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1. Introduction

Physical Unit:
quantum wires

single electron

junction

I am interested in transportation of the electron’s spin (i.e.,
qubit) as it passes through the junction.
In particular,

how the tunneling makes a boundary condition of the electron’s
wave functions at each boundary between the junction and the
quantum wire.
how the boundary condition affects the spin.
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1. Introduction

I am studying these my interests based on von Neumann’s theory,
that is, under the mathematical hypothesis,
.
..
...... observables = self-adjoint operators
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1. Introduction

Today, we consider the part of quantum wires only.
quantum wires

black box

single electron

For simplicity, we regard the quantum wires as

ΩΛ := (−∞,−Λ) ∪ (Λ,∞).

Namely, [−Λ,Λ] plays a role of the junction.

ΩΛ,L := (−∞,−Λ) and ΩΛ,R := (+Λ,+∞),
left island right island.
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Mathematically, we consider self-adjointness of the Dirac
operator acting in L2(C2 ⊗ ΩΛ) today.
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2. Spaces for Electron’s Wave Functions

For our configuration space ΩΛ ≡ (−∞,−Λ) ∪ (Λ,∞),
we set

AC1(ΩΛ) :=
{

f ∈ L2(ΩΛ)
∣∣∣∣∣ f is absolutely continuous on ΩΛ,

and f ′ ∈ L2(Ω)
}
.

AC1
0

(
ΩΛ

)
:=

{
f ∈ AC1(ΩΛ) ∣∣∣∣∣ f = 0 at x = ±Λ, ±∞

}
.

—————————————↑
our Dirichlet boudary condition

Here ΩΛ := (−∞,−Λ] ∪ [+Λ,+∞).
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2. Spaces for Electron’s Wave Functions

We define two classes for wave functions of the Dirac particle:

AC(ΩΛ) := C2⊗̂AC1(ΩΛ),

AC0(ΩΛ) := C2⊗̂AC1
0
(ΩΛ),

where ⊗̂ denotes the algebraic tensor product.
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3. 1-dim Dirac Operator

For the quantization of a relativistic particle on the 1-dim
configuration space ΩΛ ≡ (−∞,−Λ) ∪ (Λ,∞), we seek

.
a representation of
..

......

‘energy (i.e., Hamiltonian) = α ⊗ p+ β ⊗ mI′

with matrices α and β satisfying

α2 = β2 = I and αβ + βα = 0

for the probability interpretation of the wave function of electron.
Here p is the momentum operator and m is the mass of electron.
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3. 1-dim Dirac Operator

Then, we have candidates of the representation:

α = σx or σy,

and β = σz,

where σx, σy, σz are the Pauli matrices:

σx :=
(
0 1
1 0

)
, σy :=

(
0 −i
i 0

)
, σz :=

(
1 0
0 −1

)
.

In my talk we employ σx as α.
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3. 1-dim Dirac Operator

When we consider a self-adjoint operator A, it consists of the
following two mathematical notions:

the linear subspace consisting of wave functions on which the
operator A can act. We call the linear subspace the domain
of A, and denote it by D(A).
the operation of the operator A on the wave functions in the
domain D(A).

In order that A becomes self-adoint, it is required that A = A∗.
This mathematically exact meaning is:

D(A) = D(A∗);
Aψ = A∗ψ for every ψ ∈ D(A) = D(A∗).

Note: Usually, it is mathematically more difficult to check
the first condition than the sconed one!
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3. 1-dim Dirac Operator

We employ the natural unit: ℏ = c = 1.
.
Definition
..

......

Let m ≥ 0. The 1-dim minimal Dirac operator H0 is defined byD(H0) := AC0(ΩΛ),

H0 := σx ⊗ p+ mσz⊗ I L2(ΩΛ),

where the momentum operator p is given by

p := −i
d

dx
.
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3. 1-dim Dirac Operator

Actually, the minimal Dirac operator H0 is symmetric,

D(H0) ⊂ D(H∗
0
);

H0ψ = H∗
0
ψ for every ψ ∈ D(H0);

but not self-adjoint since H0’s domain is strictly smaller than
that of its adjoint operator H∗

0
:

D(H0) ⊂ D(H∗
0
) but D(H0) , D(H∗

0
)
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3. 1-dim Dirac Operator

.
Problem
..

......

