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Essence of the Quantum Vacuum:



The quantum vacuum state is ALWAYS fluctuating:
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Origin of some of the most important physical 
processes in the universe.

Leonhardt, 2010



spontaneous emission Casimir effect

large-scale structure

Λ
cosmological constant



Λ
spontaneous emission Casimir effect

large-scale structure cosmological constant

These are all STATIC vacuum effects

DYNAMICAL vacuum amplification:

Dynamics driven by energy source

Particle production
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Parametric Amplifier Unruh Effect

Dynamical Casimir Hawking Radiation

Dynamical Quantum Vacuum Effects:



Why so hard to detect?

Dynamical Casimir:

Unruh effect:

Hawking radiation:

〈N〉 ∝ v/c

- Need small mass / massless mirror.

- Requires very large accelerations.

kBTU ∝ a/c

- Detector must be accelerating.

- For small black hole                      .

kBTH ∝ κ/c

TH ∼ 10−9 K

- No way to verify photons come from black hole.



Goal #1:
#1: Introduce vacuum photon amplification effects, 
highlighting relationship to quantum parametric 
amplifier.

I. Standard quantum optics effect.

III. Contains the basic ingredients of all 
vacuum amplifiers.

II. Workhorse of quantum optics, circuit-
QED,...

nonclassical states, wave-particle duality, 
quantum erasers, quantum teleportation, 
heralded photons...



Goal #2:
#2: Demonstrate the use of superconducting circuits 
to realize these effects.

- Low noise and dissipation.

- Controllability on the single-photon level.
II. Can maintain entanglement

I. Single photons on demand.
II. Controlled generation of quantum cavity states.
III. Nonlinearities on the single-photon level.

I. Photons can travel 10km before dissipation.

- Single-shot photon detection (PRL 107 217401)
I. Can detect and measure single photon pairs



Parametric amplifiers:

Hawking radiation:

Dynamical Casimir Effect:

Castellanos-Beltran, Nat. Phys. 4, 929 (2008)
Bergeal, Nature 465, 64 (2010)
Roch, PRL (In Press) (2012), arXiv:1202.1315

Nation, PRL 103, 087004 (2009)

Johansson, PRL 103, 143003 (2009)
Wilson, Nature 479, 376 (2011)
Lähteenmäki, arXiv:1111.5608 (2011)

Rev. Mod. Phys. 84, 1 (2012)



Classical Parametric Amplifier

So easy, a child can understand!

Def: A parametric amplifier is a system that amplifies 
an input by varying a parameter (frequency) of the 
system.



Classical Parametric Amplifier

Don Case, Grinnell



Modulate center of mass (   ):

Classical Parametric Amplifier

θ(t) = θ(0)eεt/2 cos(ωst) +
L(0)

mωsl
e−εt/2 sin(ωst)

Harmonic oscillator: θ(t) = θ(0) cos(ωst) +
L(0)

mωsl
sin(ωst)

ωs(t) = ωs(0) + ε sin (ωcmt)

if               :ωcm = 2ωs

Occurs only if system is initially displaced.



In classical physics: θ(0) = L(0) = 0

Quantum physics: [θ, L] �= 0 θ(0) = L(0) = 0

Can parametrically amplify any state, 
even the vacuum!

Closely related to particle production in 
quantum field theory.



Prelude to quantum amplification



H = p2/(2m) +mω2x2/2

[x, p] = m [x, ẋ] = i�

ẍ+ ω2x = 0

x(t) = f(t)a+ f̄(t)a†

f̈(t) + ω2f(t) = 0

Harmonic oscillator:

Work in Heisenberg picture:

Decompose into creation and destruction operators:

“mode function” (not operator)

complex conjugate

Mode functions satisfy:



m

i�
[x, ẋ] =

m

i�

(
f(t) ˙̄f(t)− f̄(t)ḟ(t)

) [
a, a†

]
= 1

〈f, g〉 ≡ im

�

[
f̄(t)ġ(t)− g(t) ˙̄f(t)

]

a = 〈f, x〉a† = −〈f̄ , x〉

Plug       into commutator:x(t)
demand = 1 for all time

Define inner-product: (Klein-Gordon inner-product)

Gives: 〈f, f〉 = 1 〈f, f̄〉 = 0

orthogonal



ground
state

mode 
function 

H|0〉 =
(
mẋ2

2
+

mω2x2

2

)
|0〉

=
m√
2

[
ḟ(t)2 + ω2f(t)2

]
|2〉+ m

2

[∣∣∣ḟ(t)
∣∣∣2 + ω2 |f(t)|2

]
|0〉.

