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Motivation

1. Study the quantum decoherence of strongly coupled/correlated
systems. E.g. Luttinger liquid.

2. Bring attention to the relation between Schwinger-Keldysh and
Feynman-Vernon formalisms.

3. Identify the ingredients for making the robust (topological) qubits
against decoherence.

4. A novel way to tackle the decoherence of fermionic qubits.



Outline

* |. Holographic decoherence

* ||. Decoherence of fermionic



Evolve reduced density matrix

* Total system = system (probe) + environment

,C[d), X] = Lsys [C'ID] + Lenv [X] + £int [Cba X]

* Initial state:

 Evolve total system:

* Evolve system:

* Master equation:
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Formulations for decoherence

* There are different ways of formulating the framework for studying
quantum decoherence.

1. Adirect way is to solve the Heisenberg equations of motion for
both probe and environment simultaneously.

2. The most popular way is the so-called Feynman-Vernon formalism
--- a path-integral approach to real-time effective field theory.

3. Evolve the reduced density matrix in the canonical formulation.
This is hard due to the complicated mixing normal-ordering among
probe and environment operators.

4. For fermion, we find that we can use the Clifford algebra
properties of Majorana modes to tackle the reduced dynamics in
the canonical formulation.



Feynman-Vernon

* The task is how to evaluate the influence of the environment to the
probe during evolution.

* FV proposed a path-integral formulation for evaluating the
influence functional.

* The trick is to rewrite the forward and backward propagators in
terms of path integral.

* Then integrating out the environment dynamics.
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Keldysh contour

* This was done on a real-time Keldysh contour:
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Feynman-Vernon formalism
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* Then we have influence functional

Flbs, 6] = / dX A+ AR (T lPens(t)|52)

* Using
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* RDM:
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FV vs Schwinger-Keldysh

cf. Su, Chen, Yu, Zhou

* The FV influence functional can be compactly written as:

Flps, d_] = (e9lcd 'z ¢ O["\"]>x Lint|®, X] = g ¢ O[X]

for

 This can be understood as the generating functional for the real-
time correlations of O[] in SK formalism.

* Here the probe acts as the external source to O]
* The probe loses its purity via a particular channel O[]

* Using Kubo formula, one can then relate the transport coefficient
to the retarded Green function in the context of linear response
theory.
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SK formalism

* For Gaussian environment:
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|. Holographic Quantum Decoherence



Holographic Influence Functional
c.f. Maldacena, 1997; Gubser, Klebanov & Polyakov, 1998;  Witten
1998; Maldacena, 2003; Son & Herzog, 2003

» Influence functional = Generating function of real-time correlation
function.

»AdS/CFT duality: Effective theory for a is a co-
dimensional 1 higher AdS gravity. Precisely,
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Holographic Green function

* GKP/W prescription:

exp(-5i"[4]) - {exp f9/0)
* Solve bulk EOMs:

O(t,%,2) ~ o0t ¥z + %t )M A > A
source J(7,X)  response (O(t,X))

For black hole, one needs
_ to impose incoming b.c. to
* Linear response theory: obtain retarded Green function.

(0(.5)) = -Gg (. k)] (0.k)
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0—0k—0 (1)



Holographic Environmental Kernels
c.f. Son & Teaney, 2009; de Boer, Rangamani & Shigemori, 2009

1. The thermal kicks of the Hawking F=00
radiation causes Brownian motion of boundary
the end-point.
The dissipation kernel for this r

holographic Brownian motion is super- string
Ohmic like:
1
r2 :

Gr(w) = —iNZ (w* + 47°T?w) R

horizon

the dissipation kernel for k=0
scalar mode in AdS5 is quasi-super-
Ohmic:

Gr(w) < (w?)?*2 7 2[Inw? — imsgn(w)] for A >2
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Environmental Kernels
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* The above environmental kernels are of the Ohmic type spectra:

_W2/T2

Sien(w) = (@ e /Mo, Q>0

* This is the typical spectra for the helical Luttinger liquid: Q=1 (Ohmic,
Fermi-liquid), Q<1 (sub-Ohmic, attarctive interaction), Q>1 (super-
Ohmic, repulsive interaction).

