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 Experimental setup 
 Electromagnetically induced 



Experimental System of Cold Atoms 

 We produce 109 atoms with a temperature of 300 µK with a magneto-
optical trap (MOT). 

 Coherence time (τcoh) ~ 100 µs & optical density (OD) ~ 200, where OD 
is defined by Iout = Iin e-OD. 
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 We produce 109 atoms with a temperature of 300 µK with a magneto-
optical trap (MOT). 

 Coherence time (τcoh) ~ 100 µs & optical density (OD) ~ 200, where OD 
is defined by Iout = Iin e-OD. 
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NTHU Optical Jungle 
8 diode lasers; MOPA; UHV system; > 300 optical components  

simple physics system; complicate experimental setup 



OD = 7 

∆ω << Γ 

• Near the resonance, OD = 7 and probe transmission is e-7 (less than 0.1%). 
• Transmission is nearly 100% at the resonance and the transparency window 

is much narrower than the natural linewidth, Γ. 
• Narrow & high-contrast absorption profile => large dispersion => slow 

group velocity. 

Y. F. Chen, Y. C. Liu, Z. H. Tsai, S. H. Wang, & IAY,  PRA 72, 033812 (2005). 

Probe 

|1〉 
|2〉 

|3〉 

Coupling 

Narrow and High-Contrast EIT Spectrum 



OD = 7 

∆ω << Γ 

• Near the resonance, OD = 7 and probe transmission is e-7 (less than 0.1%). 
• Transmission is nearly 100% at the resonance and the transparency window 

is much narrower than the natural linewidth, Γ. 
• Narrow & high-contrast absorption profile => large dispersion => slow 

group velocity. 
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Transmission≈10%  
@ detuning=5Γ 

C. C. Lin, M. C. Wu, B. W. Shiau, Y. H. 
Chen, IAY, Y. F. Chen, & Y. C. Chen, 

PRA 86, 063836 (2012). 

e-228 ≈10-99 
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Slow Light and Storage of Light 

 In the constant presence of the coupling, speed of the light pulse ≤ c/105. 
 The 1 km-long probe pulse is compressed to 1 cm inside the atoms. 
 The gap of ~ 4 µs in the probe signal demonstrates the light storage.  

 Delay Time ~ 3.5 µs 
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Raman transition 

atomic wave function: ground-state 
(Raman) coherence or spin excitation 

The EIT storage is a coherent process and provides a method for exchange 
of wave functions between photons and atoms.  

Coherent Storage for Photons 

reversed two-photon 
Raman transition 



(a) 

High Storage Efficiency and Large Delay-Bandwidth Product 
Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, & IAY, 

PRL 110, 083601 (2013). 

(b) 
DBP = 74 

 Optimal pulse shape & backward retrieval to enhance SE. 
 We report a EIT memory with storage efficiency of 78%, delay-bandwidth 

product of 74 at SE = 50%, and fidelity ≥ 0.9. 

DBP ≡ tstorage
tpulse 

 

Fidelity ≡  𝜓out 𝜓in 2

𝜓in 𝜓in 𝜓out 𝜓out
 

SE ≡
𝐸out
𝐸in
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(c) 

Time (µs) 

Beat-Note Interferometer Data 
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Low-Light-Level Nonlinear Optics  
Cross-Phase Modulation (XPM) based on Stored Light 

Y. F. Chen, C. Y. Wang, S. H. Wang, & IAY, PRL 96, 043603 (2006). 

 The stored ground-state coherence is equivalent to the probe pulse. 
 Single-photon XPM or AOS: quantum phase gates, entangled photon pairs, 

quantum nondemolition measurements. 
 XPM: a phase shift of 44° is obtained at 18 photons per atomic absorption 

cross section. How to further improve? 
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All-Optical Switching (AOS) 
∆ = 0 



 

 

 
 

   

40 60 80 100 120
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0 (b)

ψ  

 

 
αOD 

two stopped pulses 

All-Optical Switching with Stopped Light Pulses 

Y. H. Chen, M.J . Lee, W. Hung, Y. C. Chen, Y. F. Chen, & IAY,  
PRL 108, 173603 (2012). 

Switching Ratio = exp[−ψ(N/A)σ]  

 The interaction time can be, in principle, as long as possible. 
 With stopped light pulses, ψ  ≈ 1.8 or  the switch was achieved at 0.56 

photons per atomic absorption cross section ⇒ 4-fold improvement. 

Y. W. Lin, W. T. Liao, T. Peters, H. C. Chou, J. S. Wang, H. W. Cho, P. C. Kuan, & IAY, 
PRL 102, 213601 (2009).  
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Frozen “light switch”           “Frozen light” switch √ 

Stopping light 
pulses and making 
them interact in a 

medium is a way to 
get more for less.  

Nature Physics, April 2012, p. 252. 



Summary of EIT, Slow Light and Stored Light 

 However, previous experiments all dealt with single-component slow 
light. 

