle_3$ and $|1_{II}1_{V}\rangle_{3}$ appearing in the underlined terms are transformed at BS₂ as

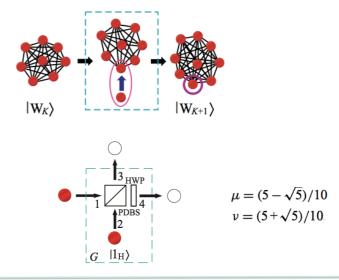

 $W_2 =$

$$|2_{H}\rangle_{3} \rightarrow \frac{1}{2}|2_{H}\rangle_{5}|0\rangle_{6} + \underbrace{\frac{1}{\sqrt{2}}|1_{H}\rangle_{5}|1_{H}\rangle_{6}}_{\underline{-}} + \underbrace{\frac{1}{2}|0\rangle_{5}|2_{H}\rangle_{6},$$

$$|1_{H}1_{V}\rangle_{3} \rightarrow \frac{1}{2}|1_{H}1_{V}\rangle_{5}|0\rangle_{6} + \frac{1}{2}|1_{H}\rangle_{5}|1_{V}\rangle_{6} + \frac{1}{2}|1_{V}\rangle_{5}|1_{H}\rangle_{6} + \frac{1}{2}|0\rangle_{5}|1_{H}1_{V}\rangle_{6}.$$
(2)

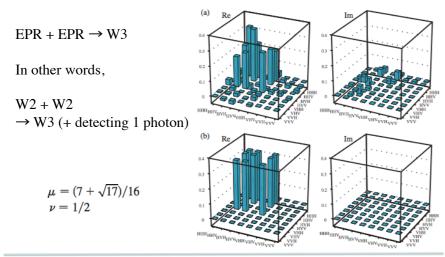

Clearly, only the underlined terms in Eq. (2) contributes to the successful operation. Therefore, if we postselect the successful events, the action of the gate is given by the follow-

$$W_{2} = \text{cessful events, the action of the gate is given by the following state transformations:} \\ |1_{H}\rangle_{0}|1_{V}\rangle_{1} + |1_{V}\rangle_{0}|1_{H}\rangle_{1})/\sqrt{2} \\ |1_{H}\rangle_{1}|2_{H}\rangle_{2} \rightarrow \frac{1}{4}|1_{H}\rangle_{4}|1_{H}\rangle_{5}|1_{H}\rangle_{6}, \tag{3} \\ |1_{V}\rangle_{1}|2_{H}\rangle_{2} \rightarrow \frac{1}{4}|1_{H}\rangle_{4}|1_{H}\rangle_{5}|1_{V}\rangle_{6} + \frac{1}{4}|1_{H}\rangle_{4}|1_{V}\rangle_{5}|1_{H}\rangle_{6} - W_{4} \\ |1_{V}\rangle_{1}|2_{H}\rangle_{2} \rightarrow \frac{1}{4}|1_{V}\rangle_{4}|1_{H}\rangle_{5}|1_{V}\rangle_{6} + \frac{1}{4}|1_{H}\rangle_{4}|1_{V}\rangle_{5}|1_{H}\rangle_{6} - W_{4} \\ |1_{V}\rangle_{1}|2_{H}\rangle_{2} \rightarrow \frac{1}{4}|1_{V}\rangle_{4}|1_{H}\rangle_{5}|1_{H}\rangle_{6}, \tag{4}$$



Prepare one horizontally and one vertically polarized photons

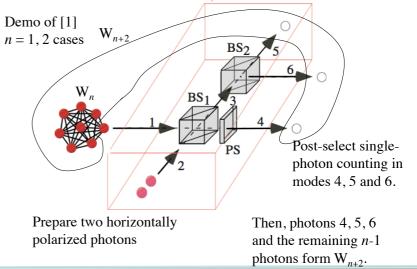
Then, photons 4, 5, 6 and the remaining n-1 photons form GHZ_{n+2} .