* Non-Ohmic environmental kernel, such as the free spectra or the
holographic ones, i.e., the holographic strange metal:
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Holographic decoherence behaviors



Characterize Decoherence (for continuous
variables)

* Positivity of Wigner function (quantum version of phase space
probability distribution function):

_ 1 [ _ _ A _
W(Z,p,t) = —/ dA peys(X + 5,2 —

FIG. 3. Left: Density matrix and Right: Wigner function of two Gaussian wave-packets given by



Evolve Wigner function

|‘ ,‘ e .
A e P
—_ Pl _ b=
- POV ot — P
o= — ™ » .
»
o3 '
\n ——r———rTT
: e
PR . . e st L I —
. - b = G N
= = a3 e ,
— oy ol | — o n
— b ’ - - .
e I - A

Figure 5. The evolution of the Wigner function W (X, p,t) for the two Gaussian wave-packets
made of the scalar ¢ with Ap = 3. The evolution goes clockwise as t = 10, ¢ = 15, ¢ = 20 and
t = 30 units respectively.



Purity and Concurrence

MIf the state of the qubits does not reduce to a pointer state, it means
the decoherence is incomplete, and could be further purified. Then
we can characterize the purity by

P = Trp(t)
BFor two-qubit state, we can characterize the quantum entanglement
between the two qubits by concurrence:

C(pr) :=max(0,A\1 — Ao — A3 — A\g)
A1, A2, A3, Ay are the square roots of eigenvalues, in decreasing
order, of Pr(0y ® 05)py(0y ® 04)

WZero concurrence implies no entanglement, but the state could be
still quantum.
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Decoherence v.s. Local Quench

“ ”
system

o
[l ]

“environment” “environment”

* Local quantum quench: A local excitation is created suddenly and
see how it relaxes back the equilibrium.

* The thermalization is characterized by a Gibbs state RDM.

* If the local excitation is a quantum state, then its purity will escape
into the rest of the total system. This is the quantum decoherence.

* The decoherence is characterized by a pointer state RDM.



Decoherence v.s. local quench

 Local quantum quench (CFT + * Quantum decoherence (Our
holographic calculations): fittings):
H ot (
Lo Cot*, t=0;
c.f. Liu & Suh, 2014
Coe.t, t<ip;
p Sg(t) ~J <
t2, t~0: CoeInt, O(10)tp >t >tp;
Sp(t) ~ 9 t, t<L; Cyt, t>>tp.
\
 const. or Int, t>1L.

C'b.c. > Cl



Scaling behaviors

* For Case 1, we find the decoherence time t_D is independent of
temperature T at low T regime, and at high T regime, it behaves as

1
tDNT

* As in CFT, there is only a time scale set by 1/T, which is
approximately the thermalization time scale. However, the time for
the complete thermalization for a continuous variable probe takes
infinitely long.

e For Case 2, we consider T=0 case but with different conformal
dimension Delta of operator O[x], we find

hltD ~ — CAA(_’)



I|. Decoherence of Fermionic Qubits



The generalized quadratic fermion model

* The model Hamiltonian is for a (few) spinless fermionic qubit(s)
interacting with the fermonic bath:

H=H,+Hp+V o
V:aOJH—OOLJr {a, aT}zl

0= [C D(w)bf)]

* Formally we can decompose the spinless fermions in to pairs of
Majorana modes, and the Hamiltonian becomes

V =701 + 720
Y1 =a+al, Yo = i(a’ — a)
O1=(0—-0"/2, 0= (0+0"/2i

’72 = Ya; {’Vaw fo} — 25ab



Issues about decoherence of fermionic qubits

* To adopt the path-integral Fenyman-Vernon method, we need to
choose the coherent state basis with fermionic Grassmann

eigenvalues.

* This was done in WM Zhang et al (2012, PRL) for the environment
with Lorentzian spectra density.

* However, we found that the formalism fails to produce a positive-
definite RDM for large probe kinetic energy.