 Acknowledgments to collaborators: 
Prof. Yong-Fan Chen (PHYS, NCKU) 
Dr. Ying-Cheng Chen (IAMS, AS) 

 The EIT/slow light effect enhances the 
light-matter interaction and achieves 
significant nonlinear optical efficiency 
even at single-photon level. 

 EIT-based storage of slow light 
transfers quantum states between 
photons and atoms, making quantum 
memory feasible. 
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Double Tripod System 

Spinor (Two-Component)  
Slow Light 
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Transition Scheme 

|2〉  |5S1/2,F=1,m=0〉 

|1〉  
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                    |0〉  
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780nm 

795nm 

6.8 
GHz 

|A〉  |5P1/2,F= 2,m=1〉 

 Optically pump all population to a single Zeeman state ⇒ A simple 
5-level  DT system. 

 λ of the probe field A and the coupling fields A1 & A2 is ~ 795 nm. 
 λ of the probe field B and the coupling fields B1 & B2 is ~ 780 nm. 



δ = 0 

δ/(2π) = -160 kHz 

Output probe A (red) & probe B (blue) 
as functions of detuning: 
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 = 𝑒−(2𝜙2/OD) cos𝜙 − sin𝜙
sin𝜙 cos𝜙

1
0 , 

− 

Oscillation between the Two Components 
|𝜀𝐴,𝑜𝑜𝑜|2

𝜀𝐵,𝑜𝑜𝑜
2  = 𝑒−(4𝜙2/OD) cos2 𝜙

sin2 𝜙
, 

 where 𝜙 = OD Γ
2Ω2 δ.  



Stored Spinor Slow Light 

 where 𝜙 = OD Γ
2Ω2 δ.  

𝜀𝐴,𝑜𝑜𝑜
𝜀𝐵,𝑜𝑜𝑜

 = 𝑒−(2𝜙2/OD) cos𝜙 − sin𝜙
sin𝜙 cos𝜙

1
0 , 

OD Γ/(2Ω2) is the delay time of slow light propagation, i.e. 𝜙 = τ𝑑δ.  
Can τ𝒅 be replaced by τ𝒔 (storage time)? 



Stored Spinor Slow Light 
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Interferometer based on Stored Spinor Slow Light 
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Interferometer based on Stored Spinor Slow Light 

𝝓 = τ𝒔δ:  fix δ and vary τs (the storage time). 

Set δ2 /(2π) = 20.0 kHz Set δ1/(2π) = 10.0 kHz 

Measured δ2 - δ1 = 9.7 kHz  
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 A storage time ~ O(100µs) results 
in a precision ~ O(100Hz).  

 The SSL interferometer can be 
used to detect two-photon 
detuning, Zeeman shift, AC Stark 
shift, etc. 



SSL as a Two-Color Qubit 

δ/(2π) (kHz) 

Frequency-Domain Measurement 
Ramsey Fringe 

 Single-photon SSL is a qubit with the superposition state of two frequency 
modes. (α ,β) = (cosφ, sinφ) and where 𝜙 = τ𝑠δ. 

 In long-distance quantum communication, photons of two-color quantum states 
are inert to the birefringent material, i.e. optical fibers. 

|ψ〉 = α |1ωA
, 0ωB

〉 + β | 0ωA
, 1ωB

〉  

Time-Domain Measurement 

τs (µs) 

Rabi Oscillation 



Quantum Memory for SSL or Two-Color Qubits 
|ψ〉 = α |1ωA

, 0ωB
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The shapes of the two retrieved pulses and their energy ratio after the storage 
time of 3 µs are very close to those after the storage time of 33 µs. 
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Quantum Rotator for SSL Qubits 
|ψ〉 = α |1ωA

, 0ωB
〉 + β | 0ωA

, 1ωB
〉 

|1〉 |2〉 

ΩA2 

|0〉 

|A〉 

ΩA1 

|B〉 
δ = 0 

ΩB2 ΩB1 

εB 

|1〉 |2〉 |0〉 

|A〉 

|B〉 

δ δ 

δ ≠ 0 

|1〉 |2〉 

ΩA2 

|0〉 

|A〉 

ΩA1 

|B〉 
δ = 0 

ΩB2 ΩB1 εA 

(α,β) = (1,0) 
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(cosφ,sinφ) 

where 𝜙 = τ𝑠δ 

τs = 15 µs 

One can utilize a two-photon detuning (induced by the Zeeman or AC Stark 
shift) applied during the storage to change the α-to-β ratio. 



Conclusion 
 We report the first experimental demonstration of two-

component or spinor slow light (SSL). 
 In a proof-of-principle measurement, our data show that the 

stored SSL behaves like an interferometer for precise 
frequency determination. 

 The double tripod scheme can lead to quantum memory for 
the two-color qubit, i.e. the superposition state of two 
frequency modes. 

 In the nonlinear frequency conversion, the SSL is a better 
method than the widely-used double-Λ scheme. 

M. J. Lee, J. Ruseckas, C. Y. Lee, V. Kudriasov, K. F. Chang, H. W. Cho,  
G. Juzeliunas, & IAY, Nature Commun. 5, 5542 (2014). 
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