Sabre Kais
 Department of Chemistry Purdue University West Lafayette, IN 47907 http://www.chem.purdue.edu/kais

To understand the role of coherence and entanglement in photosynthesis, mechanism with which birds determine magnetic north and chemical reactions

How are special quantum features useful in quantum computing?

- Quantum Superposition: felps the Quantum Computer fold large numbers of values simultaneously in a single register made up of relatively few qubits.
- Quantum Interference: helps to determine a result that depends on all intermediate results, without faving to reveal those intermediate results (avoid premature collapse of wave function)
- Entanglement: enables the linkage of quantum registers so that whenever an answer $f(x)$ appears in one register, we can always determine the x that generated it

What is Entanglement?

Schrodinger: For an Entangled state "the best possible knowledge of the whole does not include the best possible knowledge of its parts" Einstein-Podolsky-Rosen: An entangled wavefunction does not describe the physical reality in a complete way
Bell: A correlation that is stronger than any classical correlation
Peres: A trick that quantum magiclans use to produce phenomena that cannot be imitated by classical magicians
Bennett: A resource that enables quantum teleportation
Shor: A global structure of the wavefunction that allows for faster algorithms.
Ekert: A tool for secure communication

Einstein-Podolsky-Rosen (EPR) Paradox (1935)

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

The principle of reality: individual particles possess definite properties even when they're not being observed.

The locality principle: information from a measurement in one of two isolated systems cannot produce real change in the other, especially superluminally (faster than c).

The quantum-mechanical description of reality given by the wave function is not complete, that is, there must be

Hidden Variables that we don't know about and hence don't measure that cause the uncertainty.

John Bell showed in a 1964 paper entitled "On the Einstein Podolsky Rosen paradox," that local realism leads to a series of requirements-known as Bell's inequalities

John Bell (1928-1990)

Alain Aspect has performed numerous beautiful experiments, proving conclusively that our universe violate Bell's Inequalities big time. And quantum mechanics explains the effects quite nicely

Quantum Entanglement and Electron Correlation in Molecular Systems

Hefeng Wang and Sabre Kais*

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA

The configuration interaction (CI) wave function is entangled since it violates Bell's inequality. Entanglement is related to electron correlation and might be used as an alternative measure of the electron correlation in quantum chemistry calculations.
$E(a b-a c+b d+c d)=E(a, b)-E(a, c)+E(b, d)+E(c, d) \leq 2$
where $\boldsymbol{E}(\boldsymbol{a}, \boldsymbol{b})$ is the mean value of the product of the outcomes of two spin measurements along the direction \boldsymbol{a} and \boldsymbol{b}

Entanglement

- The state of a composite quantum system is the tensor product of subsystems

$$
\begin{aligned}
& |\Psi\rangle=(\alpha|0\rangle+\beta|1\rangle) \otimes(\gamma|0\rangle+\delta|1\rangle) \\
& =\alpha \gamma|00\rangle+\alpha \delta|01\rangle+\beta \gamma|10\rangle+\beta \delta|11\rangle
\end{aligned}
$$

- There exist states of many-qubit systems that cannot be broken down into a tensor product e.g there does not exist :

$$
|\psi\rangle=\mu|00\rangle+v|11\rangle=(\alpha|0\rangle+\beta|1\rangle) \otimes(\gamma|0\rangle+\delta|1\rangle)
$$

- We call these kinds of states entangled states

Measuring Entangled State

- For a two-qubit system, there are four entangled states named Bell states:

$$
\begin{aligned}
\left|\Psi^{ \pm}\right\rangle & =\frac{1}{\sqrt{2}}(|01\rangle \pm|10\rangle) \\
\left|\Phi^{ \pm}\right\rangle & =\frac{1}{\sqrt{2}}(|00\rangle \pm|11\rangle)
\end{aligned}
$$

- After measuring an entangled pair for the first time, the outcome of the second measurement is known 100%

$$
\left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)
$$

Quantum Teleportation Across the Danube

A real-world experiment marks a step towards worldwide quantum communication.

Anton Zeilinger et. al. Nature 430, 849 (2004) Xian-Min Jin, et. Al. Nature Photonics (2010) (Quantum Teleportation over 16 km)

Separability: If ρ is separable, then $E(\rho)=0$.
Normalization: The entanglement of a maximally state of two d -dimensional systems is given by $\mathrm{E}=\log (d)$.
No Increase Under Local Operations: Applying local operations and classically communicating cannot increase E Continuity: In the limit of vanishing distance between two density matrices the difference between their entanglement should tend to zero.
Additivity: A certain number N of identical copies of the state ρ should contain N times the entanglement of one copy.
Subadditivity: the entanglement of the tensor product of two states should not be larger that the sum of the entanglement of each of the states.
Convexity: The entanglement measure should be a convex function.