* We try to use alternative way to evaluate RDM.



Purity for RDM of a Dirac fermion probe in fermionic bath

FIG. 5: Trp? for Lorentz spectral density case wjth E=5.0

and initial state %|O) — %ID-

in Fig.6, we find T'rp? may be larger than 1.
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FIG. 6: Trp? for Super-Ohmic case with x = 3/2 , E=5.0 and
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FIG. 7: Trp?® for Sub-Ohmic case with x = 3/5 , E=5.0 and
initial state —=[0) + Z5[1).

4. Lorentz spectral density case (E=100): as showed
in Fig.8, we find if E is very large , even for Lorentz
spectral density case , Trp? may be larger than 1.
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FIG. 8: Trp? for Lorentz spectral density case with E=100.0
and initial state —5[0) + —5[1).



Canonical formulation of RDM

* Instead of using Feynman-Vernon, we now use canonical formulation
in the interaction picture. Then, the RDM takes the form:

pr(t) = e (TrgU(t)poUT (t))e' !
0o =pp@pp,  U(t) = Te I 47V
V[(t) _ ei(Hp—l—HE)t(aOT e OaT)e—i(Hp—l—HE)t

* Even this is just a quadratic model, it is quite difficult to evaluate
RDM in a closed form due to the complication of mixed normal
ordering for "a” and ~'O” operators.



Dressing by the Majorana mode

* In terms of Majorana basis, we have
Vi(t) = 11(t)O1(t) + 72(2)O2(?)

so that the evolution operator is in the form

Ult) = Te™Q® (1) =i / dr 0, (7)
t

Key Observation: Under time ordering and due to the dressing by
Majorana modes, Q_a can be thought as the bosonic and mutually

fermionic.

Ty1Q1(1)1Q1(t // 7 —7)Q1(1)Q1 (") + (1 < 7')]

T’Yl@l( )72Q2( ) = Tv2Q2(t)1Q1(t)
= —y172 [* [[0(r = 7)Q1(7)Qa(7") — O(7" — 7)Qa(7)Qu(7))]



RDM in closed form

* By the above observation, we can eliminate gamma’s by Clifford
algebra without worrying about the mixed normal ordering.

* In the mean-time, just treat Q_a as the commuting operators as the
bosonic/fermionic feature is implicitly hidden in the time ordering.

* In the end of the day, the RDM has the following form:

pr(t) = B(O|U}(1)U,L(1)[0) T uppT]

Lo=1, Ty =m, o =7, I's = =172,

Uo(t) =T cos O1 cos Oz, Up(t) =T sin Oy cos O2
Us(t) =T cos Oy sin Oy, Us(t) =T sin O sin Os



Assume O _a are generalized free fields:

Uo(t) =T cos O cos O2
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IIl. Robust Topological Qubits



Topological Qubits

* Consider a special case where the qubit is non-local, i.e., composed
of 2 spatially separated Majorana modes. We call it topological qubit.

* We then couple this topological qubit to helical Luttinger liquid with
Ohmic type spectral density.

* As two Majorana modes are far separated, then <O _1 O_2>=0. Thus,
the previous 4-point correlator becomes product of two 2-point
ones.

* This kind of topological qubits can be realized as the edge modes of

the Kitaev’s chain, 1d topological superconductor.
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Special features

BMThere is no retarded Green function appearing in the final form of
the reduced dynamics. This implies that the Majorana modes/Helical
liquid are dissipationless, i.e., generating no heat.

BThe symmetric Green function appearing above is the Majorana-
dressed one as discussed. It control the overall time dependence.

BTurn out that this time factor for Ohmic-like spectrum has a closed
form, and has a critical point at Q=1.



Single topological qubit

p’P(t — O) — ( apo aoi )

1) Pure initial state: apr @iy
a(t) — 6282 [tdr [YdT'Coym(T—T") — 6—2Bz]al‘g|1Q(t:u:().f‘o)

2) For Z2-preserving interactions:

ajpa(t) an

ph(t) = ( o )

3) For Z2-breaking interactions:

Pr 2&1()0’(f) 1+ (2(111 —_ l)a’z(t)
4) The Z2 parity prevents from complete thermalization into Gibbs
state.



