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Solving the Schrodinger
Equation on a
Quantum Computer

HY=EWY
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Modern Quantum Chemistry

HY=EY

(A) Ab Initio Methods (Hartree-Fock, Moller-Plesset, Coupled Cluster,
Green’s Function,.. , and Configuration Interaction).

(B) Semi-empirical Methods (Extended Huckel, CNDO, INDO, AM1,..,
and PM3).

(C) Density Functional Methods (LDA, GGA, ..., Hybrid Models). RDM,...

(D) Algebraic Methods (Lie Groups, Lie Algebras,..),

(E) Renormalization Group Methods, Finite Size Scaling, DMRG,...

(F) Quantum Monte Carlo Methods (Variational, Diffusion, .., )

(F) Dimensional Scaling

Accuracy? Computational Cost?



Il. HOOKE’S LAW MODEL

For the HL atom the Hamilitonian in bohr-hartree
atomic units (Ai=m=e=1) is
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Renormalization group approach for electronic excitations in
atoms

Ganpathy Murthy *. Sabre Kais °

Hamultoman problem and converts it in the standard
way to a Grassmann path integral [18]

Z="Ti[exp— BH] = [DW, . D, .exp [dr
0

K(ET}E_S {1HE_E—H[TL.5~HE.S]] (2)
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Dimensional Scaling

1. Generalized the Hamiltonian to D-dimensions

2. Scale the distances such that

3. Take the D-> o0 limit

4. Generate the 1/D expansion

5. Substitute D=3

D.R. Herschbach, et. al. Dimensional Scaling in Chemical Physics



Exact Calculations

The calculation time for the energy
of atoms and molecules scales
exponentially with system size on a
classical computer



n

Examples

Full CI
electron orbital CSFs

4 20 13,300
30 67,425
40 213,200

8 20 5,799,465
30 172,459,665
40 1,851,013,060

NY N
For N orbitals and m electrons there are (mj ~
ways to allocate the electrons among orbitals.



Doing Full ClI calculations for
Methanol (CH,OH), using 6-31G**
(18 electrons and 50 basis functions)
requires about 10!/ Configurations

This is an impossible task on any current
computer

Dixon et. al. J.P.C A 103, 152 (1999)
1.3 Billion Configurations for Cr, Molecules



Schrodinger Equantion
and
Quantum Circuit Model

The quantum circuit model is the most widely used
model of quantum computation. It provides both a
framework for formulating quantum algorithms and an
architecture for the physical construction of
guantum computers



Quantum Circuit Model

—Decomposition of a given unitary matrix in terms of
qguantum gates( such as CNOT, X, Y, Z, Control-Z, and

Rotation gates)
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Classic Logic Gates
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Matrix representation of simple
guantum logic gates

0 1
+ It>=11>: [J * N>=]0>: (Oj
A general unitary transformation is a 2x2 matrix:
U - cos(@/2) sin(@/2)
+ + ““NOT””gate ? | =sin(0/2) cos(8/2)

U_ |1>=0>
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Simple Quantum Gates

<o ve[l 3] ze[i A wevmmegl

1 0 0 -1 J2 1 -1
NOT Gate Hadamard Gate

o)+ Bt —X]—  of1)+pl0)
|0) + Bft) ——V}— i-(a|2)-B|0)

o|0) +B|L) —Z}— 0/0)—p|1)
a|0) + ) — [T ]— a\0>j§\1>+5\0>—2\1>
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Key Challenges
HY = EY

(1) Isolate qubits in physical systems
(Photonic quantum computer to simulate Hydrogen Molecule.

