NON-MARKOVIAN OPEN QUANTUM SYSTEMS

Jyrki Piilo

Turku Centre for Quantum Physics
Non-Markovian Processes and Complex Systems Group

Turku Centre for Quantum Physics, Finland

Atomic Hydrogen

Maniscalco

Lahti

Non-Markovian Processes and Complex Systems Group

Contents

Lecture I

I. General framework: Open quantum systems
2. Local in time master equations

Lecture II

3. Solving local in time master equations: Markovian and non-Markovian quantum jumps

Lecture III

4. Measures of non-Markovianity
5. Applications of non-Markovianity

I. General Framework: Open Quantum Systems

O Open vs closed systems

- Dynamical map
- Semigroup
- Lindblad equation
- Derivations
- Example

Literature

H.-P. Breuer and F. Petruccione:

The Theory of Open Quantum Systems
(Oxford University Press, Oxford, 2002)
C.W. Gardiner and P. Zoller:

Quantum Noise
(Springer, 2004)
U.Weiss

Quantum Dissipative Systems
(World Scientific, 1999)

Open quantum systems

Any realistic quantum system coupled to its environment
OThe open system exchanges energy and information with its environment
© We are interested in: how does the interaction influence the open system, equation of motion?

- Not interested in the evolution of large environment
© E.g., radiation field - matter interaction, cavity-QED, quantum optics, dissipation of energy,...

Closed system dynamics

Pure state,

 state vector: Schrödinger's Equation:$$
|\Psi\rangle
$$

$$
i \hbar \frac{d}{d t}|\Psi\rangle=H|\Psi\rangle
$$

Solution:

$$
|\Psi(t)\rangle=e^{-i H t / \hbar}|\Psi(0)\rangle=U(t)|\Psi(0)\rangle
$$

Mixed state,
density matrix:
Liouville - von Neumann equation:
$\rho=\sum_{i} P_{i}(t)|\Psi\rangle\langle\Psi| \quad i \hbar \frac{d \rho}{d t}=[H, \rho]$
Solution:
$\rho(t)=U(t) \rho(0) U^{\dagger}(t)$

Deterministic, reversible time evolution

Open system dynamics

Total system closed: ρ_{T}
Open system: $\quad \rho_{S}=\operatorname{Tr}_{E} \rho_{T}$
Environment: $\quad \rho_{E}=\operatorname{Tr}_{S} \rho_{T}$
No initial correlations:
$\rho_{T}(0)=\rho_{S}(0) \otimes \rho_{E}(0)$

Total system Hamiltonian
$H=H_{S} \otimes \mathbb{I}_{E}+\mathbb{I}_{S} \otimes H_{E}+H_{I}$
Evolution of the open system and dynamical map
$\rho_{S}(t)=\operatorname{Tr}_{\mathrm{E}}\left[U(t) \rho_{S}(0) \otimes \rho_{E}(0) U^{\dagger}(t)\right]=\Phi_{t} \rho_{S}(0)$
Note: partial trace: $\quad \rho_{S}=\operatorname{Tr}_{E} \rho_{T}=\sum_{i}\left(\left\langle\varphi_{i}\right| \rho_{T}\left|\varphi_{i}\right\rangle_{E}\right.$

Dynamical map

Linear dynamical map for open system

$$
\Phi_{t}: \quad \rho_{S}(0) \rightarrow \rho_{S}(t)=\Phi_{t} \rho_{S}(0)
$$

- Trace preserving
- Positive (P)
- Completely positive (CP) $\Phi \otimes I_{n}$ positive in extended space $\left(\Phi \otimes I_{n}\right) \rho_{S A} \geqslant 0$

Specific properties and master equation...