Two Qubits: Special case for uniform environments

Before studying the reduced dynamics for more general initial states:
|(61, €9, €3, 64)) = 61|00) -+ 62'01) + 63|10) -+ 64|11>

with |61|2 + |62|2 + |€3|2 + |64|2 = 1.

Let us first consider a simple case: choose the initial state as [(¢1:0.0.¢4)) je

le1|? 0 0 ere}
0 00 0O
p”(tzo):( 0 00 0 )

etes 0 0 |eq)?

Ann 0 0 Ay
1 0 Ao O 0

. . f(4) = =
Fermionic: =71 0 0 As o0
An 0 0 Ay

with A1y =1+ a(t)4 + 2(2|61|2 — l)oz(t)z, Agg = Asz =1 —a(t)2,

Ags = 1+ a(t)* +2(2les|? —1)a(t)? and Ay =A%, = dereja(t)?

el 0 0 ereja(t)?
. b 0 00 0
Bosonic: it 0 00 0
o etesa(t)? 0 0 |ey|?



Two T-qubits in fermonic environments
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FIG. 4: Purity vs t for k = 0.5 (red) and & = 2 (blue) with
initial states |(e1,ea,es,e4)) =1(1,0,0,1)) (solid), |(2,1,0,2))
(dashed), |(1,1,0,1)) (dotted). The inset is to magnify the

early time region of k = 2 cases.
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FIG. 5: Concurrence vs t for the states and environments
specified in Fig. 4. The inset shows the solid lines enlarged
at short time. Here we add a black solid line representing
the concurrence pattern of the initial state |(e1, ez, e3,e4)) =
(2,2,1,2)) in the k = 0.5 environment to show its concur-
rence does not diminish with the other red lines at the same
time.



C.f. Spin-Boson model
ref. ST. Wu PRA89p034301, also H.B. Liu et al, PRA87p052139

1

1 -
L \ - 4 i N -
o.sf (@ % \ : oo , \ _
- W - . N
06 " \\ ) \\ _ . \\ -|. \\‘ .
C(t) } - \ 1 F(o.sr L5 \
04 \ _ . VY \ -
™ \ % h \
s L (. \ 0.7+ v % -
0.2F . - ! i
0 ‘ 0.6
0.001 0.1 10 1000 1x10° 0.001 0.1 10 1000 1x10°
O)Ct u)ct

FIG. 3. (Color online) Time evolution for the (a) concurrence and
(b) maximum teleportation fidelity for the Bell state (12) at weak
environment coupling (7o = 0.01) when the spectral function is sub-
Ohmic (s = 1/2. blue dashed curves), Ohmic (s = 1. red dot-dashed
curves), and super-Ohmic (s = 3, green solid curves). The horizontal

dashed line in (b) indicates the classical limit F = %



Effective gap-ness
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( 3 2

B The quantum information of the probe is carried away by the
collective excitations of the environment, which is specified by the

spectral density.

BMThe Ohmic-like spectrum has no gap at low energy, and one would
expect the complete decoherence.

BMHowever, the super-Ohmic spectrum suppress more the low energy
modes than the higher energy ones.

BAdding the topological nature of the Majorana modes, we see an
effective gap emerging for super-Ohmic cases.



Non-uniform environments

B As the topological qubit is non-local, one can then couple its
component Majorana modes to different environments. This is
peculiar feature of the topological qubits.

BMOne can couple one of the Majorana modes to the sub-Ohmic
environment and another one to the super-Ohmic one. Then, the
decoherence pattern will depend on the initial states.

BmSome peculiar patterns for the decoherece and concurrence can be
obtained in such cases.



summary

* The deocherence in holographic CFT environment is similar to the
helical Luttinger ones. It is interesting to consider other holographic
environments.

* The trick of decomposing spinless fermion into 2 Majorana modes
yields the closed form of RDM.

* Robust topological qubits are viable at least theoretically.



