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ABSTRACT

The probabilistic structure of quantum theory,
basic features of quantum information, and
the principle of measurement are reviewed.
The fascinating interplay between quantum
probability and measurement are explored in
the context of reduced transition-matrix
formalism.



Part of a chapter in the book :
Keh-Ning Huang,
Mathematics for Quantum
Mechanics and Information
(Spring, Berlin, to be published)
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7.1 STATISTICS
A. Definition

The mathematics of the collection,
organization, and interpretation of numerical
data, especially, the analysis of population
characteristics by inference from sampling.



B. Statistician
A person specializing 1n statistics 1s called a
statistician.
We may say that a statistician 1s a number
juggler who plays and makes sense out of a
large collection of numbers, real or complex.



C. Information Theory

Probability theory for the transmission of
messages with specific accuracy when the
bits of information constituting the messages
are subject to transmission failure, distortion,
and accidental additions or omissions with
certain probabilities.



7.2 SEQUENCE
A. Definition

A finite or countably infinite sequence, or
briefly a sequence, 1s a set {a,}={a,,a,.a;5.-} of
elements 4, arranged 1n order such that for
every positive integer n there 1s associated an
element. Each element 4. of the sequence
may be a number or a function or a certain
mathematical entity. We shall refer to the
subscript n of the element 4, as the index for



the element.

The definition of sequence may be
extended to 1nclude a sequence with
uncountably infinite elements, in which case
the sequence 1s denoted by

(b(x)la<x<f)

where the index x may be a real number 1n
the interval [«.51. More generally, we may
have a sequence consisting of both discrete
and continuum parts:



{a,;:b(x)la<x< [}

For notational convenience, we may
denote a general sequence symbolically and
brietfly by (e} no matter how many elements
the sequence has.



B. Probability Sequence
In the following of this subsection, we shall
consider only sequences {r;} of non-negative
real numbers, in which each element »,

call
res

ed the probability mass or density

pectively for discrete and continuum cases,

1S a non-negative real numbers, i.e., ri20,



C. Discrete Sequence
A sequence Pz} 1s said to be discrete if the
spectrum of the index @ 1s a set of discrete
real numbers.
In physics, for a discrete sequence, we
shall call P« the probability mass or simply
the probability.



D. Continuum Sequence

A sequence (Dwla<w<b} is raid to be
continuum if the spectrum of the index o 1s
an 1nterval or intervals of real numbers.

For a continuum sequence, we shall define
the probability density or simply the density
D(w), 1nstead of the probability mass 7o,



E. A General Sequence

The index «» of an arbitrary sequence may
have a spectrum consisting of both discrete
and continuum parts, {P-Di=tpy.D@)laswsb}
where the index « runs through both discrete
and continuum values {@,.0,.@;,-;a<w<b}
and we call p and D, respectively, the
probability and density.



F. Normalized Sequence
A sequence {r.D} 1s said to be normalized 1f
§p,.+j:oda)1)(a)):1

where for ease of notation we write the
probability as »i=rs, and the density D(@) 1s
said to be normalized on the @-scale.

Probability sequences considered here are
always assumed to be normalized.



7.4 OBSERVABLE

A. Definition

The self-adjoint operator @ associated with
a physical quantity o 1s called an observable.

For example, the three-dimensional
observable X 1s associated with the position x,
and the three-dimensional observable P with
the momentum p, efc. Furthermore, the
state operator ¥=lyXwl which 1s associated
with a pure physical state v, 1s an observable,



and the general state operator P=%P;!00/1
which 1s commonly known as the density
operator, 1s also an observable.

We shall use capital letters @, 4, =, I,
etc. to denote an arbitrary observable.



B. Pure Operator

A self-adjoint operator @ 1s called a pure
operator, 1f there exists a representation in
which this operator may be expressed as the

outer product of a vector !¢) with 1tself, i.e.,
Q=19)(9l,



C. Mixed Operator

A self-adjoint operator which i1s not a pure
operator 1s called a mixed operator.



D. State Operator

The selt-adjoint operator which provides a
complete description of the state of a given
physical system 1s called the state operator.

The physical system 1s in a pure state if
the state operator 1s a pure operator and 1n a
mixed state if the state operator 1s a mixed
operator.



7.5 ORTHONORMAL BASIS

A. Eigen-Equation of an Observable

The eigen-equation of an observable @ may
be given 1n the canonical form,

Qlw,)=w;w;)
where real values of the set {@;}={0,, 0,, @;,}

are called eigenvalues of ©. Here the
exhaustative set {lo)}={l®)).1@,).10,),---} of all
linearly-independent normalized vectors '@,
are called eigenvectors of © and are labeled



by their respective eigenvalues @;. It 1s
important to note that some of these distinct
eigenvectors may have equal eigenvalues, 1n
which case, called degeneracy, we need

additional labels to distinguish different
eigenvectors.



