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Abstract:

All pure entangled states exhibit standard nonlocality. It is an open problem whether all pure
genuine(full) multipartite entangled states are genuine nonlocal. We propose a set of
conditions on the joint probabilities as a test of genuine multipartite nonlocality without
Inequality. A pass of our test by a state therefore indicates that this state cannot be simulated
by any nonsignaling local models i.e. the state exhibits genuine multipartite nonlocality. It
turns out that all entangled symmetric n-qubit (n = 3) states pass our test and therefore are
n-
way nonlocal. The talk is based on the papers: Phys. Rev. Lett. 109, 120402 (2012); Phys.
Rev. Lett. 112, 140404 (2014).
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Entangled states and multipartite nonlocality

Test of nonlocality for multipartite systems.



Background
What is nonlocality in physics?

Or what is locality in physics?

All fundamental forces are local interaction, dynamic.
States of a physical system need not be local, kinematic.

Quantum mechanics Is nonlocal, nonlocal here refers to
state arising from to linear superpostion of oher states.



Background

All fundamental forces are local interaction, dynamic.

Quantum electrodynamics (QED)

All electromagnetic phenomena are ultimately
reducible to following elementary process (primitive
vertex)

L:;T/yﬂDﬂgy—l FF* +myy
time 4
_ _ 1 _
€ ) e | e | § = "0 w—leyy yA, 2 FF* +myy
e Interaction vertex  yy*w A, = j*A,

and F,=0,A —-0,A,



Background
All fundamental forces are local, interaction terms local , dynamic
Typical symmetry group SU(N), N=3 for quantum chromodynamics

Global transformation
P . .
U(@)= exp(—%é’ Taj T, isgroup generatorand @2 rigid parameter.

Local transformation

|
U(@):exp£—£<9 (X)Ta) T . is group generatorand &°%(x) localized parameter.

Now if we adopt the view that this arbitrary convention
should be independently chosen at every spacetime point,
then we are naturally led to the concept of gauge fields
C N Yang



Background

All fundamental interactions are local, and the force fields are
gauge fields, Yang-Mills fields.

Once the symmetry group is localized , that is, gauged, the
emergence of gauge field is natural.

Gauged symmetry dictates intecation,

C N Yang



Background

Nonlocal interaction in quantum mechanics, examples
Aharonov effect (topological)

Berry phase (geometric)



Background

Locality is a basic assumption in quantum field theory:

The commutator or anticommutator of two local field operators
vanishes for space-like separation,

[#(x), 7(X)]=0, for  (x—x)?<0

This requirement, also known as microscopic causality principle,
is the mathematical statement of the fact that no signal can be
exchanged between two points separated by a spacelike
interval, and

therefore measurements at such points cannot interfere.

— Einstein’s locality



Einstein’s locality

After the famous EPR paper Phys Rev 1935
Einstein stated the principle of locality

“The real factual situation of the system S, is
independent of what is done with the system S,

’

which is spatially separated from the former”



Bell’s nonlocality
The Bell theorem and henceforth the Bell inequality

Is a test for nonlocality and is formulated for

bipartite physical system.

The state exhibits nonlocality if the correlations
between measurement settings and measurement
results violate a Bell inequality.

Question: Can this be generalized to multipartite

physical systems?



Entangled states

Entanglement means that the state of the
guantum system cannot be written as a
mixture of product states of its constituent

subsystems.

Entanglement and nonlocality are the two
different yet main concepts in the quantum
Information sciences.

Although 1t Is Immediately clear that
entanglement Is necessary for nonlocality, a
detailed quantitative relation between these
two concepts Is not yet well established.




Entanglement versus Nonlocality
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» To exhibit Bell’s nonlocality, the state has to be entangled since
there is no violation for separable states.

» However, there exist entangled (mixed) states that can be
simulated by LHV models, i.e., do not violate any Bell inequality
and thus do not exhibit Bell’s nonlocality. [Werner PRA89]
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Gisin’s theorem: entangled states
and the Bell nonlocality

» In 1991, Gisin’ theorem[1] is presented:

Any pure entangled state of two particles
violates a Bell inequality for two-particle
correlation functions.

That is, every pure bipartite entangled state in
two dimensions violates the CHSH inequality.

[1] N. Gisin, Phys Lett A 154, 201 (1991).






Known Generalized Bell inequalities

 Bellinequalities for N qubits
MABK inequalities (1990’s)
N. D. Mermin, Phys. Rev. Lett. 65, 1838 (1990&; M. Ardehali, Phys. Rev. A
(4169,953?)75 (1992); A. V. Belinskii and D. N. Klyshko, Phys. Usp. 36, 653
Zukowski-Brukner inequalities (2002)
M. Zukowski and C. Brukner, Phys. Rev. Lett. 88, 210401 (2002).