Logical states |0>,]|1> corresponds to horizontal |H> and vertical |V>
polarization)

(2) Represent the Hamiltonian H

(Write H as a sum of Hermitian operotors, each to be converted into
unitary gates under the exponential map)

(3) Prepare the states, W

(Direct mapping, each qubit represents the fermionic occupation state
of a particular orbital, occupied or not. Fock space of the system is
mapped onto the Hilbert space of the qubits)

F

(4) Extract the energy, |~
(Using the phase estimation quantum algorithm)

(5) Read out qubit states
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To estimate a number @ €[0,1)  given unitary
operator U with eigenvector |) , eigenvalue e“*'*

Prepare two qubit registers: index register and target
register

Perform the controlled-{J ' on the target register

Inverse QFT on the first register, then make a
measurement.

Daniel Abrams and Seth Lloyd, PRL 83, 5162 (1999).
A. Yu. Kitaev, quant-ph/9511026



Procedures

initial state

create superposition

apply black box

apply inverse Fourier

transform

measure first register



Quantum phase estimation Algorithm

Inputs:

1. Ablack box which performs a controlled-U! operation,
for Integer |,

2. An eigenstate |u) of U with eigenvalue e?#, and

3. t= ”+[|09Q+2—15)] qubits initialized to |0)

Outputs:
An n-bit approximation ¢ to ¢.
Runtime:
O(t2) operations and one call to controlled-U! black box.
Succeeds with probability at least (1 — ¢).






Measurement: Inverse QFT
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Simulation of electronic structure Hamiltonians using quantum computers

Whitfield ; Biamonte : Aspuru-Guzik

MOLECULAR PHYSICS Volume: 109 Issue: 5 Pages: 735-750 (2011)



Algorithmic overview of the steps taken
to simulate a chemical Hamiltonian
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Simulated Quantum Computation of Molecular
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Simulation of the ground state of H, and H,O Molecules

Alan Aspuru-Guzik, Peter Love,.....

Science 309, 1704 (2005).



Quantum algorithm for obtaining the energy spectrum of
molecular systems
Hefeng Wang, Alan Aspuru-Guzik, and Sabre Kais
Phys. Chem. Chem. Phys. 10, 5388 (2008)
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Simulation of excited states of H,O Molecules



Towards quantum chemistry on a guantum computer
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A. Aspuru-Guzik & A. G. White et. al. Nature Chemistry, 10 January, 2010



Challenges

Open the Black BoX

U=e'H



Quantum Circuit Design as An Optimization Problem

Anmer Daskin and Sabre Kais

—Decomposition of a given unitary matrix in terms of
qguantum gates( such as CNOT, X, Y, Z, Control-Z, and
Rotation gates)
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Quantum circuit design is not an easy task! |

@ Deterministic Methods based on Quantum Shannon
Decomposition, Cosine-Sine Decomposition and similar

others generate O(4") gates=?.

@ Stochastic methods: Apply Genetic and Evolutionary
Algorithms to find efficient quantum circuits.

Cosine-Sine Decomposition

Cosine-Sine Decomposition factors a 2”7 x 2”7 unitary wu:
o vy O c s vy O
S 0O v —s5 c 0O vy
e vi,vo,v3,vq are (27/2) x (2”/2) unitary
e ¢ = diagonal(cos7g,cosry,---cosion 5 1)

e s — diagonal(sinzg,sinzy, - -- sinrznﬁ_lj



Group Leaders Optimization Algorithm

n
member 1 / member-1 e ) member-1
member-2 member-2 member-2
member-3 member-3 member-3

member-p member-p member-p

Anmer Daskin and Sabre Kais, Group Leaders Optimization Algorithm, Mol. Phys. 109,761(2011)



Group Leaders Optimization Algorithm

Step 1: Generate random-population for
each group.

Step 2: Calculate fitness values for the
whole population.

Step 3: Determine the leaders for each

grou
grou
grou

0 by choosing the one from each
0, which has the best solution in its

oF



o Step 4: Recombination and Mutation: Create
new member by using the current member, its
leader for its group, and some random
evaluation. For numerical problems the
expression reads:

new = rl % old + r2 # leader + r3 % random.

o Step 5: One way crossover between
different group members: Choose
random members starting from the
first group, and then transfer some
parameters from another random
member in a different group



The fidelity error

@ The fidelity error used in the optimization to measure how
similar the unitary operators U, and U are is defined as:®

e=1-F?

where
Pl (w)]

where N = 2" (nis the number of qubits).
@ F is always in the range [0, 1] and is equal to 1 when
Ua = Uf:
e Product of two unitary matrices is another unitary matrix all
eigenvalues of which have absolute value 1.