Semigroup, Lindblad generator

$$
\Phi_{t}: \quad \rho_{S}(0) \rightarrow \rho_{S}(t)=\Phi_{t} \rho_{S}(0)
$$

Semigroup property: $\quad \Phi_{t_{1}+t_{2}}=\Phi_{t_{1}} \Phi_{t_{2}}$

It follows that:
Dynamical map: $\quad \Phi_{t}=e^{\mathcal{L} t}$

- Lindblad generator \mathcal{L}

$$
\mathcal{L} \rho_{S}=-i\left[H, \rho_{S}\right]+\sum_{k} \gamma_{k}\left(A_{k} \rho_{S} A_{k}^{\dagger}-\frac{1}{2} A_{k}^{\dagger} A_{k} \rho_{S}-\frac{1}{2} \rho_{S} A_{k}^{\dagger} A_{k}\right)
$$

And the master equation...

Lindblad equation

Lindblad-Gorini-Kossakowski-Sudarshan master equation (1975)

$$
\begin{aligned}
& \frac{d}{d t} \rho_{S}(t)=-i\left[H, \rho_{S}(t)\right]+\mathcal{D}\left(\rho_{S}(t)\right) \\
& \mathcal{D}\left(\rho_{S}\right) \equiv \sum_{k}^{\downarrow} \gamma_{k}\left(A_{k} \rho_{S} A_{k}^{\dagger}-\frac{1}{2} A_{k}^{\dagger} A_{k} \rho_{S}-\frac{1}{2} \rho_{S} A_{k}^{\dagger} A_{k}\right) \\
& \text { decay rate } \\
& \text { jump operators }
\end{aligned}
$$

Lindblad or jump operators: A_{k}

- Decay rate constants: $\gamma_{k} \geqslant 0$
- Guarantees physical validity of the solution (CP)
(semigroup: master equation has to be of this form and validity guaranteed)

Microscopic derivation

Microscopic derivation

© Total system Hamiltonian (system S ; environment or bath B , total system SB)

$$
H=H_{S} \otimes \mathbb{I}_{B}+\mathbb{I}_{S} \otimes H_{B}+H_{I}
$$

- Total system evolution in interaction picture (L-vN)

$$
i \hbar \frac{d \rho_{S B}}{d t}=\left[H_{I}, \rho_{S B}\right]
$$

- Integral form

$$
\rho_{S B}(t)=\rho_{S B}(0)-\frac{i}{\hbar} \int_{0}^{t} d s\left[H_{I}(s), \rho_{S B}(s)\right]
$$

© Plug this into L-vN (weak system-environment interaction)

$$
\frac{d \rho_{S B}(t)}{d t}=-\frac{i}{\hbar}\left[H_{I}(t), \rho_{S B}(0)\right]-\frac{1}{\hbar^{2}} \int_{0}^{t} d s\left[H_{I}(t),\left[H_{I}(s), \rho_{S B}(s)\right]\right]+O\left(\frac{1}{\hbar^{3}}\right)
$$

Microscopic derivation

$$
\frac{d \rho_{S B}(t)}{d t}=-\frac{i}{\hbar}\left[H_{I}(t), \rho_{S B}(0)\right]-\frac{1}{\hbar^{2}} \int_{0}^{t} d s\left[H_{I}(t),\left[H_{I}(s), \rho_{S B}(s)\right]\right]+O\left(\frac{1}{\hbar^{3}}\right)
$$

(Factorized initial condition

$$
\varrho_{S B}(0)=\varrho_{S}(0) \otimes \varrho_{B}(0)
$$

- Trace over the bath gives

$$
\frac{d \varrho_{S}}{d t}(t)=-\int_{0}^{t} d s \operatorname{Tr}_{B}\left\{\left[H_{I}(t),\left[H_{I}(s), \varrho_{S B}(s)\right]\right]\right\}
$$

with $\operatorname{Tr}_{B}\left[H_{I}(t), \varrho_{S B}(0)\right]=0$
© Stationary, macroscopic environment

$$
\varrho_{B}(0)=\varrho_{B}
$$

© Born approximation (weak coupling)

$$
\varrho_{S B}(t) \approx \varrho_{S}(t) \otimes \varrho_{B}
$$

Microscopic derivation

© Born approximation gives...