Want ground state as eigenstate of H:

a|0〉 = 0Ground state:

Solutions:(                      )

f(t) = xzp exp(−iωt) f̄(t) = xzp exp(+iωt)

xzp =
√

�/2mω

“positive frequency”
solution

“negative frequency”
solution

a = 〈f, x〉



out: 

x(t) = xzp

(
e−iωta+ e+iωta†

)thus:

let us now modulate frequency (like the swing):

ẍ+ ω(t)2x = 0

ain aout

|0〉in |0〉out
fin(t)|t→−∞ ∼ exp (−iωint) fout(t)|t→+∞ ∼ exp (−iωoutt)

x(t) = fin(t)ain + f̄in(t)a
†
in = fout(t)aout + f̄out(t)a

†
out

in: ω(t → −∞) = ωin ω(t → ∞) = ωout

In general,



using                      :

need 2 linearly independent solutions: 

〈f, f̄〉 = 0 fout = αfin + βf̄in

aout = 〈fout, x〉

aout = αain − β̄a†in |α|2 − |β|2 = 1;

All quantum amplifiers can be cast as 
Bogoliubov transformations.

Bogoliubov transformation

Interested in “out” state given “in” is vacuum
- I know fin



if “in” state       , then particle # at “out” state:|0〉in

Nout = 〈0|a†outaout|0〉in = |β|2

Particle # at “out” determined by negative frequency
 (    ) coefficienta†in

δ-functionωin

adiabatic
ωin

ωout

time

time

ωout

|β|2 ≈ 0

|β|2 =
1

4

ωin

ωout

(
1− ωout

ωin

)2



Take home message:

aout = αain − β̄a†in

Vacuum defined via positive-frequency (           ) 
components by choice of mode function.

All amplifiers described by Bogoliubov transform:

Particles at “output” given by coefficient of 
negative-frequency “input state”:

ae−iωt

|α|2 − |β|2 = 1

β̄a†in

Nonzero    generated by modulating mode 
frequency non-adiabatically.

β
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Vacuum Photon Production Methods



Quantum Parametric Amplifier



pump (    )

signal (    )

idler (   )

ωp

ωs

ωi

Simplest nonlinear photon interaction

Optical par. amp. needs nonlinear medium (BBO,KTP)

Energy conservation:ωp = ωs + ωi

Works for any system with effective       nonlinearity.χ(2)



Will assume pump mode is classical drive,unaffected 
by loss of photons.

i.e. unlimited, fixed amplitude 
supply of energy

H = i�η(b†sb
†
i − bsbi)Hamiltonian (rotating frame):

Two modes of operation:

Degenerate (DPA):

Non-degenerate (NDPA):

ωs = ωi

ωs �= ωi

Pump amplitude in coupling constant: η (frequency)



DPA

b(t) = b(0) cosh (2ηt) + b(0)† sinh (2ηt) ,

Solve Heisenberg Eq. of Motion for bs = bi = b

Bogoliubov transformation:

α = cosh (2ηt) β = sinh (2ηt)

If mode initially in ground state:

N =
〈
b†(t)b(t)

〉
= |β|2 = sinh2(2ηt)

# of particles from vacuum



DPA

If bs = bi = b ωp = 2ωb (like the swing)   

let X1 = b+ b† X2 = −i(b− b†),

X1(t) = e2ηtX1(0) X2(t) = e−2ηtX2(0)

Squeezed state:Ground State

position X1 position X1

2ηt = 0.5

m
om

en
tu

m
X

2

m
om

en
tu

m
X

2

Squeezed State

squeezing parameter



NDPA
ωs �= ωiMore general case:

Heisenberg eqs. of motion:

bs(t) = bs(0) cosh (ηt) + b†i (0) sinh (ηt)

bi(t) = bi(0) cosh (ηt) + b†s(0) sinh (ηt)

Ns = Ni = sinh2(ηt)

In Schrödinger picture: two-mode squeezed state

|Ψ(t)〉 = 1

cosh ηt

∞∑
n=0

(tanh ηt)
n |n〉s ⊗ |n〉i

Example of EPR state; mode-mode correlations
stronger than classically allowed.

squeezing parameter



NDPA
What if only single-mode is observable?

?

Can do a partial trace, or we can think about it ...

