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3. Markovian and non-Markovian quantum  
    jumps

� General local in time master equation
� Density matrix as an ensemble of state vectors
� Markovian case: Monte Carlo wave function method
� Generalization: Non-Markovian quantum jumps 
� What do non-Markovian jumps tell about the memory



General local in time master equation

� Memory kernel KS(t − s)
d�S(t)

dt
=

∫ t

o

dsKS(t − s)�S(s)

� Time-dependent generator      (t)LS

d�S(t)
dt

= LS(t)�S(t)

� Semigroup iff
    generator    s  in Lindblad formL

d�S(t)
dt

= LS�S(t)

General form of the local in time (TCL) equation

d�S(t)
dt

= −i[HS , �S ] +
∑

k

(
Ck(t)ρS(t)Dk(t)† + Dk(t)ρS(t)Ck(t)†

)

− 1
2

{
D†

k(t)Ck(t) + C†
k(t)Dk(t), ρS(t)

}

� Operators may depend on time
� Lindblad-like structure if Dk(t) = Ck(t)



Q: How to solve the master equation?

Density matrix and state vector ensemble

� Few exact models and analytical solutions
� Can we find the solution by evolving an ensemble of
 state vectors instead of directly solving the density matrix? 

ρ(t) =
∑

i

Pi(t)|ψi(t)〉〈ψi(t)|

Generally, we can decompose the density matrix as

Suppose now we want to solve the semigroup, 
Markovian, Lindblad equation

dρ(t)
dt

= −i[H, ρS ] +
∑

k

γk

(
AkρSA†

k − 1
2
A†

kAkρS − 1
2
ρSA†

kAk

)



Basics of stochastic state vector evolution

Monte Carlo wave function method (Markovian)
(Dalibard, Castin, Molmer, PRL 1992)

At each point of time, density matrix � as average of state vectors �i:

ρ(t) =
1
N

N∑
i=1

|ψi(t)〉〈ψi(t)|

ψ2(t1)

ψ1(t0) ψ1(t1) ......
ψ2(t0) ......

...
.

......

Time

ψN (t0) ψN (t1) ψN (tn)

ψ2(tn)

ψ1(tn)

The time-evolution of each �i contains stochastic 
element due to random quantum jumps. 

Ensemble of
N state vectors



Jump probability, example

Time-evolution of state vector �i:

At each point of time: decide if quantum jump happened.

Pj: probability that a quantum jump occurs in a given time 
interval �t:

Pj = δt Γ pe

time-step
decay rate

occupation probability
 of excited state

For example: 2-level atom
Probability for atom being transferred from 
the excited to the ground state and photon 
emitted. 

E
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 Historical remark on quantum jumps: Schrödinger vs. Bohr

Schrödinger:
“If we are going to stick to this damned quantum-jumping,
then I regret that I ever had anything to do
with quantum theory.”

Bohr:
“But the rest of us are thankful that you did, because you have 
contributed so much to the clarification of quantum theory”.

W. Heisenberg: “The development of the interpretation of quantum theory”,
in  “Niels Bohr and the development of physics: 
Essays dedicated to the Niels Bohr on the occasion
of his seventieth birthday”,
eds. W. Pauli, L. Rosenfeld, and V. Weisskopf, Pergamon Press, London, 1955.

Are quantum jump “real”?



Are quantum jump “real”? Observed in experiments.

  Quantum jumps in experiments

1 experimental run

quantum jump

average of 5 runs

average of 19 runs

average of 900 runs
exponential decay

Time
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to
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 n
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m
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r

Haroche group @ ENS: “Quantum jumps of light recording
the birth and death of a photon in a cavity”, Nature 446, 297 (2007).

How to use quantum 
jumps in theoretical 
descriptions of physical 
systems?

Open quantum 
systems, Monte Carlo 
methods...  



Simple classification of Monte Carlo/stochastic methods

Jump
methods:

Diffusion
methods:

Markovian non-Markovian

MCWF 
(Dalibard, Castin, Molmer)
Quantum Trajectories
(Zoller, Carmichael)

Fictitious modes (Imamoglu)
Pseudo modes (Garraway)
Doubled H-space (Breuer, Petruccione)
Triple H-space (Breuer)
Non-Markovian Quantum Jump (Piilo et al)

QSD
(Diosi, Gisin, Percival...)