$$
\frac{d \varrho_{S}(t)}{d t}=-\int_{0}^{t} d s \operatorname{Tr}_{B}\left\{\left[H_{I}(t),\left[H_{I}(s), \varrho_{S}(s) \otimes \varrho_{B}\right]\right]\right\}
$$

- Markov I: no dependence on previous states (short reservoir correlation/memory time τ_{B})

$$
\varrho_{S}(s) \approx \varrho_{S}(t)
$$

Redfield equation

$$
\frac{d \varrho_{S}(t)}{d t}=-\int_{0}^{t} d s \operatorname{Tr}_{B}\left\{\left[H_{I}(t),\left[H_{I}(s), \varrho_{S}(t) \otimes \varrho_{B}\right]\right]\right\}
$$

Markov II: induced SB correlations decay fast, allows to extend the time integration to infinity...

Microscopic derivation

Born-Markov equation

$$
\frac{d \varrho_{S}}{d t}(t)=-\int_{0}^{\infty} d s \operatorname{Tr}_{B}\left\{\left[H_{I}(t),\left[H_{I}(t-s), \varrho_{S}(t) \otimes \varrho_{B}\right]\right]\right\}
$$

© Born approximation (weak coupling)

$$
\varrho_{S B}(t) \approx \varrho_{S}(t) \otimes \varrho_{B}
$$

© Markov approximation: time scales
$\tau_{B} \ll \tau_{S}$
© The contribution to the integral in the Redfield equation from short time interval during which the system state does not change very much
© Exact solution of Born-Markov not necessarily easy
© Not yet in Lindblad form...

Microscopic derivation

Born-Markov equation
$\frac{d \varrho_{S}}{d t}(t)=-\int_{0}^{\infty} d s \operatorname{Tr}_{B}\left\{\left[H_{I}(t),\left[H_{I}(t-s), \varrho_{S}(t) \otimes \varrho_{B}\right]\right]\right\}$
How to go from here to Lindblad form?

- Interaction Hamiltonian
$H_{I}=\sum_{\alpha} A_{\alpha} \otimes B_{\alpha}$
-Defining the eigenoperators of the system
$A_{\alpha}(\omega)=\sum_{\epsilon^{\prime}-\epsilon=\omega} \Pi(\epsilon) A_{\alpha} \Pi\left(\epsilon^{\prime}\right)$
where $\Pi(\epsilon)$ projects to eigenspace of H_{S} with eig. value ϵ allows to write the master equation as...

Microscopic derivation

$$
\frac{d \varrho_{s}}{d t}(t)=\sum_{\omega, \omega^{\prime}} \sum_{\alpha, \beta} e^{i\left(\omega^{\prime}-\omega\right) t} \Gamma_{\alpha \beta}(\omega)\left[A_{\beta}(\omega) \varrho_{S}(t) A_{\alpha}^{\dagger}\left(\omega^{\prime}\right)-A_{\alpha}^{\dagger}\left(\omega^{\prime}\right) A_{\beta}(\omega) \varrho_{S}(t)\right]+\text { h.c. }
$$

with

$$
\begin{aligned}
& \text { with } \\
& \Gamma_{\alpha \beta}(\omega) \equiv \int_{0}^{\infty} d s e^{i \omega s}\left\langle B_{\alpha}^{\dagger}(t) B_{\beta}(t-s)\right\rangle
\end{aligned}
$$

and reservoir correlation function

$$
\left\langle B_{\alpha}^{\dagger}(t) B_{\beta}(t-s)\right\rangle \equiv \operatorname{Tr}_{B}\left\{B_{\alpha}^{\dagger}(t) B_{\beta}(t-s) \varrho_{B}\right\}
$$

- Real and imaginary parts

$$
\Gamma_{\alpha \beta}(\omega)=\frac{1}{2} \gamma_{\alpha \beta}(\omega)+i S_{\alpha \beta}(\omega)
$$

© For stationary reservoir, homogeneous in time

$$
\left\langle B_{\alpha}^{\dagger}(t) B_{\beta}(t-s)\right\rangle=\left\langle B_{\alpha}^{\dagger}(s) B_{\beta}(0)\right\rangle
$$

© Almost in the Lindblad form...
One more approximation: fastly oscillating terms average out: secular approximation...