Quantify Entanglement

(Entanglement of Formation)

- The pure state entanglement can be defined as the von Neumann entropy of either of the two subsystem A and B

$$
\begin{aligned}
& E(\phi)=-\operatorname{Tr}\left(\rho_{A} \log _{2} \rho_{A}\right)=-\operatorname{Tr}\left(\rho_{B} \log _{2} \rho_{B}\right) \\
& \rho_{A}=\operatorname{Tr}_{B}(\rho), \quad \beta=|\phi><\phi|
\end{aligned}
$$

- Concurrence is the simply expression of Entanglement

$$
E(\rho)=\mathcal{E}(C(\rho)) \quad \mathcal{E}=h\left(\frac{1+\sqrt{1-C^{2}}}{2}\right)
$$

$$
\begin{aligned}
& h(x)=-x \log _{2} x-(1-x) \log _{2}(1-x) \\
& C(\rho)=\max \left\{0, \lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}\right\}
\end{aligned}
$$

$$
R \equiv \sqrt{\sqrt{\rho} \tilde{\rho} \sqrt{\rho}}-\tilde{\rho}=\left(\sigma_{y} \otimes \sigma_{y}\right) \rho^{*}\left(\sigma_{y} \otimes \sigma_{y}\right)
$$

Recipe for Concurrence

A Measure of Pairwise Entanglement
$C=O$ means no entanglement
$C=1$ means maximum entanglement

1. Construct density matrix, P
2. Construct fipped demsity matrix, $\widetilde{\rho}$
3. Construct product matrix, p $\widetilde{\boldsymbol{\rho}}$
4. Find eigenvalues $\lambda_{1}, \lambda_{2}, \ldots$ of $\boldsymbol{\rho} \widetilde{\boldsymbol{\rho}}$
5. Calculate Concurrence from square roots of eigenvalues via

$$
C=\max \left[0, \sqrt{\lambda_{1}}-\sqrt{\lambda_{2}}-\cdots\right]
$$

Hamiltonian

$$
\hat{H}=\hbar \sum_{i} \omega_{i} \sigma_{i}^{z}+\hbar \sum_{i \neq j} \Omega_{i j} \sigma_{i}^{x} \sigma_{j}^{x}
$$

$\hbar \omega_{i}=$ Transition energy between qubit state $|0\rangle$ and $|1\rangle$ on site i
$\hbar \boldsymbol{\Omega}_{\mathrm{ij}}=$ Dipole - Dipole interactio n energy between site i and j
$\hbar=\mathbf{h} / \mathbf{2 \pi}=$ Planck' \mathbf{s} constant

For $N=2$, use basis $|\mathbf{0 0}\rangle,|\mathbf{0 1}\rangle,|\mathbf{1 0}\rangle,|\mathbf{1 1}\rangle$:

$$
\hat{H}=\left[\begin{array}{cccc}
0 & 0 & 0 & \Omega \\
0 & \omega & \Omega & 0 \\
0 & \Omega & \omega & 0 \\
\Omega & 0 & 0 & 2 \omega
\end{array}\right]
$$

Schrödinger Equation

$$
\hat{H} \psi=E \psi
$$

Eigenvalues and Eigenvectors

$$
\begin{cases}E_{1}=\omega-\sqrt{\omega^{2}+\Omega^{2}} & \left.\psi_{1}=\frac{1}{\sqrt{1+\alpha_{+}^{2}}}(11\rangle-\alpha_{+}|00\rangle\right) \\ E_{2}=\omega-\Omega & \left.\psi_{2}=\frac{1}{\sqrt{2}}(10\rangle-|01\rangle\right) \\ E_{3}=\omega+\Omega & \left.\psi_{3}=\frac{1}{\sqrt{2}}(10\rangle+|01\rangle\right) \\ E_{4}=\omega+\sqrt{\omega^{2}+\Omega^{2}} & \left.\psi_{4}=\frac{1}{\sqrt{1+\alpha_{-}^{2}}}(11\rangle-\alpha_{-}|00\rangle\right) \\ \text { Where } \alpha_{ \pm}=\frac{\omega \pm \sqrt{\omega^{2}+\Omega^{2}}}{\Omega}\end{cases}
$$