Extend the domain so that the Dirac operator becomes self-adjoint!
Namely, find the Dirac operator H satisfying

D(H0) ⊂ D(H) = D(H∗) ⊂ D(H∗
0
);

Hψ = H∗ψ for every ψ ∈ D(H).

It is mathematically known that
.
..

......

we only have to find a subspaceD ⊂ D(H∗
0
) so that H is given by

H∗
0
⌈D, the restriction of H∗

0
onD. We call this H the self-adjoint

extension of the minimal Dirac operator H0.
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3. 1-dim Dirac Operator

It is well known thatD can be written down in terms of a proper
boundary condition of wave functions.
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3. 1-dim Dirac Operator

.
Proposition
..

......

The adjoint operator H∗
0

of the minimal Dirac operator H0 is given byD(H∗
0
) = AC(ΩΛ),

H∗
0
= σx ⊗ p∗ + mσz⊗ I L2(ΩΛ),

where

p∗ = −i
d

dx
.

Hirokawa (Hiroshima Univ.) Tunneling Phase for Spintronic Qubit NCK Univ., Tainan, 12.12.2014 14 / 48



page.19

4. Two Types of B.C.s for Dirac Particle

R := R ∪ {∞} : the set of all extended real numbers.

We often use the representation:

C2 ∋
(
aψ↑(±Λ)
bψ↓(±Λ)

)
:=

(
a
b

)
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4. Two Types of BCs for Dirac Particle

For 2-parameter family ρ = (ρ+, ρ−) ∈ R × R, we introduce the
boundary condition with isolation by

(isolation)



iρ+ψ↑(+Λ) = ψ↓(+Λ) if ρ+ ∈ R,
ψ↑(+Λ) = 0 if ρ+ = ∞,

(right island)

———————————–

(left island)

iρ−ψ↑(−Λ) = ψ↓(−Λ) if ρ− ∈ R,
ψ↑(−Λ) = 0 if ρ− = ∞.

(∗ρ)
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4. Two Types of BCs for Dirac Particle

For 4-parameter family α = (α1, α2, α3, α4) ∈ C4 satisfying the
condition:

ℜ(α1α
∗
2
) = ℜ(α1α

∗
3
) = 0,

ℜ(α2α
∗
4
) = ℜ(α3α

∗
4
) = 0,

α1α
∗
4
+ α2α

∗
3
= α1α

∗
4
+ α∗

2
α3 = 1,

(∗α)

the boundary condition with interchange is given by

(interchange) Bα

(
ψ↑(−Λ)
ψ↓(−Λ)

)
=

(
ψ↑(+Λ)
ψ↓(+Λ)

)
.

left island right island

We call the matrix Bα =

(
α1 α2

α3 α4

)
the boundary matrix.
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4. Two Types of BCs for Dirac Particle

For example, let α j be given by α1 = α4 = 0 and α2 = α3 = eiϑ for
an arbitrary ϑ ∈ [ 0, 2π) . Then, α ∈ C4 satisfies (∗α), and

eiϑ
(
ψ↓(−Λ)
ψ↑(−Λ)

)
≡ Bα

(
ψ↑(−Λ)
ψ↓(−Λ)

)
=

(
ψ↑(+Λ)
ψ↓(+Λ)

)
.

left island right island

.
In this example,
..

......

the spin (i.e., qubit) is inverted with a phase factor eiϑ

at the boundaries as it passes through the junction!
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5. Self-Adjoint Extensions of H0

.
Theorem
..

......

i) (B.C. with Isolation) For ρ ∈ R × R, letDρ be

Dρ :=
{
ψ ∈ D(H∗

0
)
∣∣∣∣∣ψ satisfies (∗ρ)

}
⊂ D(H∗

0
). (BC-ρ)

Then, Hρ := H∗
0
⌈Dρ is a self-adjoint extension of H0.

ii) (B.C. with Interchange) For α ∈ C4 satisfying (∗α), letDα be

Dα :=
{
ψ ∈ D(H∗

0
)
∣∣∣∣∣ Bαψ(−Λ) = ψ(+Λ)

}
⊂ D(H∗

0
). (BC-α)

Then, Hα := H∗
0
⌈Dα is a self-adjoint extension of H0.
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5. Self-Adjoint Extensions of H0

We call Hρ ≡ H∗
0
⌈Dρ the Dirac operator with the isolation

boundary condition.

We call Hα ≡ H∗
0
⌈Dα the Dirac operator with the interchange

boundary condition.
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5. Self-Adjoint Extensions of H0

.
Question
..
...... Is there another type of boundary condition?