B. Degenerate Basis

A degenerate basis 1s a basis in which two or
more linearly-independent basis-vectors have
the same set {#4.-} of eigenvalues for a
given set {2.4.--} of compatible observables.



C. Non-Degenerate Basis

A non-degenerate basis, 1s also called
specifically distinct basis, may be provided
by the set of all co-eigenvectors {ledo--)} of
a complete set {242} of compatible
observables.



D. Distinct Basis

A non-degenerate basis for the Hilbert space
1s called a distinct basis 1t each basis-vector
of this basis may be uniquely specified by a
distinct set, say, {#.4.0.--} of eigenvalues.

A general distinct basis may consist of
both discrete and continuum parts. We
however shall use {Id}={1).12),13),-} to
represent an arbitrary distinct basis, in which
the index i denotes symbolically a distinct



set {w. 4,0} of eigenvalues for both discrete
and continuum basis-vectors. The distinct
basis {li)} 1s also assumed to be orthonormal
and complete, such that we have

(1) (ilj)=9;

(11) §|i><i|:1
for a discrete basis, and

(1) (x'1x)=8°(x"—x)

(11) Jd’x 1xX(xI=1



for a continuum basis such as, and
(o low)=0

(0 w)=0(0—w)

(11) %Iw)(a)il+j:dwla)><a)ilzl

for a general basis composed of both discrete
and continuum basis-vectors: {l@)lo)},



E. The w-basis of an Observable

From the eigen-equation Qlo)=w;lw;) of an
observable @, we may construct a basis
consisting of all 1ts linearly-independent
orthonormal eigenvectors, and we shall call
this complete basis the eigenbasis of @, or
stmply called the w-basis:
{lo)t={lw).10,), 1o;),-} . It 1S obvious that
the observable @ is diagonal in the w-basis.



The w-basis 1s usually a degenerate basis,

in which a single eigenvalue corresponds to
more than one eigenvector. We shall group
together all linearly- independent eigenvectors
with same eigenvalues (@, @,. @..-} 1nto many
individual sets labeled by a.b.c.-, and the
numbers of degenerate eigenveetors n
respective sets are {7111, i.e., the set o
contain 7. eigenvectors, all with the same
eigenvalue @..



In other words, the first 7. eigenvectors all
have the same degenerated eigenvalue .,
the next m eigenvectors all have the same
eigenvalue 4, efc. :

W,=0,=0,="=

n,

@, :wna+1 :wna+2 ==



F. Eigenspaces of an Obervable

The subspace H. spanned by the first =,
eigenvectors {loy.lw,), - 1o,)} 1s referred to
as the «.-eigenspace, and the subspace #,
referred to as the @-eigenspace i1s similarly
defined, and so are the other subspaces.

By defining the projection operator
P =lw;){o;l = we may denote the projection
operator . for the w@.-eigenspace H. as

a
P, E%Pj



where a signifies that the index J runs
through the set {L--.n}. The subsequent

sets b, c, etc. are sequentially defined:
b={n,+1,n,+2,---,n, +n,}
c={n,+n,+1l,n,+n, +2,---,n +n, +n_}

Consequently, we have 1n general,
(9 o
P, E§Pj E%Ia)jﬂa)jl

where a=a, b, c, efc.



In summary, the ®w-basis 1s subdivided
into many @.-bases, for which we have the
n,-dimensional eigenspace H. spanned by
the @.-basis with the projection operator ~.,
and the total Hilbert space # 1s a direct

sum of H., H, H. etc.:
H=®H,=H,®H,®H ®-



G. Spectral Resolution of an Observable

The spectral resolution of an arbitrary

observable @ has therefore the form,
QEJE_a)anijwjl

E?,a)j P;
:ga)a P,
where the projection operator F;=!@;){®;l jg

a pure operator for the one-dimensional
space of '®;), while in general the projection



o
operator f«=%%; is a mixed operator for the
n-dimensional eigenspace H. with @;=% for
j running through the set «.



H. The p-Basis of the State Operator

The state operator » of a physical system,
usually given 1in an arbitrary non-degenerate
distinct basis {/i)}, may be diagonalized in
the p-basis {Ip)} by considering the eigen-
equation of the state opertaor »,
plp)=pil p;)

Consequently, the state operator o has
eigenvalues {n} and corresponding
eigenstates {lp)}, where the eigenvalue »



denotes simply the probability for the
physical system being 1n the eigenstate 7).