Energy conservation Implicitly know energy 
of other mode

Missing information Entropy

Find max. entropy constrained by energy



NDPA
Gives entropy for single-mode thermal state:

S = − ln
[
1− e−�ωs/kBT (t)

]
− �ωs

kBT (t)

[
1− e�ωs/kBT (t)

]−1

Temperature given via:

tanh2 ηt = exp

[
− �ωs

kBT (t)

]

Temperature is determined by
squeezing parameter.

Bipartite system so both modes in thermal state.



Unruh Effect



Simplest particle production method: just accelerate!

Need two coordinate systems (constant    ):

: Minkowski Coordinatesa = 0

a > 0 : Rindler Coordinates 

a

Rindler coordinates defined by relations:

Accelerating system called “Observer”

x = ξ cosh
(aτ

c

)

ξ = c2/a

(cτ, ξ)

(ct, x)

ct = ξ sinh
(aτ

c

)

α = a/c acceleration frequency



fu
tu

re
 h

or
izo

n

past horizon

x

ct

LRW RRW

Rindler coordinates are hyperbolas in Min
coordinates:

Observer confined
Rindler Wedge”

Minkowski space-
partitioned into tw

Sections causally
by horizon at

Observer reaches

Can define “Left Rindler Wedge” via:

In LRW,    moves backward in Minkowski time



Goal: Determine what Minkowski vacuum looks like
in observers (Rindler) frame.

I. Find mode functions & vacuum states 
in both space-times.

II. Calculate Bogoliubov transformation 
linking operators in both space-times.

II. Evaluate number operator and 
determine quantum state.

 Follow harmonic oscillator example:



Consider scalar-field: φ =
∑
j

uM
ωj
aMωj

+ ūM
ωj
aM,†
ωj

[
1

c2
∂2

∂t2
− ∂2

∂x2

]
φ = 0 uM

ωj
=

1√
4πωj

eikjx−iωjt

Solution to wave equation: ωj = c|kj | −∞ ≤ j ≤ ∞

Minkowski Space-time: (inertial observer)

Vacuum state:
Minkowski time

|0〉M =
∏
j

|0ωj
〉M aMωj

|0〉M = 0 ∀j



Rindler Space-time: (accel. observer)

Defines vacuum in Rindler coordinates (cτ, ξ)

RRW:

|0〉R =
∏
j

|0ωj
〉R uR

ωj
∝ exp (−iωjτ)

proper time

LRW has its own independent vacuum state:

|0〉L =
∏
j

|0ωj
〉L uL

ωj
∝ exp (iωjτ)

Positive and negative frequency 
switch roles in LRW!



Need both LRW & RRW to get complete Minkowski

Guess the Bogoliubov transformation:

Remember vacuum defined by positive freq. terms

positive frequency
in LRW

Minkowski vacuum should have particles when 
viewed by Rindler observer!

|C1|2 − |C2|2 = 1aMωj
= C1a

R
ωj

+ C2a
L,†
ωj



Single mode transformations:

b(1),Mωj
= aRωj

cosh (r) + a†,Lωj
sinh (r)

b(2),Mωj
= aLωj

cosh (r) + a†,Rωj
sinh (r)

tanh r = exp (−πωj/α) squeezing parameter

Operators transform exactly like NDPA!

Same two-mode squeezed state:

|0ωj 〉M =
1

cosh r

∞∑
n=0

(tanh r)
n |nωj 〉L ⊗ |nωj 〉R

particles in LRW particles in RRW



Thermal state determined by squeezing parameter:

tanh2 (r) = e−2πω/α = exp

(
− �ω

kBTU

)

TU =
�α

2πkB

Defines Unruh temperature:

depends only on accel. freq: α = a/c

Same temperature for all frequencies; real thermal
state (not true for NDPA)

Why thermal?



Photons generated in pairs: one in LR

fu
tu

re
 h

or
izo

n

past horizon

ct

LRW RRW

?

Observer confined to RRW

Thermal from lack of information
due to presence of horizon.



How do mode frequencies transform?

φ(x, t) = exp [−iΩ (t− x/c)]Plane wave:

Rewrite in Rindler coordinates:

φ(τ) = exp

[
i
Ω

α

(
e−ατ

)]

mode frequency 
exponentially 

red-shifted

Red-shifting gives rise to thermal spectrum.
- General property of horizons



Where does energy come from?

Have assumed constant acceleration.

Acceleration driven by fixed amplitude, classical 
unlimited source of energy.

Exact same assumption as parametric 
amplifier.

Note:

Acceleration Temperature Decoherence

Testbed for relativistic quantum information.