.

..

......

Actually, we can prove that

there is no self-adjoint extension besides the two types that
we proposed!
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5. Self-Adjoint Extensions of H0

The proof is based on von Neumann’s theory:
All self-adjoint extensions of the minimal Dirac operator H0

can be parameterized by U ∈ U(2) according to von
Neumann’s theory.
The only thing we have to do is to show the one-to-one
correspondence between U(2) and the set of the

boundary-condition data, ρ ∈ R
2

and
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5. Self-Adjoint Extensions of H0

We note that

the adjoint operator H∗
0

has eigenvalues ±i

since it is not self-adjoint, either.

H∗∗
0
= H0⊂ H∗

0
and H∗∗

0
= H0, H∗

0
.
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5. Self-Adjoint Extensions of H0

We can easily find eigenfunctions ψ±
L
(x) satisfying

H∗
0
ψ±

L
= ±iψ±

L

and living only in the left island ΩΛ,L :

ψ±
L
(x) = 0, ∀x ∈ ΩΛ,R.

We can also find eigenfunctions ψ±
R
(x) satisfying

H∗
0
ψ±

R
= ±iψ±

R

and living only in the right island ΩΛ,R:

ψ±
R
(x) = 0, ∀x ∈ ΩΛ,L .
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5. Self-Adjoint Extensions of H0

Precisely, ψ±
L
(x) is defined by
ψ+

L
(x) := ND

(
1
−µ

)
⊗ χL(x)e

√
1+m2 x,

ψ−
L
(x) := ND

(
1
µ∗

)
⊗ χL(x)e

√
1+m2 x.

Here χL is the characteristic function on the closure ΩΛ,L of the left
island, and

ND := (1+ m2)
1
4 e−
√

1+m2Λ.
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5. Self-Adjoint Extensions of H0

In the same way, ψ±
R
(x) is defined by


ψ+

R
(x) := ND

(
1
µ

)
⊗ χR(x)e−

√
1+m2 x,

ψ−
R
(x) := ND

(
1
−µ∗

)
⊗ χR(x)e−

√
1+m2 x.

Here χR is the characteristic function on the closure ΩΛ,R of the right
island.
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5. Self-Adjoint Extensions of H0

We respectively define the eigenspaces K±(H0) as

K+(H0) :=eigenspace of the eigenvalue i

=the space linearly spanned by ψ+
L

and ψ+
R
,

K−(H0) :=eigenspace of the eigenvalue −i

=the space linearly spanned by ψ−
L

and ψ−
R
.

Then, we obtain U(2), the unitary group of the degree 2, as

U(2) ∋ U : K+(H0) −→ K−(H0)
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5. Self-Adjoint Extensions of H0

Following von Neumann’s theory, we can show that
.
..

......

all the self-adjoint extensions H of the minimal Dirac operator H0 are
parameterized by U(2) asD(H) =

{
ψ = ψ0 + ψ

+ + Uψ+ |ψ0 ∈ D(H0), ψ+ ∈ K+(H0)
}
,

Hψ = H0ψ0 + iψ+ − iUψ+.

Thus, we denote by HU every self-adjoint extension
parameterized by individual U ∈ U(2) as in the above
from now on.
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5. Self-Adjoint Extensions of H0

We call HU obtained according to von Neumann’s theory
the Dirac operator parameterized U ∈ U(2).
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5. Self-Adjoint Extensions of H0

.
Proposition
..

......

The unitary group U(2) has the following representation:

U(2) =U(1)SH

=

{
γ3

(
γ1 −γ2

∗

γ2 γ1
∗

) ∣∣∣∣∣ γ1, γ2, γ3 ∈ C, |γ1|2 + |γ2|2 = |γ3| = 1
}
.

Here SH is defined by

SH := {A ∈ H | det A = 1}

for the Hamilton quaternion field H consisting of 2× 2 matrices.
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5. Self-Adjoint Extensions of H0

We can then give a physical meaning to U ∈ U(2) of von
Neumann’s parameterization for the self-adjoint extensions
obtained by von Neumann’s theory in our case:
By the preceding proposition,

U(2) ∋ U = γ3

(
γ1 −γ2

∗

γ2 γ1
∗

)
:

L2(ΩΛ,L)
⊕

L2(ΩΛ,R)
−→

L2(ΩΛ,L)
⊕

L2(ΩΛ,R)
.