$\Psi_{2}=1 / \sqrt{ }(|10>-| 01>)$

$$
\begin{aligned}
\rho= & \left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|=\frac{1}{2}(|10\rangle-|01\rangle)(\langle 10|-\langle 01|) \\
= & |00\rangle \begin{array}{l}
|00|
\end{array}\left\langle\begin{array}{cccc}
0 & \langle 01| & \langle 10| & \langle 11| \\
0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & -\frac{1}{2} & 0 \\
0 & -\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& |11\rangle\rangle \\
\widetilde{\rho}= & \frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Psi_{2}\left.=1 / \int 2(|10>-| 01\rangle\right) \\
& R=\rho \widetilde{\rho}=-\frac{1}{2}\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Eigenvalues: $\lambda_{1}=1, \quad \lambda_{2}=\lambda_{3}=\lambda_{4}=0$ Concurrence :
$C_{12}=\max \left[\mathrm{O}, \sqrt{\lambda_{1}}-\sqrt{\lambda_{2}}-\sqrt{\lambda_{3}}-\sqrt{\lambda_{4}}\right]=1$ Using the same method, we can get the concurrence for ψ_{3} $C_{12}=1$

$\Psi_{1}=1 / \delta\left(1+\alpha_{+}^{2}\right)\left(\left|11>-\alpha_{+}\right| 00>\right)$

$$
\begin{aligned}
\rho=\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right| & \left.=\frac{1}{1+\alpha_{+}^{2}}(11\rangle-\alpha_{+}|\mathrm{OO}\rangle\right)\left(\langle 11|-\alpha_{+}\langle\mathrm{OO}|\right) \\
& =\frac{1}{1+\alpha_{+}^{2}}\left[\begin{array}{cccc}
\alpha_{+}^{2} & 0 & 0 & -\alpha_{+} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-\alpha_{+} & 0 & 0 & 1
\end{array}\right] \\
\widetilde{\rho} & =\frac{1}{1+\alpha_{+}^{2}}\left[\begin{array}{cccc}
1 & 0 & 0 & -\alpha_{+} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-\alpha_{+} & 0 & 0 & \alpha_{+}^{2}
\end{array}\right]
\end{aligned}
$$

$\Psi_{1}=1 / \int\left(1+a_{+}{ }^{2}\right)\left(\left|11>-a_{+}\right| O O>\right)$
$R=\tilde{\rho} \tilde{\rho}=\frac{1}{\left(1+\alpha_{+}^{2}\right)^{2}}\left[\begin{array}{cccc}2 \alpha_{+}^{2} & 0 & 0 & -2 \alpha_{+}^{3} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -2 \alpha_{+} & 0 & 0 & 2 \alpha_{+}^{2}\end{array}\right]$
Eigenvalues : $\lambda_{1}=\frac{4 \alpha_{+}^{2}}{\left(1+\alpha_{+}^{2}\right)^{2}}, \lambda_{2}=\lambda_{3}=\lambda_{4}=0$
Concurrence :
$C_{12}=\max \left(0, \sqrt{\lambda_{1}}-\sqrt{\lambda_{2}}-\sqrt{\lambda_{3}}-\sqrt{\lambda_{4}}\right)=\frac{2 \alpha_{+}}{1+\alpha_{+}^{2}}$
Using the same method,
we can get the concurrence for ψ_{4}
$C_{12}=\frac{2\left|\alpha_{-}\right|}{1+\alpha_{-}^{2}}$

Spin Systems

- ASpin Chain with nearest neigffoor interaction

- Hamiltonian

$$
H=-\frac{1+\gamma}{2} \sum_{i=1}^{N} J_{i, i+1} \sigma_{i}^{x} \sigma_{i+1}^{x}-\frac{1-\gamma}{2} \sum_{i=1}^{N} J_{i, i+1} \sigma_{i}^{y} \sigma_{i+1}^{y}-\sum_{i=1}^{N} h_{i} \sigma_{i}^{z}
$$

N is total spin number, γ is the anisotropy parameter, $\mathrm{J}_{\mathrm{i}, \mathrm{i}+1}=\mathrm{J}(1+\alpha)$ is the coupling constant between impure site and it is J for other sites, h_{z} is the interaction between external magnetic field and spin, ois the Pauli matrix, $\lambda=\mathrm{J} / 2 \mathrm{~h}$

Tuning Entanglement in Magnetic System

The system exhibit a quantum phase transidon at a dimensionless coupling constant =1
O. Osenda, Z. Huang and S. Kais, PRA 67, 062321 (2003)

As the system is tuned across a quantum critical point, the ground state and its correlations undergo qualitative changes

The same is true of the entanglement in the ground state

Entanglement can be used to characterize/classify phase transitions

Entanglement Calculations for Quantum Dots

-Hubbard Hamiltonian of quantum dots

$$
H=-t \sum_{\langle i, j\rangle, \sigma}\left[c_{i \sigma}^{\dagger} c_{j \sigma}+\mathrm{H} . \mathrm{c} .\right]+U \sum_{i}\left(\frac{1}{2}-n_{i \uparrow}\right)\left(\frac{1}{2}-n_{i \downarrow}\right)
$$