Microscopic derivation

$$
\frac{d \varrho_{S}}{d t}(t)=-i\left[H_{L S}, \varrho_{S}(t)\right]+L \varrho_{S}(t)
$$

- Lamb shift term (energy renormalization)

$$
H_{L S}=\sum_{\omega} \sum_{\alpha, \beta} S_{\alpha \beta}(\omega) A_{\alpha}^{\dagger}(\omega) A_{\beta}(\omega)
$$

Dissipator

$$
L \varrho_{S}=\sum_{\omega} \sum_{\alpha, \beta} \gamma_{\alpha \beta}\left[A_{\beta}(\omega) \varrho_{S} A_{\alpha}^{\dagger}(\omega)-\frac{1}{2}\left\{A_{\alpha}^{\dagger}(\omega) A_{\beta}(\omega), \varrho_{S}\right\}\right]
$$

By diagonalizing the dissipator, we finally obtain Lindblad form

$$
L \varrho_{S}=\sum_{\omega} \sum_{\alpha} \gamma_{\alpha}(\omega)\left[A_{\alpha}(\omega) \varrho_{S} A_{\alpha}^{\dagger}(\omega)-\frac{1}{2}\left\{A_{\alpha}^{\dagger}(\omega) A_{\alpha}(\omega), \varrho_{S}\right\}\right]
$$

So far:
© Time-evolution of the total system
© Tracing over the environment
Born, Markov, and secular approximations

Lindblad master equation
(Markovian, semigroup)

Example: two-level atom in vacuum

$$
\frac{d \varrho}{d t}=-i[H, \varrho]+\Gamma\left[\sigma_{-} \varrho \sigma_{+}-\frac{1}{2}\left\{\sigma_{+} \sigma_{-}, \varrho\right\}\right]
$$

- System energy

$$
H=\omega_{0} \sigma_{z}
$$

© Lindblad operator
$\sigma_{-}=|g\rangle\langle e|$

- Decay rate Γ
© Exponential decay from excited state

$$
\begin{aligned}
& \rho_{e e(t)}=e^{-\Gamma t} \rho_{e e(0)} \\
& \rho_{g g(t)}=\rho_{g g}(0)+\left(1-e^{-\Gamma t}\right) \rho_{e e(0)} \\
& \rho_{e g(t)}=e^{-\Gamma t / 2} \rho_{e g(0)}
\end{aligned}
$$

II. Non-Markovian open systems: local in time master equations

(0) Projection operator techniques
© Nakazima-Zwanzig (memory kernel)
© TCL (time-convolutionless)

- Example

Open systems: Beyond semigroup

$$
\frac{d \varrho_{S}(t)}{d t}=\mathcal{L}_{S} \varrho_{S}(t)
$$

- Semigroup iff generator \mathcal{L}_{s} in Lindblad form

$$
\frac{d \varrho_{S}(t)}{d t}=\mathcal{L}_{S}(t) \varrho_{S}(t)
$$

O Time-dependent generator $\mathcal{L}_{S}(\mathrm{t})$

$$
\frac{d \varrho_{S}(t)}{d t}=\int_{o}^{t} d s \mathcal{K}_{S}(t-s) \varrho_{S}(s) \bigcirc \text { Memory kernel } \mathcal{K}_{S}(t-s)
$$

