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1. General Framework:
   Open Quantum Systems 

� Open vs closed systems
� Dynamical map
� Semigroup
� Lindblad equation
� Derivations
� Example
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Open quantum systems

�The open system exchanges energy and information
    with its environment  

� E.g., radiation field - matter interaction, cavity-QED,
    quantum optics, dissipation of energy,... 

Any realistic quantum system coupled to its environment

� We are interested in: how does the interaction influence
    the  open system, equation of motion?

� Not interested in the evolution of large environment 



Closed system dynamics

Pure state,

|Ψ〉
Schrödinger’s Equation:

i�
d

dt
|Ψ〉 = H|Ψ〉

|Ψ(t)〉 = e−iHt/�|Ψ(0)〉 = U(t)|Ψ(0)〉
Solution:

Mixed state,
density matrix:

ρ =
∑

i

Pi(t)|Ψ〉〈Ψ|
Liouville - von Neumann equation:

i�
dρ

dt
= [H, ρ]

Solution:
ρ(t) = U(t)ρ(0)U†(t) Deterministic, reversible 

time evolution

state vector:



Open system dynamics

Total system closed: ρT

ρT (0) = ρS(0) ⊗ ρE(0)
No initial correlations:

Total system Hamiltonian

Open system:

Environment:

ρS = TrEρT

ρE = TrSρT

Evolution of the open system and dynamical map

ρS(t) = TrE
[
U(t)ρS(0) ⊗ ρE(0)U†(t)

]
= ΦtρS(0)

S

E
T

Note: partial trace:

H = HS ⊗ IE + IS ⊗ HE + HI

ρS = TrEρT =
∑

i

E〈ϕi|ρT |ϕi〉E



Dynamical map

Linear dynamical map for open system 

Φt : ρS(0) → ρS(t) = ΦtρS(0)

S

E

A

� Trace preserving
� Positive (P)
� Completely positive (CP)

Φ ⊗ In positive in extended space

(Φ ⊗ In)ρSA � 0

Specific properties and master equation...



Semigroup, Lindblad generator

�Semigroup property: Φt1+t2 = Φt1Φt2

�Dynamical map: Φt = eLt

Φt : ρS(0) → ρS(t) = ΦtρS(0)

t1
t2

t1 + t2

It follows that:

� Lindblad generator

LρS = −i[H, ρS ] +
∑

k

γk

(
AkρSA†

k − 1
2
A†

kAkρS − 1
2
ρSA†

kAk

)
L

And the master equation...



Lindblad equation

Lindblad-Gorini-Kossakowski-Sudarshan master equation (1975)

unitary part dissipator (non-unitary part)

decay rate jump operators

(semigroup: master equation has to be of this form and validity guaranteed)

γk � 0� Decay rate constants:

� Guarantees physical validity of the solution (CP)

�Lindblad or jump operators: Ak



Microscopic derivation



Microscopic derivation

� Total system Hamiltonian (system S; environment or bath B, total system SB)

� Total system evolution in interaction picture (L-vN)

� Integral form

� Plug this into L-vN (weak system-environment 
interaction)

H = HS ⊗ IB + IS ⊗ HB + HI

i�
dρSB

dt
= [HI , ρSB ]

ρSB(t) = ρSB(0) − i

�

∫ t

0

ds[HI(s), ρSB(s)]

dρSB(t)
dt

= − i

�
[HI(t), ρSB(0)] − 1

�2

∫ t

0

ds[HI(t), [HI(s), ρSB(s)]] + O

(
1
�3

)



Microscopic derivation

� Trace over the bath gives

 with

d�S
dt

(t) = −
∫ t

0

dsTrB{[HI(t), [HI(s), �SB(s)]]}

TrB [HI(t), �SB(0)] = 0

� Born approximation (weak coupling)
�SB(t) ≈ �S(t)⊗ �B

� Factorized initial condition

� Stationary, macroscopic environment

�SB(0) = �S(0)⊗ �B(0)

�B(0) = �B

dρSB(t)
dt

= − i

�
[HI(t), ρSB(0)] − 1

�2

∫ t

0

ds[HI(t), [HI(s), ρSB(s)]] + O

(
1
�3

)



Microscopic derivation

d�S(t)

dt
= −

∫ t

0

dsTrB{[HI(t), [HI(s), �S(s)⊗ �B ]]}

� Born approximation gives...