- T ' - - - .- - al_ _ SN DR Y I nrer . L - -

Anmer Daskin and Sabre Kais, Decomposition of Unitary Matrices.., J. Chem. Phys. 134, 144112 (2011)



@ The evolution of the error and the cost in the optimization:

Fidelity Error vs. Number of lterations
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o The found circuit design for the hydrogen molecule

(U=eM);

Xt) ? ? ¢ R, (3.2418)
X2)4R. (4.0563) KR (0.1664) HR. (5.7717) $ @——{ 1...(4.2083) { R:(2.7562)
[x3){R-(5.5655) | R;(1.0825) R, (5.6850)

4) ‘ Ry (5.5785) R, (5.7165) H R (5.6422) { R, (1.3661) R, (4.3102)

Figure: The circuit design for the unitary propagator of the
Hamiltonian of hydrogen molecule.

Anmer Daskin and Sabre Kais, Decomposition of Unitary Matrices..., J. Chem. Phys. 134,144112 (2011)




o The found circuit design for the complex exponential of the
water molecule (Up, o = e/7(Ema—H)t),

IX1) X HR.(2.639)H X & ?
x2) R, (6.2482) X —@—— x HR.(0.030
IX3) X ’ X

) X ¢ X

IXs) R,.(2.59)

Figure: The circuit design for the unitary propagator of the
Hamiltonian of water molecule.



Constructing appropriate unitary matrix operators for

electronic structure quantum algorithms and finding the

minimum cost gate sequences for the implementation of

these unitary operators is of fundamental importance in
the field of quantum chemistry

Evolution of quantum circuits faces two major challenges:
complex and huge search space and the
high costs of simulating quantum
circuits on classical computers

We Need to Design Efficient Programmable Quantum
Circuits for Atomic and Molecular Hamiltonians



Universal Programmable
Quantum Circuits



The General Circuit Design

 The relationship between input and output for
guantum circuits is given as:

Uy ... UWIN ¥q 31
Ulp) =1 E =

UN1 ... UNN (YN BN



e Using a large system where the block matrices on the diagonal
has a row of U as their leading row, we can get the same
input-output relationship on predetermined states:

)

Vo h._'}g -
E-'I'I:IJ' .. |E"".I'I — |

\ Vx) kBN |

.

1;__.:'

™




.I::' .l.:"'n

* The matrix V can be generated by using the following circuit
where each V; produces one row of U:

I

O—0
O—C0

ancilla?




Generation of Vand v) — [¢¥)

 We will get to the final circuit in three steps:

anciila{ a —

0)2) — |2b) Formation Combination

main{ . —




The Final Circuit
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The advantages of circuit

The angles are computed from the matrix elements
directly R(arccos(u;;)).

- Genezration of angles very efficient on classical computers
O(N<).

Fixed design

— The same design for any type of operator
— can be used to design microprocessors

Non-unitary matrices can be simulated

For sparse or structured matrices more efficient
designs can be found:

— More efficient application specific designs
— Example: Hydrogen molecule



Hydrogen Molecule

Example

e The Hamiltonian matrix is highly sparse
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Example: Hydrogen Molecule

* Apply a permutation matrix P to reduce the

bandwidth of the matrix.

— For PxU, where U=e~ "t in each row we have

maximum two non-zero elements.

— only four rows have two non-zeros
— The rest is diagonal

— The blocks V; s in V are to be 4 by 4.
— We will need two ancilla qubits.



