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|. General Framework:
Open Quantum Systems

Open vs closed systems
Dynamical map
Semigroup

Lindblad equation
Derivations

Example
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Open quantum systems

Reservoir
b SV ff'f

T Y System

i

[ Any realistic quantum system coupled to its environmentj

The open system exchanges energy and information
with its environment

We are interested in: how does the interaction influence
the open system, equation of motion!?

Not interested in the evolution of large environment

E.g., radiation field - matter interaction, cavity-QED,
quantum optics, dissipation of energy,...



Closed system dynamics

Pure state,

state vector: Schrodinger’s Equation:
d
h— V) = H|W
) ih— W) = H|W)
Solution:

W(t)) = e PR (0)) = U(1)|%(0))

Mixed state,

density matrix: Liouville - von Neumann equation:
L dp

p=d PO ihg = (H.p

Solution: . .

p(t) = Ut)p(0)UT (1) Deterministic, reversible

time evolution
\_ Y,




Open system dynamics

Total system closed: OT

Open system: pg = Trgpr
Environment: pr = Irspr

No initial correlations:

pr(0) = ps(0) ® pp(0)

Total system Hamiltonian
H=HsgQlg+1s®Q® Hg + H;

Evolution of the open system and dynamical map
ps(t) = Trg [U(t)ps(0) ® pp(0)U' ()] = ips(0)

Note: partial trace: ps = Trepr = > 6{@ilprle) s




Dynamical map

Linear dynamical map for open system

®,: ps(0) — ps(t) = Pps(0)

Trace preserving

Positive (P)

Completely positive (CP)

d ® [, positive in extended space

((I) & In)pSA > 0 @

Specific properties and master equation...



Semigroup, Lindblad generator
D, ps(0) — ps(t) = P¢ps(0)

Semigroup property: &, ., = &, D,

> 11

> 1o

> 11+ 1o

It follows that:
Dynamical map: b, = -t

Lindblad generator L

. 1
Lps = —ilH,ps]+ > (AkPSA}; - §A£Akps -
k

And the master equation...

1
2ps

A};Ak>



Lindblad equation

Lindblad-Gorini-Kossakowski-Sudarshan master equation (1975)

unitary part dissipator (non-unitary part)
d o
—ps(t) = —iH, ps(t)] + D(ps(t))

1 1
D(ps) = Z'Yk (AkPSA}; — EA;E;A.%PS — ipSALAk)

decay rate jump operators

Lindblad or jump operators: Ay

Decay rate constants: Vi = 0

Guarantees physical validity of the solution (CP)

(semigroup: master equation has to be of this form and validity guaranteed)



Microscopic derivation



Microscopic derivation

Total system Hamiltonian (system S; environment or bath B, total system SB)
H=HsQlg+1l¢sR® Hg + Hj

Total system evolution in interaction picture (L-vN)

dpsB

1
LT

= |Hy, psB]

Integral form .
(

psi(t) = psp(0) — 1 | dslHi(s). psi(s)

Plug this into L-vN (weak system-environment
interaction)




Microscopic derivation

DB L1t 0)psn(0)] = 5 [ s 0 [Ha9) psi()] + O ( 55 )

Factorized initial condition
0sB(0) = 05(0) ® 05(0)

Trace over the bath gives

ddits(t) — —/O dsTrp{|H(t), |H1(s),058(s)]]}

with Trp[H[ (1), 055(0)] =0
Stationary, macroscopic environment

oB(0) = 0B

Born approximation (weak coupling)
0sB(l) ~ 0s5(t) ® 0B



Microscopic derivation

Born approximation gives...

d@st(t) _ _/0 dsTrp{|H1(t), [H1(s), 05(5) ® op]|}

Markov I:no dependence on previous states
(short reservoir correlation/memory time 73 )

0s(s) ~ 0s(t)

e

Redfield equation

dos(t)
dt

——/O dsTrp{|H;(t),|H;(s),05(t) ® oB]]}

Markov ll:induced SB correlations decay fast,
allows to extend the time integration to infinity...



Microscopic derivation

Born-Markov equation

~\

(1) = - / " dsTrp{[Hy (), [Hi(t — 5), 05(t) © 05]]}

J

Born approximation (weak coupling)
0sB(l) = 0s5(t) ® 0B

Markov approximation: time scales
™TB K TS

The contribution to the integral in the Redfield equation
from short time interval during which the system state
does not change very much

Exact solution of Born-Markov not necessarily easy
Not yet in Lindblad form...



Microscopic derivation

Born-Markov equatlon

dgts (t) = _/O dsTrp{[H(t),[H(t — s), 05(t) ® 0B]]}

How to go from here to Lindblad form?

Interaction Hamiltonian
R
(0%

Defining the eigenoperators of the system
N TI(e) ALII(€)

where II(¢) projects to eigenspace of Hg with eig. value €

allows to write the master equation as...