�S(s) ≈ �S(t)

d�S(t)

dt
= −

∫ t

0

dsTrB{[HI(t), [HI(s), �S(t)⊗ �B ]]}

Redfield equation

� Markov 1: no dependence on previous states 
    (short reservoir correlation/memory time       )τB

�Markov II: induced SB correlations decay fast, 
   allows to extend the time integration to infinity...
    



Microscopic derivation

d�S
dt

(t) = −
∫ ∞

0

dsTrB{[HI(t), [HI(t− s), �S(t)⊗ �B ]]}
Born-Markov equation

� Exact solution of Born-Markov not necessarily easy
� Not yet in Lindblad form...

� Born approximation (weak coupling)
�SB(t) ≈ �S(t)⊗ �B

� Markov approximation: time scales    
τB � τS

� The contribution to the integral in the Redfield equation
     from short time interval during which the system state
     does not change very much 



Microscopic derivation

d�S
dt

(t) = −
∫ ∞

0

dsTrB{[HI(t), [HI(t− s), �S(t)⊗ �B ]]}
Born-Markov equation

HI =
∑
α

Aα ⊗ Bα

�Interaction Hamiltonian

�Defining the eigenoperators of the system

Aα(ω) =
∑

ε′−ε=ω

Π(ε)AαΠ(ε′)

where         projects to eigenspace of        with eig. value      Π(ε) HS ε

allows to write the master equation as...

How to go from here to Lindblad form?



Microscopic derivation

d�s
dt

(t) =
∑
ω,ω′

∑
α,β

ei(ω
′−ω)tΓαβ(ω)[Aβ(ω)�S(t)A

†
α(ω

′)−A†
α(ω

′)Aβ(ω)�S(t)] + h.c.

with
Γαβ(ω) ≡

∫ ∞

0

dseiωs〈B†
α(t)Bβ(t− s)〉

〈B†
α(t)Bβ(t− s)〉 ≡ TrB{B†

α(t)Bβ(t− s)�B}
and reservoir correlation function

� For stationary reservoir, homogeneous in time
〈B†

α(t)Bβ(t− s)〉 = 〈B†
α(s)Bβ(0)〉

�Almost in the Lindblad form...

�One more approximation: fastly oscillating terms 
   average out: secular approximation...

�Real and imaginary parts

Γαβ(ω) =
1

2
γαβ(ω) + iSαβ(ω)



Microscopic derivation

�By diagonalizing the dissipator, we finally obtain Lindblad form

d�S

dt
(t) = −i[HLS , �S(t)] + L�S(t)

HLS =
∑
ω

∑
α,β

Sαβ(ω)A†
α(ω)Aβ(ω)

L�S =
∑
ω

∑
α,β

γαβ

[
Aβ(ω)�SA†

α(ω) − 1
2
{A†

α(ω)Aβ(ω), �S}
]

� Lamb shift term (energy renormalization)

� Dissipator

L�S =
∑
ω

∑
α

γα(ω)
[
Aα(ω)�SA†

α(ω) − 1
2
{A†

α(ω)Aα(ω), �S}
]



So far: 
�Time-evolution of the total system
�Tracing over the environment
�Born, Markov, and secular approximations

Lindblad master equation
(Markovian, semigroup)



Example: two-level atom in vacuum

d�

dt
= −i[H, �] + Γ

[
σ−�σ+ − 1

2
{σ+σ−, �}

]

H = ω0σz

� System energy

� Lindblad operator
σ− = |g〉〈e|

� Exponential decay from excited state

�Decay rate Γ

ρee(t) = e−Γtρee(0)

ρgg(t) = ρgg(0) + (1 − e−Γt)ρee(0)

ρeg(t) = e−Γt/2ρeg(0)

|g〉

|e〉
σ− = |g〉〈e|



II. Non-Markovian open systems: 
   local in time master equations  

� Projection operator techniques
� Nakazima-Zwanzig (memory kernel)
� TCL (time-convolutionless)
� Example