Non-Markovian QSD
(Strunz, Diosi, Gisin)
Stochastic Schrödinger equations
(Bassi)

Plus: Wiseman, Gambetta, Budini, Gaspard, 
Lacroix...and others
(not comprehensive list, apologies for any 
omissions)

Jump
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Example: driven 2-state system, Markovian

Quantum jump: Discontinuous stochastic change of the state vector.

Excited state probability P
for a driven 2-level atom

Excited state

Ground state

E

G

decay channel
(random jump)

coupling
(deterministic)

Time

P

Time

single realization ensemble average

damped Rabi oscillation
 of the atom

Markovian Monte Carlo

d�

dt
= −i[H, �] + Γ

[
σ−�σ+ − 1

2
{σ+σ−, �}

]

ρ(t) =
1
N

N∑
i=1

|ψi(t)〉〈ψi(t)|



Markovian Monte Carlo wave function method

Master equation to be solved

d� t( )
dt

=
1

ih
HS ,�[ ] + �m

m

� Cm�Cm

†

�
1

2
�m

m

� Cm

†

Cm� + �Cm

†

Cm( )

Master equation to be solved:

Dalibard, Castin, Molmer:  Phys. Rev. Lett. 68, 580 (1992)

Solve the time dependent Schrödinger
 equation.ih

d

dt
�(t) = H �(t)

H = Hs + Hdec
Use non-Hermitian Hamiltonian H which 
includes the decay part Hdec.

Hdec = �
ih

2
�m

m

� Cm

†

Cm

Key for non-Hermitian Hamiltonian:
Jump operators Cm can be found from the 
dissipative part of the master equation.

�pm = �t�m � Cm

†

Cm �
For each channel m the jump probability is 
given by the time step size, decay rate, and 
decaying state occupation probability.

For each ensemble member    :



Markovian Monte Carlo wave function method

Algorithm:
1. Time evolution over time step  

2. Generate random number, did jump occur?

 3. Renormalize     before new time step
 3. Apply jump operator      before
 new time step

No Yes

|ψi(t + δt)〉 =
Cj |ψi(t)〉
||Cj |ψ(t)〉||

 4. Ensemble average over    :s  gives the density matrix
     and the expectation value of any operator A 

〈A〉(t) =
1
N

∑
i

〈ψi(t)|A|ψi(t)〉

|ψi(t + δt)〉 =
e−iHeffδt|ψi(t)〉√

1 − δp



Markovian Monte Carlo wave function method

Equivalence with the master equation:

�(t + �t) = (1� P)
�(t + �t) �(t + �t)

1� P
+ P

C �(t) �(t) C
†

�(t) C
†

C �(t)

�(t + �t) = 1�
iHs�t

h
�
��t

2
C

†

C
� 

	 

 

� 

� 
 �(t)

Keeping in mind two things:
a) the time-evolved state is (1st order in dt, before renormalization):

b) the jump probability is:

P = �t� � C
†

C �

it is relatively easy to see that the ensemble average corresponds to master equation

Average

”No-jump” path weight
t-evol. and normalization Jump and normalization

”Jump” path weight

This gives ”sandwich” term of the m.e.
This gives comm. + anticomm. of  m.e.

The state of the ensemble averaged over time step:
(for simplicity here: initial pure state and one decay channel only)

dρ(t)
dt

= −i[H, ρS ] +
∑

k

γk

(
AkρSA†

k − 1
2
A†

kAkρS − 1
2
ρSA†

kAk

)



Markovian Monte Carlo wave function method

Measurement scheme interpretation

Two-level atom in vacuum

P = �t� ce
2

Jump operator

Non-Hermitian Hamiltonian

Jump probability

C = � g e

Hdec = �
ih�

2
e e

Measurement scheme:

continuous measurement of

photons in the environment.

cg g + ce e( )� 0 �

c 'g g + c'e e( )� 0 + c�
�

� g � 1�

Two-level atom MC evolution by Total system evolution

�Continuous measurement of the environmental state gives
   conditional pure state realizations for the open system
�The open system evolution is average of these realizations



Non-Markovian quantum jumps

Questions: 
�What happens when the decay rates depend on time?
    (time-dependent generator)
�What happens when the decay rates turn temporarily
    negative?

dρ(t)
dt

= −i[H, ρS ] +
∑

k

γk(t)
(

AkρS(t)A†
k − 1

2
A†

kAkρS(t) − 1
2
ρSA†

kAk

)

Piilo, Maniscalco, Härkönen, Suominen: 
Phys. Rev. Lett. 100, 180402 (2008)

Piilo, Härkönen, Maniscalco, Suominen: 
Phys. Rev. A 79, 062112 (2009)



Cartoon of the motivation 

BA
Rate: �A>0, time step: �t 

What about the transfer A � B with negative rate �A<0?