[1] Phys. Rev. A77, 030302(R) (2008): "Elementary optical gate for expanding an entanglement web" T. Tashima, S. K. Ozdemir, T. Yamamoto, M. Koashi & NI

[2] NJP 11, 023024 (2009): "Local expansion of photonic W state using a polarization dependent beamsplitter," T. Tashima, S. K. Ozdemir, T. Yamamoto, M. Koashi & NI

^[1] Phys. Rev. A77, 030302(R) (2008): "Elementary optical gate for expanding an entanglement web" T. Tashima, S. K. Ozdemir, T. Yamamoto, M. Koashi & NI



[3] PRL 102, 130502 (2009): "Local Transformation of Two Einstein-Podolsky-Rosen Photon Pairs into a Three-Photon W State"

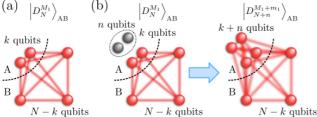
T. Tashima, T. Wakatsuki, S. K. Ozdemir, T. Yamamoto, M. Koashi & NI

Check whether method [1] gives the largest probability.

- Thoery of the largest probability within linear optics.
- Actually, the prob given by [1] is not the largest, but very close to it.

[4] PRL 105, 210503 (2010): "Demonstration of Local Expansion Toward Large-Scale Entangled Webs" T. Tashima, T. Kitano, S. K. Ozdemir, T. Yamamoto, M. Koashi & NI

Some failure cases provide recycling of the photons.


- → Let's recycle them!
- → Theory of clever way of recycling (slightly complicated)

An N-qubit Dicke state with M_1 excitations is the equally weighted superposition of all permutations of N-qubit product states with M_1 spin-up (|1)) and $M_0 = N - M_1$ spin-down (|0)), and is written as

$$|D_N^{M_1}\rangle = (C_N^{M_1})^{1/2} \hat{P} |M_0, M_1\rangle,$$
 (

Ex) $D_4^2 = (\mid 0011 \rangle + \mid 1100 \rangle + \mid 0101 \rangle + \mid 1010 \rangle + \mid 0110 \rangle + \mid 1001 \rangle) / \sqrt{6}$ Scenario: Alice can use k qubits from D_N^{M1} and combine n new qubits.

Question: Can Alice and Bob hold D_{N+n}^{M1+m1} ?

Answer: (assuming that N, M_1, k, m_1 are reasonable, then) It is possible. (But, we only showed the existence of such gate.)

[7] NJP 16, 023005 (2014): "Universal gates for transforming multipartite entangled Dicke states"

T. Kobayashi, R. Ikuta, S. K. Ozdemir, M. Tame, T. Yamamoto, M. Koashi & NI

Summary: Progress in Expansion of Entanglement Web

- [1] (Theory) Elementary optical gate for expanding an entanglement web, PRA77 (2008) 030302

 First proposal of an expansion gate (using ordinary BSs) for $W_n \rightarrow W_{n+2}$
- [2] (Theory) Local expansion of photonic W state using a polarization-dependent beamsplitter, NJP11 (2009) 023024

 Proposal of an optimal gate for expanding $W_n \rightarrow W_{n+1}$
- [3] (Experiment) Local Transformation of Two Einstein-Podolsky-Rosen Photon Pairs into a Three-Photon W State, PRL102 (2009) 130502

 Proposal and demonstration of a fusion gate that fuses W₂ + W₂ → W₃
- [4] (Experiment) Demonstration of Local Expansion Toward Large-Scale Entangled Webs, PRL102 (2009) 130502 Demonstration of [1] ($W_1 \rightarrow W_3$ and $W_2 \rightarrow W_4$)
- [5] (Theory) Optimal local expansion of W states using linear optics and Fock states, PRA83 (2011) 012314

 Proposal of an optimal gate for $W_n \rightarrow W_{n+m}$ with a Fock-state ancilla
- [6] (Theory) An optical fusion gate for W-states, NJP (2011) 103003 Proposal of a fusion gate for W states with/without recycling
- [7] (Theory) Universal gates for transforming multipartite entangled Dicke states, NJP (2014) 023005
 Proposal a universal gates that transforms Dickeⁿ_m → Dicke^k_i