- Entanglement for the ground state

$$
E_{j}=-\operatorname{Tr} \rho_{j} \ln \rho_{j}, \quad \rho_{j}=\operatorname{Tr}_{j}|\psi\rangle\langle\psi|
$$

Tr_{j} denotes the trace over all but the j -th site

[^0]

Metallic State -> Insulating State

There is an abrupt jump of the entanglement when a first-order quantum phase transition occurs. There is a block-6lockentanglement scaling

Dipole Systems

Qi Wei, Sabre Kais, Bretislav Friedrich and Dudley Herschbach

Arrays of ultracold polar molecules as platform to implement a quantum computer
Q. Wei, et. al. J. Chem. Phys. 134, 124107 (2011)

Optical lattice
Trap depth $\sim 100 \mu \mathrm{~K}$
$\hat{\phi}|0\rangle \quad \oplus|1\rangle$

KCs polar molecule ($\sim 10^{4}$ total qubits, can perform $10^{5} \mathrm{CNOT}$, with decoherence $\sim 5 \mathrm{~s}$)
Trap of length $\sim 5 \mathrm{~mm}$
D. DeMille, PRL 88, 067901 (2002))

Hamiltonian for a Single Molecule

$$
\begin{aligned}
& \hat{H}=\frac{P^{2}}{2 m}+V_{\text {trap }}(\stackrel{\rightharpoonup}{r})+B J^{2}-\stackrel{\rightharpoonup}{\mu} \cdot \stackrel{\rightharpoonup}{\mathcal{E}} \\
& \text { Assume Separable } \\
& \hat{H}_{S}=B \mathbf{J}^{2}-\boldsymbol{\mu} \boldsymbol{E} \cos \theta
\end{aligned}
$$

Eigenfunctions: Pendular states

*:

Se 本

 「入際納 症 㫼来：

The existence of life on earth relies on the conversion of light energy into chemical energy by bacteria and plants. These natural organisms execute the conversion with extremely high efficiency.

- To understand the role of quantum coherence \& entanglement in complex systems such as photosynthesis
- Photosynthesis is one of the most common phenomenon in nature, but the detailed principles of the whole process are still unclear.
- The energy transfer from the light harvesting complex (LHC) to the reaction center (RC) is amazingly high (almost 100\%)

The energy transport in light-harvesting complexes is extremely efficient

Could it be the case that entanglement is responsible for this efficiency?

- Green sulfur bacteria
- Energy flow

Light \rightarrow LHC
\rightarrow FMO * Complex
$\rightarrow R C$

* FMO =Fenna-Matthews-Olson

- FMO has the function of a wire in the energy transfer
- The transfer efficiency is 100%
- Direct evidence of long-lived coherence has been experimentally demonstrated during the energy transfer at $\mathrm{T}=77 \mathrm{~K}$

G. Engel, et al. , Nature, 446, 782 (2007)

* \therefore ○——戠

- FMO protein of green sulfur bacteria
- 3 monomers
- C3 symmetry
- Each monomer works independently
- 7 BChl molecules for each monomer

http://en.wikipedia.org/wiki/Fenna-Matthews-Olson_complex

- Site $1 \& 6$ combined with the LHC
- Site $3 \& 4$ combined with the RC
- Energy flows from site $1 \& 6$ to site $3 \& 4$

- Must capture and give insights into essential physics.
- Tells us which physical parameters lead to qualitative changes in quantum dynamics.
- Consider each site as a 2-level system

$$
\mathcal{H}_{S}=\sum_{j=1}^{N}|j\rangle \varepsilon_{j}\langle j|+\sum_{j \neq k}\left(|j\rangle J_{j k}\langle k|+|k\rangle J_{k j}\langle j|\right)
$$

- Hamiltonian for the environmental phonons

$$
\mathcal{H}_{B}=\sum_{j=1}^{N} \mathcal{H}_{B}^{j}=\sum_{j=1}^{N} \sum_{\xi=1}^{N_{j B}} \frac{P_{j \xi}^{2}}{2 m_{j \xi}}+\frac{1}{2} m_{j \xi} \omega_{j \xi}^{2} x_{j \xi}^{2}
$$

- The Hamiltonian of the system-environment coupling

$$
\mathcal{H}_{S B}=\sum_{j=1}^{N} \mathcal{H}_{S B}^{j}=\sum_{j=1}^{N}|j\rangle\langle j| \cdot F_{j} \quad F_{j}=\sum_{\xi} c_{j \xi} \cdot x_{j \xi}
$$

site $6 \rightleftharpoons 7 \rightarrow 3$ and 4 $6 \rightleftharpoons 5 \rightarrow 3$ and 4