Example: Hydrogen Molecule

e The circuit includes 32 gates:

— only 19 of them are the rotations,

— the rest are X gates for the zero elements

ancilla$

mains

o) [T

L|ﬂ}

HiH
e

I | I — R:‘_‘;:;I' e ——



Example: Hydrogen Molecule

TABLE I: Parameters for the Rotation Gates

State of|Matrix Elements | Angle Angle
Control for R. for R,
Qubits

00000 0.9788-0.20491 |-0.4127 |0
00010 0.3987+0.91711 |2.3214 |0
00100 0.3987+0.91711 |2.3214 |0
00110 -0.26074+0.95171 |3.6763 |0.3253
00111 0.1401-0.08171 |-1.0559 |2.8158
01000 0.1401-0.08171 |-1.0559 |2.8158
01001 -0.26074+0.95171 |3.6763  |0.3253
01011 0.93544-0.35351 |0.7226 |0
01101 0.3189+40.94781 |2.4925 |0
01110 0.47664-0.86041 |2.1299 |0.3629
01111 -0.1577+4+0.08741 |5.271 2.779
10000 -0.1577+0.08741 |5.271 2.779
10001 0.47664-0.86041 |2.1299 |0.3629
10011 0.313040.94981 |2.5049 |0
10101 0.3189+40.94781 |2.4925 |0
10111 0.31304-0.94981 |2.5049 |0
11001 0.9569+40.24101 |0.4934 |0
11011 0.88894-0.45821 |0.9519 |0
11101 0.88894-0.45821 |0.9519 |0
11111 1 0 0




Schrodinger Equantion
and

Variational Calculations



Quantum algorithm for solving linear systems AX =D

The problem: Given a unit vector b=(,b,...n)" andan NxN
sparse Hermitian matrix A with condition number «x, find X
up toanerror g

Best classical algorithm: Conjugate gradient method . Runtime scaling

O(NVxlogl/ €))

Quantum algorithm 2: Runtime scaling Ox’logN/¢) .

- Exponential speedup with respect to system size N

1 Jonathan R. Shewchuk. An introduction to the conjugate gradient method without the agonizing
pain. Technical report CMU-CS-94-125, School of Computer Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania, March 1994.

2 Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum Algorithm for Linear Systems of
Equations. Phys. Rev. Lett. 103(15) 150502 (2009).



Quantum algorithm outline

Input: Quantum state |b> = Zb | > and ancilla qubit initialized to ‘O . Here indices |
label the computational basis state vectors.

Output: Quantum state ‘X> which encodes the solution to the linear system that is
. . ~_1 .
normalized to 1: |X>:C in ||>
i
where C = (x?+xZ+...+x2)"? is a normalization constant.

Summary:
1. Initial state ‘b>‘0> where ‘O> represents the all-zero state of the ancilla qubits.

2. Consider the expansion > - Z'B u > in the eigenspace of e™  with the j-th
eigenpair being ‘u > and Z Applymg phase estimation on the initial state
transforms the system to apprOX|mater Z'B ‘u >‘ > .

j

3. Add an ancilla qubit and use the register that holds /11' as the control register to

apply a controlled rotation on the ancilla In\ — \//1 C?2 /,ﬂv‘jt l0>+C /,ﬂv']il> . The

d CO (atio y|Y) =

final state is Z( 1-C?2 /,ﬁ‘ >+C//1] )ﬁj‘uj>‘ j>

j
4. Uncompute step 2 such that all ‘/lj> states return to ‘O>




The final state of the system is:

“//f> ;ﬁj[ 1_3;0>+;1>J“j>0>

] ]

Measure the ancilla qubit: |

1. If measure ‘1>—)C'Z,B ‘u > ‘ >‘ >where C' is a constant.

2. If measure ‘0> —> the algorithm has failed and needs to be repeated.



Quantum circuit for general linear systems

Ane. |0) Ryi—  hy|1y + /1 - R2|0)
Reg.L |0} £ — |if1_,->—l— — 10}

!

b=3[log =1 qubits INV
RegC [0) W il k) - v b 1o}

=0 logiE/£]) qubits

Reg.B | fp)— HAM-SIM|— >_; 8;lu;} — |b)

HAM-SIM: Hamiltonian simulation U =g
INV: Subroutine for computing ﬂj—l

For the purpose of experimental implementation using currently available resources,
quantum circuits for small linear systems have been found®.