Uψ+

L
= γ3γ1ψ

−
L
− γ3γ2

∗ψ−
R
,

Uψ+
R
= γ3γ2ψ

−
L
+ γ3γ1

∗ψ−
R
.
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5. Self-Adjoint Extensions of H0

Namely,Uψ+
L
= γ3γ1ψ

−
L
− γ3γ

∗
2
ψ−

R

Uψ+
R
= γ3γ2ψ

−
L
+ γ3γ1

∗ψ−
R

Uψ+
L
= γ3γ1ψ

−
L
− γ3γ2

∗ψ−
R

Uψ+
R
= γ3γ2ψ

−
L
+ γ3γ

∗
1
ψ−

R

Thus, the parameters γ1 and γ2 respectively govern the reflection of
the electron’s wave function at the boundaries and the wave
function’s tunneling through the junction.
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5. Self-Adjoint Extensions of H0

The following theorem gives a correspondence from γ1, γ2, γ3 in

von Neumann’s theory to the boundary-condition data ρ ∈ R
2

or
α ∈ C4:

(γ1, γ2, γ3)——–−→ ρ ∈ R
2

or α ∈ C4.

.
Theorem
..

......

i) Every diagonal U ∈ U(2) has the representation:
∃γL , γR ∈ C

s.t. U =
(
γL 0
0 γR

)
, |γL | = |γR| = 1.

That is, γL = γ3γ1 and γR = γ3γ
∗
1
.

Then, for arbitrarily fixed γL and γR, a necessary and sufficient
condition for D(HU) = D(Hρ) is given by determining the vector

ρ ∈ R
2

with the formulae:
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5. Self-Adjoint Extensions of H0

.

..

......

(D-L1) For γL , −1,

ρ− =
1

√
1+ m2

(tan
θL

2
− m),

where θL := arg γL ∈ [0, 2π).
(D-L2) For γL = −1, ρ− = ∞.
(D-R1) For γR , −1,

ρ+ = −
1

√
1+ m2

(tan
θR

2
− m)

where θR := arg γR ∈ [0, 2π).
(D-R2) For γR = −1, ρ+ = ∞.
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5. Self-Adjoint Extensions of H0

.

..

......

ii) Every non-diagonal U ∈ U(2) has the representation:
∃γ1, γ2, γ3 ∈ C

s.t. U = γ3

γ1 −γ∗
2

γ2 γ∗
1


with |γ1|2 + |γ2|2 = |γ3| = 1, γ2 , 0.

Then, for arbitrarily fixed γ1, γ2, and γ3, a necessary and sufficient
condition for D(HU) = D(Hα) is given by determining the vector
α ∈ C4 with the formulae:
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5. Self-Adjoint Extensions of H0

.

..

......

α1= iγ−1
2

√
1+ m2

(
ℑ(γ∗

1
µ) + ℑ(γ∗

3
µ)

)
,

α2= γ
−1
2

√
1+ m2 (ℜγ1 +ℜγ3

)
,

α3= γ
−1
2

√
1+ m2

(
−ℜγ1 +ℜ(γ∗

3
µ2)

)
,

α4= iγ−1
2

√
1+ m2

(
ℑ(γ1µ) + ℑ(γ∗

3
µ)

)
,

where µ ≡ (1+ im)/
√

1+ m2 ∈ C.

We note the tunneling parameter γ2 plays an important role
because if γ2 = 0 then α ∈ C4 with (∗α) cannot be constructed.
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5. Self-Adjoint Extensions of H0

We can derive a phase from the boundary-condition data
α ∈ C4 in the following.

.
Proposition
..

......

LetA be the set of all boundary matrices Bα for vectors
α = (α1, α2, α3, α4) ∈ C4 in the class (∗α). Then, α1 , 0 or α3 , 0.
So, set θ ∈ [ 0, 2π) and a j ∈ R, j = 1, 2, 3, 4 as

θ := arg(α1/|α1|);
a1 := |α1|, a2 := −i(α1α

∗
2
)∗/|α1|,

a3 := −i(α1α
∗
3
)∗/|α1|, a4 := (α1α

∗
4
)∗/|α1|,

if α1 , 0, and
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5. Self-Adjoint Extensions of H0

.

..

......


θ := arg(−iα3/|α3|);
a1 := iα1α

∗
3
/|α3|, a2 := α2α

∗
3
/|α3|,

a3 := |α3|, a4 := i(α3α
∗
4
)∗/|α3|,

if α1 = 0.