For notational convenience, we shall
define @=IpXp! and write the spectral

resolution of the state operator » as
P = %Pi Qi.



I. Randomness of a State Operator

The randomness R of a state operator £ 1s

defined to be
R=-X p;logp,

where (r} denotes the set of eigenvalues of
the state operator ».

The randomness R 1s a dimensionless
quantity and has the range, 0<rR<e~.,  The
entropy S of a physical system in statistical
mechanics 1s proportional to the randomness



R as
S =kR

where k 1s the Boltzmann constant.



J. Vagueness of a State Operator
The vagueness V of a state operator o 1s
defined to be
V=I(p ")=e"
which has the range 1<V <e,
It 1s of interest to note that the vagueness V

1s proprotaional to the phase-space volume of
the physical syatem in statistical mechanics.



7.6 RANDOM VARIABLE

A. Definition

A variable @ which assumes a set

(0j)=10,, @55 ) of real values @ with

corresponding probabilities

Lpji=tpa b =tpe Porh g called a random

variable.

A special case of the random variable 1s
the ordinary real variable encountered in
calculus for which all probabilities vanish



except for one, such that the variable @
assumes only one real value #, at a time
with complete certainty, i.e., {r;}1=19;],

If the set {@;} represents a collection of
discrete values, the random variable @ 1s
called specially a discrete random variable.
A continuum random variable is similarly
defined, while 1n general a random variable



may assume both discrete and continuum
values. Here corresponding to a set of

continuum values o<l[a.b], we shall have a
set of probability densities {D(®)la<w<b},

For ease of discussion, we shall treat at
times only discrete random variables in the
following, but results may be extended to
both continuum and any general random
variables.



B. Standardized Random Variable
Let {#.0} be the mean and deviation of the

random variable o . We define the
standardized random variable 4 as
A=(Q-u)/o

Consequently, a standardized random
variable 1s dimensionless and has its mean
and deviation (0.1},



C. Quantum Random Variable €,

In quantum mechanics, the random variable
Q, tfor the measurement @ of a physical
system 1n state » may be defined by a pair
of self-adjoint operators, or specifically one
observable and one state operator: {(Q.p}.
Here © plays the role for the present
measurement, and » for the previous
measurement, i.e., for the preparation of the
state of the physical system, on which the



present measurement 1s to be performed.

The random variable €, assumes the set
(w.}={w;} of distinct outcomes {@.} with
corresponding probabilities {r.}, where r.=
trif.p}, and F. denoted the projection operator
for the subspace H. of the observable ©@.
Let the state operator 2 be given in the
p-basis as

P=2p;Q

with 9 =Ip;X p!, and then we obtain



(91
Pa=XEp; (| 0)F

As a reminder, the spectral resolution of the
observable © may be given as

a a
.Q:%a)a P, E%@O[%Pj E%&)O%I w; X 0;|



7.7 DISTRIBUTION FUNCTIONS

A. Density-Distribution Function

We shall define the density-distribution
function, or simply the d-function, of a
continuum random variable 2=2Qw:D) for
all o by

f (@) =D(w)
The d-function of a discrete random variable
Q=Q(w;p) 1S glven as

fl@)=Xp;olo-a))



where J6(x) denotes the Dirac-6 function.
The d-function of a general random
variable @=2(:p.D) 1s therefore given In

the general form as
fl@)=Xp;o(w-w;)+D(®)



B. Mass-Distribution Function

We shall define the mass-distribution
function, or simply the m-function, of a

discrete random variable 2=9Qw;p) as
F(w) sz;pj ‘9(0)_0)]')

where ¢(w-a,) denotes the Heaviside function,

I, x=20,
O(x)=
0, x<0.

The m-function of a continuum random
variable @=92(:D) is given as



Fw) =" dxD(x)

Consequently, the m-function of a general
random variable @=Qw;:p.D) 1s give
generally as

F(@)=2p; 8@-))+[" dcDx

An m-function F(x has the following
general properties:
(i) F(» 1s monotonically increasing on
the real axis x.



(ii) F» 1s continuous from the right at
each point x.
(iii) F(-=)=0 and F(e)=1,



C. Relation between d- and m-Functions

The d-tfunction and m-function of a random
variable © are related in calculus as

: o _dF(w)
(1) Density: f(®)= .