Claim: stochastic processes with negative rates appear in 
nature.  Essential feature: memory

Transfer from A to B. Ensemble initially in state A.

Probability: PA�B = �t �A



Markovian vs. non-Markovian evolution (1)

Markovian dynamics: 
Decay rate constant
in time.

Non-Markovian dynamics: 
Decay rate depends on time,
obtains temporarily negative values.

Markovian description of quantum jumps fails, since gives 
negative jump probability. 
For example: negative probability that atom emits a photon.

Example: 2-level atom in photonic band gap.

Time

Pj = δt Γ pe < 0

Decay rate 
(exact)



Markovian vs. non-Markovian evolution (2)

Time

F

photon emission here
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Markovian: constant rate
non-Markovian:
temporary negative rate

At which point of time atom emits photon ?

Waiting time distribution (2-level atom):

Gives the probability that quantum jump occurred
in time interval between 0 and t.

F (t) = 1 − exp
[
−

∫ t

0

dt′ Δ(t′)
]

decay rate

1. It is not possible to emit the same photon 3 times.
2. Includes negative increment of probability.
3. What is the process that has positive probability and corresponds to negative 
probability quantum jump ?

photon emission here, here and here ?
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Non-Markovian master equation

d� t( )
dt

=
1

ih
HS ,�[ ] + �m (t)

m

� Cm�Cm

†

�
1

2
�m

m

� (t) Cm

†

Cm� + �Cm

†

Cm( )

Starting point: 
General non-Markovian master equation local-in-time:

� Jump operators  Cm

� Time dependent decay rates �m(t).
� Decay rates have temporarily negative values.

σ− = |g〉〈e|
Example: 2-level atom in photonic band gap. 
Jump operator C for positive decay:

dρ(t)
dt

=
1
i�

[HS , ρ] + Γ(t)|g〉〈e|ρ|e〉〈g| − 1
2
Γ(t)(|e〉〈e|ρ + ρ|e〉〈e|)

Time

E

G



Non-Markovian quantum jump (NMQJ) method

Quantum jump in negative decay region: 
The direction of the jump process reversed

|ψ〉 ← |ψ′〉 =
Cm|ψ〉

||Cm|ψ〉|| , Δm(t) < 0

|ψ〉 → |ψ′〉 =
Cm|ψ〉

||Cm|ψ〉|| , Δm(t) > 0

P =
N

N ′ δt|Δm(t)|〈ψ|C†
mCm|ψ(t)〉

Jump probability:

N: number of ensemble members in the target state
N’: number of ensemble members in the source state

The probability proportional to the target state!

Negative rate process creates coherences



NMQJ example

The essential ingredient of non-Markovian system: memory.
Recreation of lost superpositions.

 For example: two-level atom

Γ(t) < 0

Γ(t) > 0

ag g + ae e g

σ− = |g〉〈e|
E

G

P =
N0

Ng
δt|Γ(t)| |〈ψ0|e〉|2Jump probability:



NMQJ: general algorithm

Deterministic evolution and positive channel jumps as before...

Negative channel with jumps

...and jump probability for the corresponding channel

where the source state of the jump is

ensemble



Non-Markovian quantum jumps

�(t) =
N0(t)

N
�0(t) �0(t) +

Ni(t)

N
�i (t) �i(t)

i

� +
Ni, j (t)

N
�i, j (t) �i, j (t)

i, j

� + ...

No jumps
2 random jumps 
(channels i, j)1 random jump 

(channel i)

In terms of probability flow in Hilbert space:
Positive rate

Negative rate

Negative rate: earlier occurred random events get undone. 

Memory in the ensemble: no jump realization carries memory
of the 1 jump realization; 1 jump realization carries the memory of 2 jumps 
realization...



Basic steps of the proof

The ensemble averaged state over dt is

Here, other quantities are similar as in 
original MCWF  except:

P’s: jump probabilities
D’s: jump operators

�(t + �t) =

N0(t)

N

�0(t + �t) �0(t + �t)

1+ n0

+
Ni (t)

N
(1� Pi�0)

i

�
�i(t + �t) �i (t + �t)

1+ ni

+
Ni (t)
N

Pi�0
i

�
Di�0 �i (t + �t) �i(t + �t) Di�0

†

ni�0
+ ...