Then,A, the class of the boundary matrix Bα, has the following
representation:

A =
{

Bα ≡
(
α1 α2

α3 α4

)
= eiθ

(
a1 ia2

ia3 a4

) ∣∣∣∣∣∣ θ ∈ [0, 2π),

a j ∈ R, j = 1, 2, 3, 4, with a1a4 + a2a3 = 1
}
.

Hirokawa (Hiroshima Univ.) Tunneling Phase for Spintronic Qubit NCK Univ., Tainan, 12.12.2014 38 / 48



page.45

5. Self-Adjoint Extensions of H0

In the reflection case, it is clear that (D-L1)–(D-R2) make

ρ = (ρ+, ρ−) ∈ R
2 1−1←−———−→ (γL , γR) = (eiθL , eiθR) :

(D-L1’) If ρ− ∈ R,

γL = exp
[
2i arctan

(
m+

√
1+ m2 ρ−

)]
.

(D-L2’) If ρ− = ∞, γL = −1.
(D-R1’) If ρ+ ∈ R,

γR = exp
[
2i arctan

(
m−

√
1+ m2 ρ+

)]
.

(D-R2’) If ρ+ = ∞, γR = −1.
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5. Self-Adjoint Extensions of H0

In the tunneling case, we can also seek the formulae which give
the correspondence from the boundary condition data to α ∈ C4

to γ1, γ2, and γ3 in von Neumann’s theory,

α = (α1, α2, α3, α4) ∈ C4——–−→ (γ1, γ2, γ3).
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5. Self-Adjoint Extensions of H0

.
Theorem
..

......

For every Bα with α ∈ C4 in the class (∗α), the corresponding
non-diagonal U ∈ U(2) is determined as:

γ1 = Γ0e−i(θ−π/2) (−µ∗α1 + α2 − α3 + µα4),

γ2 = (2/
√

1+ m2)Γ0e−i(θ−π/2),
γ3 = Γ0e−i(θ−π/2)µ (α1 + µ

∗α2 + µα3 + α4)∗,

where µ := (1+ im)/
√

1+ m2,

Γ0 :=
(

4

1+ m2
+

∣∣∣∣∣−µ∗α1 + α2 − α3 + µα4

∣∣∣∣∣2)−1/2

,

and the phase θ is determined as folows:
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5. Self-Adjoint Extensions of H0

.

..

......

The phase factor eiθ appears if and only if the tunneling parameter
γ2 , 0, and then, there exists a certain ν ∈ Z such that

θ = − arg γ2 +

(
1

2
+ ν

)
π.

.

..

......

Thus, the phase θ appearing in the boudary matrix Bα can be called
the tunneling phase.
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6. Summary

.

..

......

Once the material of the physical unit is determined,
⇓

self-adjointness of the Dirac operator is determined.
⇓

Then, its corresponding boundary condition of
the Dirac particle’s wave functions is fixed.

⇓
The spin may be affected by the boundary condition,
and there are cases that the phase factor special to

the tunneling appears in the boundary condition.
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6. Summary

.

..

......

In one of those cases,
wave functions have to satisfy the fixed boundary condition
and have the fixed phase factor to live in the physical unit

as residents there.
⇓

Othewise, they are ejected from the physical unit.

So,
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6. Summary

.
My question:
..

......

Can we control and change their own phase in the junction?

If it is possible, they have to find another home in somewhere.

.
Next my question:
..

......

Can we prepare the home for them?

If it is possible, the electron switches its homes and
becomes a resident of new quantum unit.
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6. Summary

wave function

wave function

Unit 0

Unit 1

BC 0

BC 1
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6. Summary

For more details, please see

Y. Furuhashi, M. Hirokawa, K. Nakahara, and Y. Shikano,
“Role of a phase factor in the boundary condition of
a one-dimensional junction”

J. Phys. A: Math. Theo. 43 (2010) 354010.

M. Hirokawa and T. Kosaka,
“One-dimensional tunnel-junction formula for
Schrödinger particle”

SIAM J. Appl. Math. 73 (2013) 2247,

M. Hirokawa and T. Kosaka,
“A Mathematical Aspect of A Tunnel-Junction for
Spintronic Qubit”

J. Math. Anal. Appl. 417 (2014) 856.
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Thanks A Lot

Thank you very much for your attention!
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