Nakazima-Zwanzig projection operator technique
© Total system Hamiltonian
$H=H_{0}+\alpha H_{I}$
Total system equation of motion (interaction picture)

$$
\frac{d \varrho}{d t}(t)=-i \alpha\left[H_{I}(t), \varrho(t)\right] \equiv \alpha \mathcal{L}(t) \varrho(t)
$$

here \mathcal{L} is the total system Liouville superoperator

Basic idea: project to relevant and irrelevant parts of the total system

$$
\begin{array}{ll}
\mathcal{P} \varrho \equiv \operatorname{Tr}_{B}[\varrho] \otimes \varrho_{B} & \text { Relevant part } \\
\mathcal{Q} \varrho=\varrho-\mathcal{P} \varrho & \text { Irrelevant part }
\end{array}
$$

Nakazima-Zwanzig projection operator technique

$$
\begin{array}{ll}
\mathcal{P} \varrho \equiv \operatorname{Tr}_{B}[\varrho] \otimes \varrho_{B} & \text { Relevant part } \\
\mathcal{Q} \varrho=\varrho-\mathcal{P} \varrho & \text { Irrelevant part }
\end{array}
$$

Here, ϱ_{B} is a fixed environmental state (stationary env.)
The projection superoperators have the properties:

$$
\begin{aligned}
& \mathcal{P}+\mathcal{Q}=\mathrm{I} \\
& \mathcal{P}^{2}=\mathcal{P} \\
& \mathcal{Q}^{2}=\mathcal{Q} \\
& {[\mathcal{P}, \mathcal{Q}]=0}
\end{aligned}
$$

Nakazima-Zwanzig projection operator technique

The task: derive equation of motion for the relevant part, that is: for $\varrho_{S}(t)=\operatorname{Tr}_{B} \varrho(t)$

$$
\begin{gathered}
\frac{d \varrho}{d t}(t)=-i \alpha\left[H_{I}(t), \varrho(t)\right] \equiv \alpha \mathcal{L}(t) \varrho(t) \\
\frac{\partial}{\partial t} \mathcal{P} \varrho=\alpha \mathcal{P} \mathcal{L} \varrho \quad \downarrow \\
\frac{\partial}{\partial t} \mathcal{Q} \varrho=\alpha \mathcal{Q} \mathcal{L} \varrho
\end{gathered}
$$

or by inserting $\mathcal{P}+\mathcal{Q}=\mathrm{I}$ between Liouvillean and density matrix

$$
\begin{aligned}
& \frac{\partial}{\partial t} \mathcal{P} \varrho=\alpha \mathcal{P} \mathcal{L P} \varrho+\alpha \mathcal{P} \mathcal{L Q} \varrho \\
& \frac{\partial}{\partial t} \mathcal{Q} \varrho=\alpha \mathcal{Q} \mathcal{L P} \varrho+\alpha \mathcal{L} \mathcal{L} \varrho
\end{aligned}
$$

Nakazima-Zwanzig projection operator technique

$$
\frac{\partial}{\partial t} \mathcal{P} \varrho=\alpha \mathcal{P} \mathcal{L P} \varrho+\alpha \mathcal{P} \mathcal{L} Q \varrho \quad \frac{\partial}{\partial t} \mathcal{Q} \varrho=\alpha \mathcal{Q} \mathcal{L} \varrho+\alpha \mathcal{L} \mathcal{L} Q
$$

- Coupled differential equations for the two parts

The formal solution for the irrelevant part
$\mathcal{Q} \varrho(t)=G\left(t, t_{0}\right) \mathcal{Q} \varrho\left(t_{0}\right)+\alpha \int_{t_{0}}^{t} d s G(t, s) \mathcal{Q} \mathcal{L}(s) \mathcal{P} \varrho(s)$
where the propagator G is
$G\left(t, t_{0}\right) \equiv T_{\leftarrow} \exp \left[\alpha \int_{t_{0}}^{t} d s \mathcal{Q} \mathcal{L}(s)\right]$
Inserting the solution to the equation of the relevant part...