0 jumps earlier, no jumps to be cancelled

1 jump earlier, 
does not cancel jump at this time 

1 jump earlier, cancels jump 

By plugging in the appropriate
quantities gives the match with 
the master equation !

Basic idea: 
Weighting jump path with jump probability and deterministic path with 
no-jump probability gives the master equation (as in MCWF) 



Example: 2-level atom in photonic band gap
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NMQJ simulation
analytical

The simulation and exact results match.
Typical features of photonic band gap:
� Population trapping
� Atom-photon bound state.

Density matrix: average over the ensemble

Example of one state vector history:

I: Quantum jump at positive decay region
destroys the superposition.

II: Due to memory, non-Markovian jump  
recreates the superposition.
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Piilo, Maniscalco, Härkönen, Suominen: PRL 100, 180402 (2008)

Single state vector history



2-level atom

Examples of realizations:



Simultaneous positive and negative rates

A

C B

3-level atom
excited state

ground state ground state

channel 1 channel 2

Two channels which can have
different sign of the decay rate

� Positive channel generates new 
random jumps
� Negative channel undoes the random 
jumps   
� Total probability flow consists of 
positive and negative components 
�Temporary plateau in the excited state 
A probability.
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A

B

C

e



0

1

 D
E

C
A

Y
R

A
T

E
  [
�

] (a) Channel 1

Channel 2

0

0.2

0.4

0.6

0.8

P
O

P
U

LA
T

IO
N

S

(b)

NMQJ: �
aa

NMQJ: �
bb

NMQJ: �
cc

analytical

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

TIME  [1/�]

C
O

H
E

R
E

N
C

E
S

(c) NMQJ: |�
ab

|

NMQJ: |�
ac

|

NMQJ: |�
bc

|

analytical

Examples of identification of positivity violation

3-level ladder atomic system: Decay rates
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Breakdown of positivity

C

�  Initial state 
� Positivity broken when the stochastic process 
hits singularity - master equation has formal 
solution beyond this point.
� Implies that some of the approximations in 
deriving the master equation breaks down.

A



Application of NMQJ: energy transfer in bacteria

� Our NMQJ description originally developed in the context of 
quantum optics and open quantum systems. 
� Recently used to simulate Fenna-Matthews-Olson complex:
energy transfer wire in green sulphur bacteria Chlorobium tebidum
Harvard group:
P. Rebentrost, R. Chakraborty,  A. Aspuru-Guzik



Formal stochastic process description

Non-Markovian piecewise 
deterministic process

H.-P. Breuer, and J. Piilo: EPL 85, 50004 (2009).



Stochastic processes and probability theory view

non-Markovian:

Formal stochastic process:

Piecewise deterministic process
Breuer, Petruccione:
PRL 1995.

Markovian:

Realizations of the process:

Monte Carlo wave function method
Dalibard, Castin, Mølmer:
PRL 1992.
(Popular method in quantum optics,
cited >600 times.)

For open quantum systems: state vector is random variable. 

Formal stochastic process:

Non-Markovian piecewise 
deterministic process
Breuer, Piilo: EPL 2009.

new stochastic process

generalization

Realizations of the process:

Non-Markovian quantum jumps
Piilo, Maniscalco, Härkönen, Suominen, 
PRL 2008.



Stochastic process description

Non-Markovian piecewise deterministic process.
Stochastic Schrödinger equation for non-Markovian open system:

d|ψ(t)〉 = −iG(t)|ψ(t)〉dt

+
∑

k

[
Ck(t)|ψ(t)〉

||Ck(t)|ψ(t)〉|| − |ψ(t)〉
]

dN+
k (t)

+
∑

l

∫
dψ′ [|ψ′〉 − |ψ(t)〉] dN−

l,ψ′(t).

Poisson increments for 
positive and negative 
channels

Deterministic evolution

Negative channel jump rate:

Possibility for singularity?

Positive channels

Negative channels



Stochastic process description

� Possible to prove:  Whenever the dynamics breaks 
positivity, the stochastic process has singularity.
� The system is trying to undo something which did not 
happen.

Stochastic process identifies the point where the description 
loses physical validity. Master equation does not do this.

Negative channel jump rate:

H.-P. Breuer, and J. Piilo: EPL 85, 50004 (2009).

Probability to be in the source state
of negative rate jump



Non-Markovianity, information flow, preliminaries...

How to understand and quantify the information flow...



End of lecture I1

Next lecture: measures of non-Markovianity