Open systems: Beyond semigroup

� Memory kernel KS(t − s)
d�S(t)

dt
=

∫ t

o

dsKS(t − s)�S(s)

� Time-dependent generator      (t)LS

d�S(t)
dt

= LS(t)�S(t)

� Semigroup iff
    generator    s  in Lindblad formL

d�S(t)
dt

= LS�S(t)



Nakazima-Zwanzig projection operator technique

H = H0 + αHI

d�

dt
(t) = −iα[HI(t), �(t)] ≡ αL(t)�(t)

�Total system Hamiltonian

�Total system equation of motion (interaction picture)

here     is the total system Liouville superoperator L

Basic idea: project to relevant and irrelevant parts of
the total system

P� ≡ TrB [�] ⊗ �B

Q� = � − P�

Relevant part

Irrelevant part



Nakazima-Zwanzig projection operator technique

P� ≡ TrB [�] ⊗ �B

Q� = � − P�

Relevant part

Irrelevant part

The projection superoperators have the properties:

P + Q = I
P2 = P
Q2 = Q
[P,Q] = 0

Here,       is a fixed environmental state (stationary env.) �B



Nakazima-Zwanzig projection operator technique

The task: derive equation of motion for the relevant part,
that is: for �S(t) = TrB�(t)

d�

dt
(t) = −iα[HI(t), �(t)] ≡ αL(t)�(t)

∂

∂t
P� = αPL�

∂

∂t
Q� = αQL�

or by inserting                between Liouvillean and density matrix P + Q = I
∂

∂t
P� = αPLP� + αPLQ�

∂

∂t
Q� = αQLP� + αQLQ�



Nakazima-Zwanzig projection operator technique

∂

∂t
P� = αPLP� + αPLQ�

∂

∂t
Q� = αQLP� + αQLQ�

� Coupled differential equations for the two parts

�The formal solution for the irrelevant part

Q�(t) = G(t, t0)Q�(t0) + α

∫ t

t0

dsG(t, s)QL(s)P�(s)

where the propagator G is

G(t, t0) ≡ T← exp
[
α

∫ t

t0

dsQL(s)
]

Inserting the solution to the equation of the relevant part...



Nakazima-Zwanzig projection operator technique

∂P�

∂t
(t) = αPL(t)G(t, t0)Q�(t0) + α2

∫ t

t0

dsPL(t)G(t, s)QL(s)P�(s)

 ...and using also (makes the first r.h.s. term to vanish) 

TrB [HI(t1) · · ·HI(t2n+1)�B ] = 0 ⇐⇒ PL(t1) · · · L(t2n+1)P = 0

(odd moments of HI vanish, valid for thermal env. state)

...finally gives the Nakazima-Zwanzig equation

Note:
�The 1st term on the r.h.s. contains initial correlations with    
the environment (vanish for initial product state)
�The 2nd term on the r.h.s. contain memory kernel

K(t, s) = α2PL(t)G(t, s)QL(s)P
� Exact equation for the relevant part, challenging to solve...



Nakazima-Zwanzig projection operator technique

...however, to 2nd order in the coupling constant     givesα

∂�S

∂t
(t) = −α2TrB

{∫ t

t0

ds[HI(t), [HI(s), �s(s) ⊗ �B ]]
}

�This is the same as the previous equation
    after Born approximation

� Question: 
    Is is possible to eliminate the memory kernel
    in the Nakazima-Zwanzig equation
� Is it possible to have local in time
    non-Markovian equation ? 