Microscopic derivation

[ ddgj (1) =D > @I s(w)[Ag(w)os () Al (W) — Al (W) As(w)es(t)] + h.c. ]

w,w’ a,B

with 0
Capl@) = [ dse™ (BL(0)Bat = )
and reservoir correlation function
(BL(t)Bg(t — 5)) = Trp{BL(t)Bs(t — 5)on}
Real and imaginary parts
Lap(w) = 37a8(w) + iSas()
For stationary reservoir, homogeneous in time
(BL(t)Bs(t — 5)) = (BL(s)Bs(0))
Almost in the Lindblad form...

One more approximation: fastly oscillating terms
average out: secular approximation...



Microscopic derivation

"5 (1) = ~ilHys, 05(1)] + Los()

Lamb shift term (energy renormalization)

Hps =Y ¥ Sap(w)Al(w)Ag(w)

w «,B
Dissipator
1
Los =303 vas [Aﬁ Jos Al () = 5 {AL (@) Aa(0). 05|
w o,

By diagonalizing the dissipator, we finally obtain Lindblad form

Los =3 Y (s )| Aa(@)esAl@) - (4L Aa().05)]



So far:
Time-evolution of the total system
Tracing over the environment
Born, Markoy, and secular approximations

l

Lindblad master equation
(Markovian, semigroup)



Example: two-level atom in vacuum

% = —i|H, 0|+ T |0_po4 — %{U#f—a Q}}
System energy
H = w0 —e)
Lindblad operator l ]g}a—

o = |g){e]
Decay rate 1

Exponential decay from excited state
Pee(t) = 6_”066(0)
Pag(t) = Pag(0) + (1 — €™ ")pec(o)
Peg(ty =€ 2 peg(0)



ll. Non-Markovian open systems:
local in time master equations

Projection operator techniques
Nakazima-Zwanzig (memory kernel)
TCL (time-convolutionless)

Example



Open systems: Beyond semigroup

dogs(t
Qgt( ) = Lsos(t) Semigroup iff
generator Ls in Lindblad form
dos(t)

o= Ls(t)os(t) Time-dependent generator L (t)

t
/ dsKs(t — s)os(s) ® Memory kernel KCg(t — s)



Nakazima-Zwanzig projection operator technique

Total system Hamiltonian

H = Hy+ aHj
Total system equation of motion (interaction picture)
do

2 () = —ialH(t), o(t)] = aL(t)o(t)

here L is the total system Liouville superoperator

p
Basic idea: project to relevant and irrelevant parts of
the total system

~

Po=Trplo] ® 0B Relevant part

Qo=o0—"Po Irrelevant part



Nakazima-Zwanzig projection operator technique

Po=Trglo ® 0B Relevant part
Qo =p0—"Po Irrelevant part

Here, 0B is a fixed environmental state (stationary env.)

The projection superoperators have the properties:

P+Q=1



Nakazima-Zwanzig projection operator technique

The task: derive equation of motion for the relevant part,
that is: for os(t) = Trpo(t)

do

2 (1) = —ialHi(t), o(t)] = aL()o(t

| l

o
@7’@ = a’PLp EQQ = aQLp

or by inserting P + Q = I between Liouvillean and density matrix

0
&PQ = aPLPo+ aPLIp

9,
EQQ = aQLPo+ aQLp



Nakazima-Zwanzig projection operator technique

0 0
aPQ = aPLPo+ aPLQp EQQ = aQLPo+ aQLp

Coupled differential equations for the two parts

The formal solution for the irrelevant part

Oo(t) = G(t.ty)Qolty) + o / dsG(t. ) OL(s)Po(s)

to
where the propagator G is

G(t, to) = T exp {a /t | dsQE(s)}

Inserting the solution to the equation of the relevant part...



Nakazima-Zwanzig projection operator technique

...and using also (makes the first r.h.s. term to vanish)

Trp[Hr(t1) - Hi(tans1)op] =0 <= PL(t1) - L(tans1)P =0

(odd moments of Hi vanish, valid for thermal env. state)

..finally gives the Nakazima-Zwanzig equation

[ %(t):apﬁ(t)G(t,to)QQ<t0)+&2 /tt dsPL(t)G(t,s)QL(s)Po(s) ]

Note:

The Ist term on the r.h.s. contains initial correlations with
the environment (vanish for initial product state)

The 2nd term on the r.h.s. contain memory kernel

K(t,s) = o*PL()G(t,s)QL(s)P

Exact equation for the relevant part, challenging to solve...



Nakazima-Zwanzig projection operator technique

...however, to 2nd order in the coupling constant « gives

a t

%5 1) = —a*Ten { [ dsli10). 111 (5),2.05) © 051
to

This is the same as the previous equation
after Born approximation

Question:

Is is possible to eliminate the memory kernel
in the Nakazima-Zwanzig equation

s it possible to have local in time
non-Markovian equation !