®Yudong Cao, Anmer Daskin, Steven Frankel and Sabre Kais. Quantum circuit design for solving linear
systems of equations. Mole. Phys. 110(15-16): 1675-1680. (2012)



Experimental implementation: quantum circuit

To experimentally implement the algorithm using NMR’, we choose the following

linear system:

Phase estimation R(*") rotation Measurement

r N N

0) Ry 2Qmi2YH Ry (712"
: - n ~ l P /74
0) H ’ r H
0)—H ? HFS S U’
b"} e—fA fo/4 || e—.‘-fA to/2
- / Inverse Fourier —/
3 Hamiltonian Simulation Transform ) Uncomputation

The four-qubit quantum circuit for the algorithm.

- R 1_ 7 \T
Numerical solution 2:2(3 -1)

1
Quantum solution ‘X> = E(S‘ O>_‘1>)

“Jian Pan, Yudong Cao, Xiwei Yao, Zhaokai Li, Chenyong Ju, Xinhua Peng, Sabre Kais, and Jiangfeng Du.

Unpublished.
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Experimental implementation: physical system

13C Fy F, Fs
13C  15479.7 Hz

Fi -297.7 Hz -33122.4 Hz

F, -275.7Hz 64.6 Hz -42677.7 Hz
Fs 39.1 Hz 51.5 Hz 129.0 Hz -56445.8 Hz

2 1.22's 0.66 s 0.63 s 0.61s
T 79 s 44s 6.8 s 4.8 s

“C-labelled
iodatrifluoroethylene

Properties of the molecular iodotriuoroethylene.



Experimental results

0.485 0.6/
0.4
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Z L L L
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0
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] 0

-400  -200 0 200
Frequency (Hz)

Experimental spectra of C and the
reconstructed density matrix of the final
state in the subspace where

the first and the second qubits both are
|0>.

(a), (b), (c) are the final state spectra in
experiment 1, 2, 3.

(d), (e), (f) are the real part of the
reconstructed density matrices of the
final states for experiment 1, 2, 3.
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AQC based on spin Hamiltonians

H(s)=([1-s)H; +sH,

Beginning Hamiltonian H;: Usually a Hamiltonian that
1) is easily implementable experimentally
2) has a ground state that is simple to calculate
e.g. Hamiltonian of N spins3 N
H B — Z Xi
i=1

Final Hamiltonian (or problem Hamiltonian) H,:
1) is easily implementable experimentally
2) has its ground state representing the solution to the problem
e.g. 2-local Hamiltonian of N spins*

H, = ZN:hizi +2. 342
=1 {1}

3In this presentation, the Pauli matrices are written as X, Y, and Z. In particular, X; means a tensor
product of N operators where the i-th term is X and the rest are identities.
4 k-local means the Hamiltonian contains at most k-body interaction terms.



Spin Hamiltonians and Optimization problems

Spin Hamiltonian: H, = Z hZ + Z J;Z2,Z

Since each spin Z has eigenstates m with energy +1
V) with energy -1
The ground state of H;, therefore is the spin configuration that minimizes the function

N
E(Sl,szy--HSN):Zhi + ZJU =]
i=1

jli=]
1<| J<N}

where s; = 1 if the I-th spin is up and -1 if down.

Optimization:

This is useful for solving two fundamental types of optimization problems:
1. Isingmodel E(s)=min (s'Js+wW's) , S=(S,,S,,...,Sy)" ,Jand ware
respectively a real symmetric matrix and a real vector. Each s, e{-11}.

2. Quadratic Unconstrained Binary Optimization (QUBO)
F(X)=min (X" IX+W'X), X=(X,X,,.., Xy )" x e{-11}
J and w are respectively a real symmetric matrix and a real vector.