Hawking Radiation



causally disconnected from outside

Black Hole: Region of space-time separated from the rest of 
the universe by a horizon inside which gravity is so strong 
that not even light can escape.

Horizon

Horizon acts like unidirectional surface
can go inside; can not come out

Mass

Schwarzschild black hole; depends only on mass.



slowwater fastwaterHor
izon



Horizon

Horizons in the kitchen



Horizon located at Schwarzschild radius:

rs = 2GM/c2 ABH = 4πr2s

Use Einstein              for energy conservation relationE = Mc2

dE = c2dM =
κc2

8πG
dABH

surface gravity: κ =
c4

4GM

The force/mass needed to keep a small test mass 
stationary at the horizon as viewed at infinity.



Horizon unidirectional; mass can only increase:

Looks like 1st-law of thermodynamics:

dABH ≥ 0

dS ≥ 0

dE = THdSBH =
�κ

8πkBc
λdSBH

dE = c2dM =
κc2

8πG
dABH

Implies that a black hole has a temperature



Hawking (1974) showed that it does: (Hawking temp.)

TH =
�γ

2πkB
γ = κ/c characteristic frequency

observer
at infinity
o
a

It is the Unruh effect! Viewed by a different 
observer.

Hawking radiation as particle production:



Hawking radiation viewed at infinity
    includes redshift factor:

κ = V a|r=rs

γ = κ/c

a(r) =
GM

r2
√
1− rs

r

V (r) =
√

1− rs/r

What does observer stationary at horizon see?

r → rs

Einstein’s Equivalence Principle in Action!

T → �(a/c)

2πkB
=

�α

2πkB
Recover Unruh 

effect

Energy



Where does energy come from?

Energy in Hawking radiation must be balanced by 
loss of mass: (

Mc2 − EH

)
+ EH

Black hole energy radiation energy

Black hole mass assumed fixed in calculation
- Energy source classical & fixed amplitude

Valid only for large black holes: δM/M � 1



Dynamical Casimir Effect
(DCE)



path
dependent

Dynamical Casimir (Moore) effect:
- Boundary conditions lead to discrete
mode structure.
- “Shake” one of the mirrors:

ωn =
2πc0
λn

Modulates frequency

changes wavelength

�
���
��

�������	

���


��
���
��
������	�

�����	�����

1D Mirror - Fulling & Davies:

- Continuum of modes

- Path modifies exponent of modes 
negative frequency term

eiωu → eiω(u−τu)



Can choose any mirror trajectory you like.

Experimentalist: Sinusoidal

Theorist: x(t) = −t−A exp (−κt) +B

Exponential red-shift of frequency 
& thermal state
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T =

�γ

2πkB



Dynamical Casimir Effect
in Circuit-QED



EJ (Φext) = 2EJ

∣∣∣∣cos
(
π
Φext

Φ0

)∣∣∣∣

dc-SQUID
Φext

JJ

Flux through loop changes 
characteristic energy scaleJJ

Also can be thought of as nonlinear inductor:

L (Φext) =
Φ0

2πIc
sec

(
π
Φext

Φ0

)

Recall LC-oscillator:

ω =
1√
LC

ω (Φext) =
1√

L (Φext)C



Dynamical Casimir (1D type):
Wilson et al., Nature 479, 376 (2011)
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(g)

(h)

(i)

Dynamical Casimir

ωd/2

EJ = E0
J + δEJ cos(ωdt)

SQUID gives perfect mirror 
boundary condition:

Sinusoidal modulation:

Φ(x = L0
eff , t) = 0

Effective length change:

δLeff = L0
effδEJ/E

0
J

Spectrum symmetric about: ωd/2
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Dynamical Casimir (cavity type):

ωn =
2πcsq
λn

Microwave photons travel in medium (not vacuum)

per unit length
fixed

csq = 1/
√

l (Φext) c



Dynamical Casimir:
Lähteenmäki et al., arXiv:1111.5608 (2011)

Experiment Theory

Cavity: 250 SQUIDs

de
tu

ni
ng

Similar to Castellanos-Beltran 2007 & 2008
tunable by bias line 

Classical



For single cavity mode:

HDCE =
δLeff

4deff

�ωd

2

[(
a†
)2 − a2

]
DPA Hamiltonian
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Summary

Surprising generality to quantum vacuum amplifcation.

- Described by Bogoliubov transforms
- Modulate system frequencies
- Same quantum states
- Same classical fixed amplitude
energy source approximation.

Can learn a lot by playing outside!

*

S I

P

S I

Thermal character of states vanishes!