Nakazima-Zwanzig projection operator technique

...and using also (makes the first r.h.s. term to vanish)

$$
\operatorname{Tr}_{B}\left[H_{I}\left(t_{1}\right) \cdots H_{I}\left(t_{2 n+1}\right) \varrho_{B}\right]=0 \Longleftrightarrow \mathcal{P} \mathcal{L}\left(t_{1}\right) \cdots \mathcal{L}\left(t_{2 n+1}\right) \mathcal{P}=0
$$

(odd moments of H_{l} vanish, valid for thermal env. state)
...finally gives the Nakazima-Zwanzig equation

$$
\frac{\partial \mathcal{P} \varrho}{\partial t}(t)=\alpha \mathcal{P} \mathcal{L}(t) G\left(t, t_{0}\right) \mathcal{Q} \varrho\left(t_{0}\right)+\alpha^{2} \int_{t_{0}}^{t} d s \mathcal{P} \mathcal{L}(t) G(t, s) \mathcal{Q} \mathcal{L}(s) \mathcal{P} \varrho(s)
$$

Note:
The Ist term on the r.h.s. contains initial correlations with the environment (vanish for initial product state)
© The 2 nd term on the r.h.s. contain memory kernel

$$
K(t, s)=\alpha^{2} \mathcal{P} \mathcal{L}(t) G(t, s) \mathcal{Q} \mathcal{L}(s) \mathcal{P}
$$

© Exact equation for the relevant part, challenging to solve...

Nakazima-Zwanzig projection operator technique

...however, to 2 nd order in the coupling constant α gives

$$
\frac{\partial \varrho_{S}}{\partial t}(t)=-\alpha^{2} \operatorname{Tr}_{B}\left\{\int_{t_{0}}^{t} d s\left[H_{I}(t),\left[H_{I}(s), \varrho_{s}(s) \otimes \varrho_{B}\right]\right]\right\}
$$

-This is the same as the previous equation after Born approximation
© Question:
Is is possible to eliminate the memory kernel in the Nakazima-Zwanzig equation
© Is it possible to have local in time non-Markovian equation ?

Open systems: Beyond semigroup

$$
\frac{d \varrho_{S}(t)}{d t}=\mathcal{L}_{S} \varrho_{S}(t)
$$

© Semigroup iff generator \mathcal{L}_{s} in Lindblad form

$$
\frac{d \varrho_{S}(t)}{d t}=\mathcal{L}_{S}(t) \varrho_{S}(t)
$$

\bigcirc Time-dependent generator $\mathcal{L}_{S}(\mathrm{t})$

$$
\frac{d \varrho_{S}(t)}{d t}=\int_{o}^{t} d s \mathcal{K}_{S}(t-s) \varrho_{S}(s) \odot \text { Memory kernel } \mathcal{K}_{S}(t-s)
$$

Time convolutionless master equation (local in time, time dependent generator)

Time-convolutionless master equations

How to construct local in time generator? (basic idea: introduce backward propagator)

- Start again from the formal solution for the irrelevant part

$$
\mathcal{Q} \varrho(t)=G\left(t, t_{0}\right) \mathcal{Q} \varrho\left(t_{0}\right)+\alpha \int_{t_{0}}^{t} d s G(t, s) \mathcal{Q} \mathcal{L}(s) \mathcal{P} \varrho(s)
$$

- Introduce backward propagator for the total system ($s<t$)

$$
\varrho(s)=\bar{G}(t, s)(\mathcal{P}+\mathcal{Q}) \varrho(t)
$$

with (antichronological ordering)

$$
\bar{G}(t, s) \equiv T_{\rightarrow} \exp \left[-\alpha \int_{s}^{t} d s^{\prime} \mathcal{L}\left(s^{\prime}\right)\right]
$$