Application on quantum simulation: Finite Element

In guantum chemistry it is common to solve Schrodinger’s equation using Finite
Element method, which essentially reduces Schrodinger’s equation to a linear system.

Any linear system AX =D can be reduced to an optimization problem:
min (x' A" Ax—2b" Ax)

Important open issues that remain to be resolved: for what type(s) of linear system
could AQC outperform classical algorithms in terms of runtime scaling?



QMA-complete spin Hamiltonians

i hz,+ > 3,Z.Z,
" 105k

The spin Hamiltonian H; is experimentally feasible and scalable (for an example
of 81-spin AQC implementation see Ref. ). However, it is unlikely that a
Hamiltonian of this form is universal for guantum computation ®.

With slight deviation from H, defined above, the following Hamiltonians are
QMA-compIete 7

H 2 —th +ZAX + > ZZ+ D KX X,

1,1} {1}

th +ZAX +Y 3 X2+ ) KZi X,

i<]j i<j

> Alejandro Perdomo-Ortiz, Neil Dickson, Marshall Drew-Brook, Geordie Rose, Alan Aspuru-Guzik,
Finding low-energy conformations of iattice protein modeis by quantum annealing, Nature Scientific
Reports, DOI: 10.1038/srep00571. (2012)

®Sergey Bravyi, David P. DiVincenzo, Roberto I. Oliveira, Barbara M. Terhal. The Complexity of
Stoquastic Local Hamiltonian Problems. Quant. Inf. Comp. 8(5):0361-0385 (2008).

7Jacob D. Biamonte, Peter J. Love. Realizable Hamiltonians for Universal Adiabatic Quantum

Computers. Phys. Rev. A 78, 012352 (2008).



Application: Electronic Structure

The electronic Hamiltonian in the second quantization form is expressed as

1
. + - +Aqt
H = Zhloqapaq n > Z"hloqrsapaq a.a,
Pq

pgrs

where the matrix elements h,, and h,, ; are the set of one- and two-electron

integrals. Each of the raising and lowering operators can be expressed in
terms of Pauli matrices. For hydrogen molecule, the Hamiltonian is
H=H®+H®

L0 (1 +2)) + (1 +2,) +hi (1 + 2) 4 h (1 4 2,)]

H(l):_
2

1
H @ :Z[hml(l +Z,+2,+2,2,)+hy,. (1 +Z,+Z2,+2,Z2,)

(1 + 2+ 2, + 2,2,) + Ny (| + 2, + 2, + Z,2,)
(s M)+ 2+ 254 2020) & (Noagy ~ Moo ) 25 425+ 2,24)
|+ 4N X XX X (AN + 2+ 2,42, -2, - 2,7, + 2,2, + 2,2, - 2,7,
'\ +2,2,+2,2,-32,2,2,-2,2,2,+32,2,Z,~2,2,Z,~2,2,Z;Z,) ! Highorderterms
ANy, X XX X (<21 +22,2, - 22,7, + 22,7, + 22,7, +2Z,Z,

| ~22,2,-22,2,2,7,)] l



Using the technique of perturbative gadgets!® one can in principle
reduce the high order terms in the Hamiltonian to 2-local.

Although certain forms of 2-local Hamiltonians are implementable
in lab, the main issue with the perturbative gadget approach is that
the magnitude of coupling strengths (the coefficients of the Pauli
termsin H ) scales unrealistically as the order of the gadget
increases?.

1Sergey Bravyi, David P. DiVincenzo, Daniel Loss, and Barbara M. Terhal. Quantum simulation of
many-body Hamiltonians using perturbation theory with bounded-strength interactions. Phys.
Rev. Lett., 101:070503 (2008)



Simulating H2 molecule using 8-local spin
Hamiltonian

The generalized k-local gadget formulation
would require much more insights to be
reduced to 2-local, possibly related to
Feynman diagram for perturbation theory

of spins. This problem has not been
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