- Site 6 initially excited:
$6 \rightarrow 3$ and 4

$$
\left(\begin{array}{ccccccc}
12410 & -87.7 & 5.5 & -5.9 & 6.7 & -13.7 & -9.9 \\
-87.7 & 12530 & 30.8 & 8.2 & 0.7 & 11.8 & 4.3 \\
5.5 & 30.8 & 12210 & -53.5 & -2.2 & -9.6 & 6.0 \\
-5.9 & 8.2 & -53.5 & 12320 & 70.7 & -17 & -63.3 \\
6.7 & 0.7 & -2.2 & -70.7 & 12480 & 81.1 & -1.3 \\
-13.7 & 11.8 & -9.6 & -117 & 81.1 & 1630 & 39.7 \\
-9.9 & 4.3 & 6.0 & -63.3 & -1.3 & 39.7 & 12440
\end{array}\right)
$$

J. Adolphs and T. Renger; Biophysical Journal; 91, 2778-2797 (2006)

V緃*D

- Redfield Equation
- Assumption: the system-environment coupling is weak
- Förster Theory
- Assumption: the coupling within the system is weak compared to the system-environment coupling
- Hierarchical Equation of Motion (HEOM) Approach
- No previous assumptions

$$
\rho(t)=\operatorname{Tr}_{\mathrm{B}}\left[\rho_{\text {tot }}(t)\right]=\operatorname{Tr}_{\mathrm{B}}\left[e^{-i \mathscr{C} t / \hbar} \rho_{\text {tot }}(0) e^{i \mathscr{C} t / \hbar}\right]
$$

- Using the over damped Brownian oscillator model; replace the stick spectra with the Drude spectral density

$$
J_{j}(\omega)=\sum_{\xi} \frac{c_{\xi}^{2} \cdot \hbar}{2 m_{j \xi} \cdot \omega_{j \xi}} \delta\left(\omega-\omega_{j \xi}\right) \quad \square J(\omega)=\eta \gamma \frac{\omega}{\omega^{2}+\gamma^{2}}
$$

- The correlation function can be written as

$$
\begin{aligned}
C_{j}(t) & =\frac{1}{\pi} \int_{-\infty}^{\infty} d \omega \cdot J_{j}(\omega) \cdot \frac{\mathbb{e}^{-i \omega t}}{1-\mathbb{e}^{-\beta \hbar \omega}} \square C_{j}(t>0)=\sum_{k=0}^{\infty} c_{k} \cdot \mathbb{e}^{-v_{k} t} \\
c_{0} & =\frac{\eta \gamma}{2}\left[\cot \left(\frac{\beta \hbar \gamma}{2}\right)-i\right] \\
c_{k} & =\frac{2 \eta \gamma}{\beta \hbar} \cdot \frac{v_{k}}{v_{k}^{2}-\gamma^{2}} \text { for } k \geqslant 1
\end{aligned} v_{o}=\gamma \quad v_{k}=2 k \pi / \beta \text { when } k \geqslant 1,
$$

J. Zhu, S. Kais, P. Rebentrost and A. Aspuru-Guzik, Journal of Physical Chemistry B., 115:1531, 2011

$$
\begin{aligned}
& \frac{d}{d t} \tilde{\rho}_{n}=-\left(i \mathcal{L}_{S}+\sum_{j=1}^{N} \sum_{k=0}^{K} n_{j k} v_{k}\right) \tilde{\rho}_{n}-i \sum_{j=1}^{N} \sqrt{\left(n_{j k}+1\right)\left|c_{k}\right|}\left[\mathcal{V}_{j}, \sum_{k} \tilde{\rho}_{n_{j k}}\right] \\
& \quad-\sum_{j=1}^{N} \sum_{m=K+1}^{\infty} \frac{c_{j m}}{v_{j m}} \cdot\left[\mathcal{V}_{j},\left[\mathcal{V}_{j}, \tilde{\rho}_{\boldsymbol{n}}\right]\right]-i \sum_{j=1}^{N} \sum_{k=0}^{K} \sqrt{n_{j k} /\left|c_{k}\right|}\left(c_{k} \mathcal{V}_{j} \tilde{\rho}_{\boldsymbol{n}_{\overline{j k}}}-c_{k}^{*} \tilde{\rho}_{\boldsymbol{n}_{\overline{j k}}} \mathcal{V}_{j}\right)
\end{aligned}
$$

$$
\mathcal{V}_{j}=|j\rangle\langle j| \quad \mathcal{L}_{S} \bullet=\frac{1}{\hbar}\left[\mathcal{H}_{S}, \bullet\right]
$$