Open systems: Beyond semigroup

dogs(t
Qst( ) = Lgos(t) Semigroup iff
generator L in Lindblad form
dos(t)

o= Ls(t)os(t) Time-dependent generator L (t)

t
= / dsKs(t — s)os(s) ® Memory kernel Kg(t — s)



Time convolutionless master equation
(local in time, time dependent generator)



Time-convolutionless master equations
How to construct local in time generator?
(basic idea: introduce backward propagator)

Start again from the formal solution for the irrelevant part

Qol(t) = G(t.to) Qolty) + a / dsG(t, ) QL(s)Pols)

to

Introduce backward propagator for the total system (s<t)
o(s) = G(t,s)(P + Q)olt)

with (antichronological ordering)
t
G(t,s) = T_ exp {—oz/ ds’ﬁ(s’)}

This gives for the irrelevant part

Qo(t) = G(t,t0)Qo(to) + o /t dsG(t, 5)QL(s)PG(E 5)(P + Q)el(t)

%(t)




Time-convolutionless master equations

Defining superoperator (depends on t only)
t

Y(t) = a/ dsG(t,s)QL(s)PG(t, s)

We can writ(; for irrelevant part as

Qo(t) = G(t,to)Qo(to) + X(¢)Po(t) + X(t) Qo(t)

I —X(8)]Qo(t) = G(t,t0)Qo(to) + (t)Po(?)

If the inverse of I — 3I(¢) exists (small enough coupling)
Qo(t) = [I - X(t)] ' G(t,t0) Qolto) + [L = ()] " E(t)Po(t)

Time evolution of Q depends on initial state and relevant
part, also no dependence on previous point s.

Plugging this in for the equation for the relevant part...



Time-convolutionless master equations

OPo(t)
ot
with time local generator and inhomogeneity

K(t)=aPLH)[I-3S)] ' 2@)P
I(t) = aPLH) I - S(1t)] "G(t, t)Q
Exact local in time equation

Generally complicated
Geometric series and series expansion in coupling constant

= K(t)Po(t) + Z(t)Qo(to)

+00
-2 =) [E)"
+oo n=0 +00

K(t)=a) PLAEESH]"P =) a"K(t)

n=1 n=1



Time-convolutionless master equations

OPo(t)
Ot

+-00 +00
K(t)=a) PLEESH]"P =) o"K(t)

= K(t)Po(t) + Z(t)Qo(to)

Expanding also
+0o0

S(t) =Y aFS(t)
k=1

gives, e.g.,
Ki(t) =PL({HE)P =0 |st order
t
Ks(t) = / dtyPL(t)L(t1)P 2nd order TCL
: 0



Time-convolutionless master equations

The second order TCL leads to the following equation

dps(t)
dt

- _a2/0 dsTrp {[H(t), [H1(s), ps(t) ® psl]}

Comparing to 2nd order Nakazima-Zwanzig (previously)

dps(t)
dt

- _oﬂ/o dsTrp {[H(t), [Hi(s), ps(s) ® pBl]}

Also similarity to Redfield equation...



Example: two-level atom in vacuum TCL2

do _

1
- —~—ﬂfﬂéﬂ+¥F[0—@0+-§{0+0—7@}

Decay rates

1 [Fee
Markov — I' = — / ds / dwJ(w) cos|(w — wp)s| = constant
T Jo

1 rt
TCL—»P@):——/Rdi/deQOQEMU—amﬁ]

T Jo
Here, ] is the spectral density of the Bosonic environment

And the open system dynamics is
Markov — 0ee(t) = e 1000 (0)

TCL — gee(t) = e Jo 1) g, (0)



Example: two-level atom in vacuum TCL2

do _

1
- —~—ﬂfﬂéﬂ+¥F[0—@0+-§{0+0—7@}

Decay rates

1 [Fee
Markov — I' = — / ds / dwJ(w) cos|(w — wp)s| = constant
T Jo

1 rt
TCL—»P@):——/Rdi/deQOQEMU—amﬁ]

T Jo
Here, ] is the spectral density of the Bosonic environment

And the open system dynamics is
Markov — 0ee(t) = e 1000 (0)

TCL — gee(t) = e Jo 1) g, (0)



DECAY

RATE [I]

POPULATIONS

COHERENCES

0.8

Decay rate oscillates
having periods of negativity

Excited state population

s NMQJ:p_ oscillates
0.6 NMQJ:p, - |,
analytical

0.4
0.0 excited

O - - - - - - - - -

\ © NMQ: e Decoherence -
0.4 analytical
re-coherence cycles

0.3}
0.2}
0.1}

0

1 2 3 4 5 6 7 8 9
TIME [1/T]

10

Compare to Markovian, semigroup evolution:

exponential decay



End of lecture |

|. General framework: Open quantum systems

2. Local in time master equations

Next lecture:
Solving local in time equations by Markovian
and non-Markovian quantum jumps