-This gives for the irrelevant part

$$
\mathcal{Q} \varrho(t)=G\left(t, t_{0}\right) \mathcal{Q} \varrho\left(t_{0}\right)+\alpha \int_{t_{0}}^{t} d s G(t, s) \mathcal{Q}(s) \mathcal{P} \bar{G}(t, s)(\mathcal{P}+\mathcal{Q}) \varrho(t)
$$

Time-convolutionless master equations

- Defining superoperator (depends on t only)

$$
\Sigma(t) \equiv \alpha \int_{t_{0}}^{t} d s G(t, s) \mathcal{Q} \mathcal{L}(s) \mathcal{P} \bar{G}(t, s)
$$

- We can write for irrelevant part as

$$
\begin{aligned}
& \mathcal{Q} \varrho(t)=G\left(t, t_{0}\right) \mathcal{Q} \varrho\left(t_{0}\right)+\Sigma(t) \mathcal{P} \varrho(t)+\Sigma(t) \mathcal{Q} \varrho(t) \\
& {[\mathrm{I}-\Sigma(t)] \mathcal{Q} \varrho(t)=G\left(t, t_{0}\right) \mathcal{Q} \varrho\left(t_{0}\right)+\Sigma(t) \mathcal{P} \varrho(t)}
\end{aligned}
$$

- If the inverse of $\mathrm{I}-\Sigma(t)$ exists (small enough coupling)

$$
\mathcal{Q} \varrho(t)=[\mathrm{I}-\Sigma(t)]^{-1} G\left(t, t_{0}\right) \mathcal{Q} \varrho\left(t_{0}\right)+[\mathrm{I}-\Sigma(t)]^{-1} \Sigma(t) \mathcal{P} \varrho(t)
$$

Time evolution of Q depends on initial state and relevant part, also no dependence on previous point s.

Plugging this in for the equation for the relevant part...

Time-convolutionless master equations

$$
\frac{\partial \mathcal{P} \varrho(t)}{\partial t}=\mathcal{K}(t) \mathcal{P} \varrho(t)+\mathcal{I}(t) \mathcal{Q} \varrho\left(t_{0}\right)
$$

with time local generator and inhomogeneity

$$
\begin{aligned}
& \mathcal{K}(t)=\alpha \mathcal{P} \mathcal{L}(t)[\mathrm{I}-\Sigma(t)]^{-1} \Sigma(t) \mathcal{P} \\
& \mathcal{I}(t)=\alpha \mathcal{P} \mathcal{L}(t)[\mathrm{I}-\Sigma(t)]^{-1} G\left(t, t_{0}\right) \mathcal{Q}
\end{aligned}
$$

- Exact local in time equation
- Generally complicated
- Geometric series and series expansion in coupling constant

$$
\begin{aligned}
& {[\mathrm{I}-\Sigma(t)]^{-1}=\sum_{n=0}^{+\infty}[\Sigma(t)]^{n}} \\
& \mathcal{K}(t)=\alpha \sum_{n=1}^{+\infty} \mathcal{P} \mathcal{L}(t)[\Sigma(t)]^{n} \mathcal{P}=\sum_{n=1}^{+\infty} \alpha^{n} K_{n}(t)
\end{aligned}
$$

Time-convolutionless master equations

$$
\begin{gathered}
\frac{\partial \mathcal{P} \varrho(t)}{\partial t}=\mathcal{K}(t) \mathcal{P} \varrho(t)+\mathcal{I}(t) \mathcal{Q} \varrho\left(t_{0}\right) \\
\mathcal{K}(t)=\alpha \sum_{n=1}^{+\infty} \mathcal{P} \mathcal{L}(t)[\Sigma(t)]^{n} \mathcal{P}=\sum_{n=1}^{+\infty} \alpha^{n} K_{n}(t)
\end{gathered}
$$