Open systems: Beyond semigroup

� Semigroup iff
    generator    s  in Lindblad formL

� Memory kernel KS(t − s)
d�S(t)

dt
=

∫ t

o

dsKS(t − s)�S(s)

� Time-dependent generator      (t)LS

d�S(t)
dt

= LS(t)�S(t)

d�S(t)
dt

= LS�S(t)



Time convolutionless master equation
(local in time, time dependent generator)



Time-convolutionless master equations

How to construct local in time generator?
(basic idea: introduce backward propagator)

� Start again from the formal solution for the irrelevant part

Q�(t) = G(t, t0)Q�(t0) + α

∫ t

t0

dsG(t, s)QL(s)P�(s)

� Introduce backward propagator for the total system (s<t)
�(s) = Ḡ(t, s)(P + Q)�(t)
with (antichronological ordering)

Ḡ(t, s) ≡ T→ exp
[
−α

∫ t

s

ds′L(s′)
]

�This gives for the irrelevant part

Q�(t) = G(t, t0)Q�(t0) + α

∫ t

t0

dsG(t, s)QL(s)PḠ(t, s)(P + Q)�(t)

Σ(t)



Time-convolutionless master equations

� Defining superoperator (depends on t only) 

Σ(t) ≡ α

∫ t

t0

dsG(t, s)QL(s)PḠ(t, s)

� We can write for irrelevant part as 
Q�(t) = G(t, t0)Q�(t0) + Σ(t)P�(t) + Σ(t)Q�(t)

[I − Σ(t)]Q�(t) = G(t, t0)Q�(t0) + Σ(t)P�(t)

� If the inverse of               exists (small enough coupling)I − Σ(t)

Q�(t) = [I − Σ(t)]−1G(t, t0)Q�(t0) + [I − Σ(t)]−1Σ(t)P�(t)

Time evolution of Q depends on initial state and relevant 
part, also no dependence on previous point s. 

Plugging this in for the equation for the relevant part...



Time-convolutionless master equations

∂P�(t)
∂t

= K(t)P�(t) + I(t)Q�(t0)

with time local generator and inhomogeneity

� Exact local in time equation
� Generally complicated
� Geometric series and series expansion in coupling constant 

K(t) = αPL(t)[I − Σ(t)]−1Σ(t)P
I(t) = αPL(t)[I − Σ(t)]−1G(t, t0)Q

[I − Σ(t)]−1 =
+∞∑
n=0

[Σ(t)]n

K(t) = α
+∞∑
n=1

PL(t)[Σ(t)]nP =
+∞∑
n=1

αnKn(t)



Time-convolutionless master equations

� Expanding also

Σ(t) =
+∞∑
k=1

αkΣk(t)

gives, e.g., 

∂P�(t)
∂t

= K(t)P�(t) + I(t)Q�(t0)

K(t) = α
+∞∑
n=1

PL(t)[Σ(t)]nP =
+∞∑
n=1

αnKn(t)

K1(t) = PL(t)P = 0 1st order

2nd order TCLK2(t) =
∫ t

0

dt1PL(t)L(t1)P
.
.
.



Time-convolutionless master equations

The second order TCL leads to the following equation

dρS(t)
dt

= −α2

∫ t

0

dsTrB {[HI(t), [HI(s), ρS(t) ⊗ ρB ]]}

�Comparing to 2nd order Nakazima-Zwanzig (previously)

Also similarity to Redfield equation...

dρS(t)
dt

= −α2

∫ t

0

dsTrB {[HI(t), [HI(s), ρS(s) ⊗ ρB ]]}



Example: two-level atom in vacuum TCL2

d�

dt
= −i[H, �] + Γ

[
σ−�σ+ − 1

2
{σ+σ−, �}

]

�Decay rates

Markov → Γ =
1
π

∫ +∞

0

ds

∫
dωJ(ω) cos[(ω − ω0)s] = constant

TCL → Γ(t) =
1
π

∫ t

0

ds

∫
dωJ(ω) cos[(ω − ω0)s]

Here, J is the spectral density of the Bosonic environment

�And the open system dynamics is
Markov → �ee(t) = e−Γt�ee(0)

TCL → �ee(t) = e−
R t
0 dsΓ(s)�ee(0)
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Example: two-level atom in vacuum TCL2
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� Decay rate oscillates
    having periods of negativity

� Excited state population  
    oscillates

� Decoherence - 
    re-coherence cycles

�Compare to Markovian, semigroup evolution:
    exponential decay



Next lecture: 
Solving local in time equations by Markovian

and non-Markovian quantum jumps

1. General framework: Open quantum systems 

2. Local in time master equations 

End of lecture 1