$\boldsymbol{n} \equiv\left\{n_{1}, n_{2} \cdots \cdots, n_{N}\right\}=\left\{\left\{n_{10}, n_{11} \cdots\right\} \cdots\left\{n_{N 0}, n_{N 1} \cdots\right\}\right\}$
$\boldsymbol{n}_{\boldsymbol{j k}}^{ \pm}$refers to change the number $n_{j k}$ to $n_{j k} \pm 1$ in the whole index \boldsymbol{n}

- $\rho_{0}=\{\{0,0, \ldots\}, \ldots\{0,0, \ldots\}\}$ is system reduced density operator (RDO)
- All others are considered as auxiliary density operators (ADOs)
- The truncation level
- The truncation level of the correlation function is K
- The cut-off level of ADOs is at
- In our simulation: $\mathrm{K}=0$ and \mathcal{N}_{c} t

- The coherence oscillation is due to the system rather than the environment
- The oscillation time scale is around 650 fs , which is consistent with the experimental observation
J. Zhu, S. Kais, P. Rebentrost and A. Aspuru-Guzik, Journal of Physical Chemistry B. 115,1531 (2011)

+1, 系

- Method to calculate the pairwise concurrence in FMO complex on the single excitation basis sets

$$
C_{i j}(t)=2\left|\rho_{i j}(t)\right| \text {, where } \rho_{i j}(t) \text { is the density matrix. }
$$

Global entanglement:

$$
E_{T}[\rho]=-\sum_{i=1}^{N} \rho_{i i} \cdot \ln \left(\rho_{i i}\right)-S(\rho)
$$

$S(\rho)=-\operatorname{Tr} \rho \ln (\rho)$ is the Von Neumann entropy of state ρ

2

- The total entanglement and the concurrence of pair sites at 77 K when site 1 is initially excited
- The coherence oscillation also exists in the entanglement evolution
- They concluded that the entanglement in FMO complex can existed at long-range and multipartite even at room temperature.
M. Sarovar, A. Ishizaki, G. R. Fleming, and K. B. Whaley, Nature Physics, 6, 462 (2010)

Meyer-Wallach measure

$$
Q_{M W}(|\psi\rangle)=\frac{2}{n} \sum_{i=1}^{n_{q}}\left[1-\operatorname{Tr}\left(\rho_{i}^{2}\right)\right] \quad \rho=|\psi\rangle\langle\psi|
$$

ρ_{i} is the reduced density matrix of the $i^{\text {th }}$ qubit
Monotone

$$
\eta_{S}=\frac{2^{|S|}}{2^{|S|}-1}\left(1-\operatorname{Tr}\left(\rho_{S}^{2}\right)\right) \quad S \text { is a set of } k \text { qubits } \quad|S|=k
$$

ρ_{S} is the reduced density matrix over those k qubits.
Monogamy of entanglement
Among three qubits ABC , if $\mathrm{A} \& \mathrm{~B}$ are maximally entangled, then C can not entangled with A\&B

$$
\tau_{A \mid B}+\tau_{A \mid C} \leq \tau_{A \mid B C}
$$

τ_{AlB} is measuring the entanglement of qubit A and B

- Convex roof extension of entanglement monotones

$$
\begin{gathered}
E(\rho) \equiv \inf _{\mathbb{K}}\left[\sum_{i} p_{i} \eta\left(\left|\psi_{i}\right\rangle\right)\right] \\
\aleph \equiv\left\{p_{i},\left|\psi_{i}\right\rangle: \sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|=\rho\right\} \\
\rho=V \Lambda V^{\dagger} \rho=\sum_{i} \lambda_{i}\left|v_{i}\right\rangle\left\langle v_{i}\right| \tilde{\Phi} \equiv V \Lambda^{1 / 2}, \text { so that } \tilde{\Phi} \tilde{\Phi}^{\dagger}=\rho \\
\tilde{\Psi}=\tilde{\Phi} U \text { for some unitary matrix } U \text {, then } \tilde{\Psi} \tilde{\Psi}^{\dagger}=\rho .
\end{gathered}
$$

Employ the Cayley map to obtain the unitary U which minimize the $E(\rho)$
J. Zhu, S. Kais, A. Aspuru-Guzik, S. Rodriques, B. Brock and P. J. Love; Mdtiportite QurstumEItonglement Evohtionin Hhatosynthaic Camplexes, J. Chem. Phys.

- Left panel: entanglement evolution off the pathway; smaller compared with that involved in the pathway
- Right panel: entanglement evolution related to site $3 \& 4$; pair $3 \mid 4$ becomes the most significant pair at the end

Multipartite Entanglement is Max along the excitation transfer pathway

LH2 consists of two structural units
(named after the positions of their absorption peak) called B800 with 9 bacteriochlorophylls (BChls) and B850 with 18 BChls.