Expanding also
$\Sigma(t)=\sum_{k=1}^{+\infty} \alpha^{k} \Sigma_{k}(t)$
gives, e.g.,
$K_{1}(t)=\mathcal{P} \mathcal{L}(t) \mathcal{P}=0 \quad$ Ist order
$K_{2}(t)=\int_{0}^{t} d t_{1} \mathcal{P} \mathcal{L}(t) \mathcal{L}\left(t_{1}\right) \mathcal{P} \quad$ 2nd order TCL

Time-convolutionless master equations

The second order TCL leads to the following equation

$$
\frac{d \rho_{S}(t)}{d t}=-\alpha^{2} \int_{0}^{t} d s \operatorname{Tr}_{B}\left\{\left[H_{I}(t),\left[H_{I}(s), \rho_{S}(t) \otimes \rho_{B}\right]\right]\right\}
$$

Comparing to 2nd order Nakazima-Zwanzig (previously)

$$
\frac{d \rho_{S}(t)}{d t}=-\alpha^{2} \int_{0}^{t} d s \operatorname{Tr}_{B}\left\{\left[H_{I}(t),\left[H_{I}(s), \rho_{S}(s) \otimes \rho_{B}\right]\right]\right\}
$$

Also similarity to Redfield equation...

Example: two-level atom in vacuum TCL2

$$
\frac{d \varrho}{d t}=-i[H, \varrho]+\Gamma\left[\sigma_{-} \varrho \sigma_{+}-\frac{1}{2}\left\{\sigma_{+} \sigma_{-}, \varrho\right\}\right]
$$

Decay rates

Markov $\rightarrow \Gamma=\frac{1}{\pi} \int_{0}^{+\infty} d s \int d \omega J(\omega) \cos \left[\left(\omega-\omega_{0}\right) s\right]=$ constant
$\mathrm{TCL} \rightarrow \Gamma(t)=\frac{1}{\pi} \int_{0}^{t} d s \int d \omega J(\omega) \cos \left[\left(\omega-\omega_{0}\right) s\right]$
Here, J is the spectral density of the Bosonic environment
And the open system dynamics is

$$
\begin{aligned}
& \text { Markov } \rightarrow \varrho_{e e}(t)=e^{-\Gamma t} \varrho_{e e}(0) \\
& \mathrm{TCL} \rightarrow \varrho_{e e}(t)=e^{-\int_{0}^{t} d s \Gamma(s)} \varrho_{e e}(0)
\end{aligned}
$$

Example: two-level atom in vacuum TCL2

$$
\frac{d \varrho}{d t}=-i[H, \varrho]+\Gamma\left[\sigma_{-} \varrho \sigma_{+}-\frac{1}{2}\left\{\sigma_{+} \sigma_{-}, \varrho\right\}\right]
$$

Decay rates

Markov $\rightarrow \Gamma=\frac{1}{\pi} \int_{0}^{+\infty} d s \int d \omega J(\omega) \cos \left[\left(\omega-\omega_{0}\right) s\right]=$ constant
$\mathrm{TCL} \rightarrow \Gamma(t)=\frac{1}{\pi} \int_{0}^{t} d s \int d \omega J(\omega) \cos \left[\left(\omega-\omega_{0}\right) s\right]$
Here, J is the spectral density of the Bosonic environment
And the open system dynamics is

$$
\begin{aligned}
& \text { Markov } \rightarrow \varrho_{e e}(t)=e^{-\Gamma t} \varrho_{e e}(0) \\
& \mathrm{TCL} \rightarrow \varrho_{e e}(t)=e^{-\int_{0}^{t} d s \Gamma(s)} \varrho_{e e}(0)
\end{aligned}
$$

Example: two-level atom in vacuum TCL2

© Compare to Markovian, semigroup evolution: exponential decay

End of lecture I

I. General framework: Open quantum systems
2. Local in time master equations

Next lecture:

Solving local in time equations by Markovian and non-Markovian quantum jumps