Remark: all the Bell inequalities were derived in terms of N-site correlation
functions.

e Bellinequalities for 2 quNits
CGLMP inequalities [equivalent correlation-function form was given in PRL,
92, 130404 (2004)]
D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, Phys. Rev. Lett. 88,
040404 (2002).

A. Acin, J L Chen, N Gisin, D Kaszlikowski, L C Kwek, C H Oh and Zukowski
Marek, PRL, 92, 250404 (2004).



Examples of Bell’s inequalities

In general Bell’s inequality is characterized by 3 parameters
(n,m,d) : each of n observers measures m observables with d
outcomes. We consider only (n,2,2) scenario here.

<-Clauser-Horne-Shimony-Holt (CHSH) inequality is complete*
for (2,2,2) scenario [CHSH PRL69].

<>Mermin-Ardehali-Belinskii-Klyshko (MABK) inequality (n,2,2) is
a generalization of Bell-CHSH inequality to multipartite systems. |
M PRL90, A PRA92, BK PU93]

<>Werner-Wolf-Zukowski-Brukner (WWZB) inequality is a

complete set of Bell’s inequalities for n-qubit correlations for
(n,2,2) scenario [WW PRA2001, ZB PRL2002]

* If a Bell inequality is a necessary and sufficient condition for a local realistic

description of the correlation functions, we call it is complete.
16



MABK Inequalities (1990’s)
Zukowski-Brukner inequalities(2002)

Gisin and Scarani noticed that there exist pure
entangled states of 3-qubits that do not violate any
of the inequality of this family.

The result came as a surprise since it was believed
that all 3 qubit pure states should violate the
general correlation-Bell inequality.



Gisin’s Theorem for 3 Qubits,
Chen JL(2004)

All generalized GHZ state (*) for three-
gubit systems violate Bell inequality

W )., =c0s& [000)+sin & |111) (%)

A single Bell's inequality is violated by all
entangled pure states of three qubits.

Jingling Chen, Chunfeng Wu, L.C. Kwek and C.H. Oh, Phys. Rev. Lett. , 93, 140407, (2004)



Recent results

A new Hardy-type test to detect genuine
multipartite nonlocality.

All pure entangled symmetric n-qubit (n >2)
states are genuine multipartite nonlocal.

Chen-Yu-Zhang-Lai-Oh
Phys. Rev. Lett. 112, 140404 (2014)



Entangled states(definition)

* For n-partite pure state\w>
Ifly)#|0) ®|p,) ®...8]| ¢, ),| @) is a puresstate of k - th partite system
then |y) is an entangled state.

e For n-partite mixed state O

A mixed state of n systems is entangled if it cannot be written as a
convex combination of product state, i.e,

1 2
P 7 Z Pi P ®p ®...8 p/,
e pfisa Ipure (or mixed) state of k - th partite system

'Zi:pi =1
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Genuinely multipartite entangled
states(definition)

 An n-partite pure state \w> is called genuinely multipartite
entangled if |y) #|p,)®|@, ), Va=p,ac|

ol ={12,..,n}

eca,a =1 \a: nonempty proper subset of |

*|p,).|@, ) are pure states of subsystem &, @

* An n-partite mixed state £ is called genuinely multipartite

entangled if D # Z Z pa’ipia ®pi§

- azp,acl |
o p°, p are pure (or mixed) states on subsystem «, @
¢ D, D2.P.i=1
azp,acl i

e A state which is entangled but not genuinely multipartite
entangled is called partially entangled.

21



Local models for n-partite system

e Standard local model: joint probability P(r,|M,) assumes

P(, M) = [ 2 T TR.(5 M, 2)d7

o | ={12,..,n}
e M, :measurement setting, r, :outcome,k € |

o1 ={r,.., h M, ={M,,... M}
o B.(r,|M,,A)Iisthe probability of observer k measuring
observable M, with outcome r, for a given hidden variable A

distributed according to p, with normalization I 0,04 =1

22



Standard local realistic models

Each observer cannot have nonlocal correlations,
with any other distant observers, the joint
probability distribution can be fully factorized
and written as, e g, for 3-particle system,

p(abe| xy2) = [ P,(a| X)P, (b] )P, (c| 2) o, 0

* Xyz: measurement settings (input)
eabc: the outcomes of the measurements (output)

23



Local models for n-partite system

* The most general hybrid local-nonlocal model: joint
probability distribution can be written as

P IM) = 3 £ P (1, IM,, DP(r, M, A)dA

azd,acl

e o :a honempty proper subset of |

e = | \ ¢ :alsoa nonempty proper subset of |

or ,r_:outcomes, M_,M_ :observables

oP (r |M_,A)Isthe joint probability of observer k measuring
observable M, with outcome r, for all observer k € « for a given
hidden variable A distributed accordingto p_,

24



The definition of standard nonlocality

For “standard” nonlocal correlations, the joint
probability distribution cannot be written as

p(abe | xyz) = [ P, (a| )P, (b| Y)P,(c| 2) p,dA

however as partial factorization is not excluded, e.g.,

p(abc | xyz) = [ P, (ab] xy)P, (c| 2),p,dA

* Xyz: measurement settings (input)
eabc: the outcomes of the measurements (output)