大路 0^{2} —

$$
\begin{aligned}
& H_{S}=\sum_{i=1}^{N} E_{i}|i\rangle\langle i|+\sum_{i=1}^{N} \sum_{j=1}^{N} V_{i j}|i\rangle\langle j| \\
& V_{i j}=C \frac{\mathbf{d}_{i} \cdot \mathbf{d}_{j}-3\left(\mathbf{d}_{i} \cdot \mathbf{r}_{i j}\right)\left(\mathbf{d}_{j} \cdot \mathbf{r}_{i j}\right)}{\left|\mathbf{r}_{i j}\right|^{3}} \\
& \mathrm{E}_{\mathrm{i}} \sim \text { site energy } \\
& \mathrm{V}_{\mathrm{ij}} \sim \text { induced dipole- induced } \\
& \text { dipole interaction }
\end{aligned}
$$

J. Strümpfer and K. Schulten, Journal of Chemical Physics, 131, 225101 (2009)

米家录扣米家】

- Global entanglement: $\quad E[\rho]=-\sum_{i=1}^{N} \rho_{i t} \ln \rho_{i i}-S(\rho)$
- 2-sites entanglement (concurrence): $\quad c_{i j}=2\left|\rho_{i j}\right|$

$$
E[\rho]=-\sum_{\mathrm{i}} \rho_{\mathrm{ii}} \ln \rho_{\mathrm{ii}}-S\left(\rho_{\mathrm{ii}}\right)
$$

(a) 35 is

(c) 124 is

(b) 66 is
$\begin{array}{llllllll}2 & 4 & 6 & 8 & 10 & 12 & 14 & 16\end{array} 18$ (d) 1500 is

0.15

練 *

- FMO protein of green sulfur bacteria
- One additional $8^{\text {th }}$ BChl between each monomer
- The $8^{\text {th }} \mathrm{BChl}$ is close to the $1^{\text {st }} \mathrm{BChl}$
http://www.ks.uiuc.edu/Research/fmo/index.html

$$
H=\sum_{n}^{N} \epsilon_{n}|n\rangle\langle n|+\sum_{n \neq m}^{N} V_{n m}|n\rangle\langle m|
$$

BCh1	present work					4	5	6	7	8
	apo	holo	2		3					
1	12490	12505								
2	12445	12425	1	94.8	5.5	-5.9	7.1	-15.1	-12.2	39.5
3	12205	12195	2		29.8	7.6	1.6	13.1	5.7	7.9
4	12380	12375	3			-58.9	-1.2	-9.3	3.4	1.4
5	12570	12600	4				-64.1	-17.4	-62.3	-1.6
6	12535	12515	5					89.5	-4.6	4.4
7	12495	12465	6						35.1	-9.1
8		12700	7							-11.1
$\varepsilon_{\text {eff }}$	3.0	3.0								
$E_{\mathrm{o}} / \mathrm{cm}^{-1}$	12570	12570								

M. Schmidt am Busch, F. M"uh, M. E. Madjet, and T. Renger, J. Phys. Chem. Lett. 2, 93 (2011).
J. Moix, J. Wu, P. Huo, D. Coker and J. Cao, arXiv:1109.3416v1

The recent discovery that quantum coherence plays a central role in excitonic transport in photosynthesis invites us to explore other places in biological systems where quantum coherence is important.

- Understand the role of quantum coherence and entanglement in the biological compass system.
- Explore the potential role of a quantum phase transition in the local nuclear environment.

James Abraham "Abe" Pauls
Undergraduate Student from Goshen College
NSF REU Program

$$
H=I^{2} \cdot A \cdot R(\theta, B) \cdot \sigma_{1}^{z}+\gamma \cdot B \cdot\left(\sigma_{1}^{z}+\sigma_{2}^{z}\right)
$$

The RPM Model

Singlet and triplet states will have different reaction products

Scheme of the radical pair mechanism. Donor (D) and acceptor (A) molecules form correlated spin radical pair after a light-induced electron transfer. Due to magnetic fields the spin character of the radical spins is interconverted between singlet and triplet states, the so-called inter-system crossing (ISC).