25



Genuine multipartite nonlocality

— “standard” nonlocal correlations, the joint
probability distribution cannot be written as

p(abe | xyz) = [ P, (a| )P, (b| Y)P,(c| 2)p,dA

— genuine multipartite nonlocal correlations,
cannot be written as [svetlichny, PRD87]

h(abe | xyz) = j P.(a| X)P, (bc|yz)p,dA+
P, (b] V)P, (ac| x2) p,du+ [ P,(c| 2)P, (@b | xy) p,dv

* XyZ: measurement settings (input)
eabc: the outcomes of the measurements (output)

26



Different classes of nonlocality and
entanglement

. standard nonlocality (entanglement) -- weakest

p-partite ® o o m-group

* genuine multipartite nonlocality (entanglement) --
strongest

27



Svetlichny inequalities

e Define recursively the Svetlichny polynomials as
S, = %(SMA'”+S'nl A,) forn >3,

S, =(AA +AA,+A, A — A, A,)/2=CHSH,

Slz = (All A'2'|'A'1 Az + AlAIZ_AlAz)/Z

Examples:S, = (-AAA+AAA+AA, AL+ A AA
+AAAFATA, A+ AT AA-AL AL AG) T4

« Svetlichny inequality (S,) <1 holds for any bipartite probability
distribution.

* For GHZ state: <S”>GHZ = \/E by proper choosing
measurement settings.

e There only exist limited states that violate Svetlichny
inequalities. [S PRD 87, CGPRS PRLO2, SS PRLO2.]

28



New test

?(0,[2,)>0 (1a)
0(0, |ba,)=0, vk el (1b)
P (L L0y DBy g iy) =0, VR e TA{K}  (1€)

* Proposition. Any probability distribution
that satisfies Eq. (1) is genuine multipartite
nonlocal.

[Chen-Yu-Zhang-Lai-Oh, Phys. Rev. Lett. 112, 140404 (2014) ]



Outline of the proof

> via reductio ad absurdum

e The most general hybrid local-nonlocal probability
distribution can be written as

PR IM) = > [ p, 1P, (1, IM,, AP, (r, [M_, 2)dA (p0)

azp,acl

e o : nonempty proper subset of |
or ,r_:outcomes, M_,M_ :observables

e Suppose a probability distribution satisfies Eqg.(1) BUT is not
genuine multipartite nonlocal, i.e., it has the form of Eq. (pO).

30



Outline of the proof

e From Eq. (1a) there must exist somec, and 4,
P (O, 185, 4) >0 and F; (0 |a;,4,) >0 (pl)
e From Eqg. (1b)
P, (0.0, Iba, \,4) P 0z |a; ,4,) =0,Vk e a
P, (0,05 bz w.4) P, (O, |aa0,lo):O,Vke§0 (p2)
e By combining (p1) and (p2) we get
P, (00, Iba, 4)=0,Vkeea, (p3a)
P, (0,05 Iz 4) =0, Vk ey (p3D)

31



Outline of the proof

o Supposek'e «,, ] € ,, from Eq. (1c) we get
Pao(ljoao\j |bjaa0\1’ o)P (1,0, k! |bka§\k’ A4)=0
* ItP, (0, Iba,, 4)=0,bycombining Eq.(p3a) we find
Peoti O [ 820 4o)

=P, (0,0, b2, 4)+P, (1,0, b2, 4)=0

ao\J ao\_]

However, P, .0, ;la,.\;,4)=P, (0, [a,.,4)>0

— a contradiction!

o If P, (1,0, |b.az\4)=0, by combining Eq. (p3b) a similar
contradlctlon can also be made.

32



Nonsignaling correlations

Nonsignhaling correlations: correlations obey
nonsignaling principle, i.e., it is impossible to do
Instantaneous communication.

D@ B By [ X X %)

a , - a,
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Permutation symmetric states

Any n-qubit pure symmetric state can be written as

w)=2h[s0 ) st D)= T[o.,)

acl |al=]

Example
n=2:|y)=h,|00)+h(01)+]10))+h,|11)

Proposition: All pure multipartite entangled
permutation symmetric n-qubit (n = 3) states are
genuine multipartite nonlocal.

34



Permutation symmetric states

Proposition: All pure multipartite entangled
permutation symmetric n-qubit (n = 3) states are
genuine multipartite nonlocal.

We prove this proposition by showing that all pure
entangled symmetric states pass our test by choosing the
measurement setting suitably.

35



Genuine multipartite nonlocality

- Our numerical results show that our test
Eq.(1) can be satisfied by all pure genuine
multipartite entangled states of three and
four qubit systemes.

e Conjecture: Our test can be satisfied by
all pure genuine multipartite entangled

states.

36
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