Cryptochrome Molecule

FADH

Tryptophan

Structure and Energy Levels

FADH

Tryptophan

The Hamiltonian for the system is:

$$
\mathrm{H}=\mathrm{g} \mu_{B} \cdot \sum_{j=1}^{2} \overrightarrow{S_{j}} \cdot\left(\vec{B}+\overleftrightarrow{A_{j}} \cdot \overrightarrow{I_{j}}\right)
$$

Where $\overrightarrow{\boldsymbol{B}}$ is the Earth's (external) magnetic field, $\overrightarrow{\boldsymbol{I}_{j}}$ is the single spin- $1 / 2$ nucleus, $\overleftrightarrow{A_{j}}$ denotes the hyperfine coupling tensor.
We use the numbers as:

$$
\vec{B}=0.5 \mathrm{G}
$$

$$
A_{1}=\left(\begin{array}{ccc}
10 \mathrm{G} & 0 & 0 \\
0 & 10 \mathrm{G} & 0 \\
0 & 0 & 0
\end{array}\right) \quad A_{2}=\left(\begin{array}{ccc}
5 \mathrm{G} & 0 & 0 \\
0 & 5 \mathrm{G} & 0 \\
0 & 0 & 5 \mathrm{G}
\end{array}\right)
$$

K. Schulten, et. al. Biophysical Journal 78, 707, (2000)

The density matrix $\rho(t)$ is governed by the stochastic Liouville Equation:

$$
\dot{\rho}(t)=-\frac{i}{\hbar}[H, \rho(t)]-\frac{k_{S}}{2}\left\{Q^{S}, \rho(t)\right\}-\frac{k_{T}}{2}\left\{Q^{T}, \rho(t)\right\}
$$

Assuming the recombination rates are spin-dependent,

$$
k=k_{S}=k_{T}
$$

One can express the density matrix in this form:

$$
\rho(t)=\frac{1}{N} e^{-i \mathrm{H} t / \hbar} Q^{S} e^{\mathrm{iHt} / \hbar} e^{-k t}
$$

With N is the number of nuclear spin states

$$
\rho(0)=Q^{S} / \operatorname{Tr} Q^{S}
$$

The singlet yield Φ^{S} is defined as the amount of products decaying via the singlet channel:

$$
\Phi^{S}=\int_{0}^{\infty} k_{S} S(t) d t
$$

Where $S(t)$ is the fraction of the radical pairs in the singlet state:

$$
\begin{aligned}
& S(t)=\operatorname{Tr}\left[Q^{S} \rho(t)\right] \\
& S(t)=\frac{1}{N} e^{-k t} \cdot \sum_{m=1}^{4 N} \sum_{n=1}^{4 N} Q_{m n}^{S} Q_{m n}^{S} \cos \left[\left(w_{m}-w_{n}\right) t\right]
\end{aligned}
$$

Then we can get:

$$
\Phi^{S}=\frac{1}{N} \sum_{m=1}^{4 N} \sum_{n=1}^{4 N} Q_{m n}^{S} Q_{m n}^{S} \frac{k^{2}}{k^{2}+\left(w_{m}-w_{n}\right)^{2}}
$$

Singlet Yield VS Angle

FIG. 2: The triplet yields for three different decay rates as a function of the external magnetic field magnitude. The black line, for which $k=1 \mu \mathrm{~s}^{-1}$ seems to be a reasonable curve.

Entanglement VS Time

The Simplest Double Slit

Interference and Entanglement in Double Photoionization of the Hydrogen Molecule

Hydrogen molecule

Quantum Entanglement:

Hydrogen atom:

Hydrogen molecule:

$$
=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)
$$

Superposition of two electron states leads to non-local

Graphic of Cold Target Recoil Ion Momentum Spectroscopy

Young's Double Slit Experiment

D. Akoury et. al. Science 318, 949 (2007)

Entanglement as Measure of Electron Correlation

- The correlation energy is defined as the difference between the $\mathcal{H F}$ limit energy and exact solution of nonrelativistic S schrodinger equation.
Electron correlation is not directly observable.
- Entanglement is directly observable and it is one of the most striking properties of quantum mechanics.
$S\left(\rho_{1}\right)=-\operatorname{Tr}\left(\rho_{1} \log _{2} \rho_{1}\right)$

Electron Correlation and Entanglement for H_{2}

Entanglement as a function of the distance R between two spins for different values of the magnetic field strength B

Entanglement for H_{2}
Huang and Kais, CPL 413, 1 (2005)

Summary

Entanglement can be used to:

- Characterize/classify quantum phase transitions
- Perform quantum teleportation
- Perform quantum computing using ultracold polar molecules
- Understand complex processes such as photosynthesis, mechanism with which birds determine magnetic north and chemical reactions
- Measure electron-electron correlation

NSF Center for Quantum Information and

 Computation for Chemistry CCI Phase I
http://web.ics.purdue.edu/ - kais/qd/

Alan Aspuru-Guzik (Harvard)
Kenneth R. Brown (Georgia Tech)
Daniel A. Lidar (USC)
Peter J. Love (Haverford)
Sabre Kais (Purdue)

[^0]: J. Wang and S. Kais, Int. J. Quant. Information 1, 375 (2003)