(ii)Mass:  F(@)=]"dx f()=2p, 6@-a)+|" dxD(x)

= §pi o(w—m)+ D(w)



7.8 CERTAINTY OF A DISTRIBUTION

A. Definition

For a discrete distribution sequence {ri} of
probabilities »; for N possible results of an
event, we shall assign a measure called the
certainty C=C{p;}, which refers to a clear-cut
and unequivocal statement or result,
admitting of no doubt or misunderstanding
when C=1, On the other hand, for a
completely uncertain case, for which we



have no sure knowledge such that any one of
the N possible results 1s equally likely, we
have the certainty ¢=1/~v. In the case of N
approaching infinity, we have the limit ¢=o0.
For a composite event which involves two
independent sub-events 1 and 2, the certainty
C of the composite event 1s assumed to the

arithmetic product of respective certainties,
C=C,C,,



B. Analytic Form of Certainty

For a normalized sequence ({r}, we can
prove that the certainty C of the sequence,
which satisties the stated postulates, 1s given
by

CEC{Pi}EI;[(pipi)

— plpl p2p2 p3p3
which generally has the range 0<c<1. Here
we note that

: P _



7.9 ACCURACY OF A DISTRIBUTION
A. Definition
The ratio of the certainty C of a probability
distribution {r} with respect to the certainty

Co of a distribution with equal probabilities

1s defined as the relative certainty or simply

called the accuracy of the distribution {»},
A=A{p;}=C/C,

which has the range 1<A<e,



B. Discrete Accuracy

For a discrete distribution {r;}, we have the
accuracy

N D,
A=TI(Np)"

where the distribution is normalized as



C. Continuum Accuracy

For a continuum distribution .».,, we have the
accuracy

b
A=exp { ja dx D(x) log[(b—a) D(x)] }

where the distribution is normalized as
j :dx D(x)=1



D. Accuracy of a General Distribution

For a general distribution {r;:P®}, we have
the accuracy

A=exp{ jjdx D(x)log[(b—a) D(x)] }pi(Npi)pi

where the distribution is normalized as

N b
iglpi+ja dx D(x)=1



7.10 INTELLIGIBILTY OF A DISTRIBUTION

A. Definition

The difference in the randomness R of a
probability distribution {r} against the
randomness R, of a distribution with equal
probabilities 1s defined to be the
intelligibility 7,

I=I{p,}=R,—R

which has range 0<7<e.



B. Discrete Intelligibility

For a discrete sequence '”}, we have the
intelligibility,

I = El p; log(Np;)



C. Continuum Intelligibility
For a continuum sequence P} we have
the intelligibility,
I= j b dx D(x) log[(b—a) D(x)]



D. Intelligibility of a General Distribution
For a general sequence {r;.D}, we have the
intelligibility,

C =X pilog(Np)+| b dx D(x)log [(b—a) D(x)]



E. Relation between Accuracy and Intelligibility
Accuracy: A=e'
Intelligibility: =logA
Compared with the randomness R and
vagueness V of a probability distribution
tpi. DX both the accuracy A and
intelligibility 1 are relative quantities with
respect to a distribution of equal probabilities,
while all four macroscopic 1ndicators
(R.V:A.I} for the distribution 7i-PW}  are
dimensionless.
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ABSTRACT

Starting from the relativistic equation of
motion governing quantum collision processes,
we shall formulate the relativistic guantum
collision theory in an ab initio manner.
Quantum electrodynamic effects are however
incorporated perturbatively. Because heavy
projectiles or ultra-high incident energies are
considered, the recoil of the target is also
treated. Electron-impact ionization of uranium
ion U°'+ and proton-impact ionization of
hydrogen will be given as examples. 2



COLLISION PROCESSES

a) KINEMATICS

Polarization correlations
Angular distribution

b) DYNAMICS

Relativistic effects
Particle-correlation effects



COLLISION EQUATION
Pr = Sfl Pi SJLZ

P7 : initial state
Pi : final state

\ fi+ Scattering-matrix



PHOTOEMISSION OF AN ATOM

? initial state

hv

f final state



S-MATRIX OF PHOTOEMISSION

N
W Ak —ik-7;
S My diM) = N[5 My | o exp ™™ | 1My
=1

N-Electron system
J.M, : final state
J:M, :1nitial state
a, . Dirac matrices of the 14 election

Emitted photon

¢, - polarization vector
wk - energy and momentum



ANGULAR DISTRIBUTION AND
POLARIZATION OF THE PHOTON

Pq'q = z :pCI'% JeMygJ s My
]

The polarization of the residual ion may
be studied in a similar manner

Prm My = 2 Pu TiMJ My
q



COLLISION EQUATION OF
PHOTOEMISSION

Pqq.0 M JM; = Z 5(‘/ J fo))OJ;M;J;Mi-S*(C]*« JrMy: JiM,;)
I M. M,

A complete description of photoemission.



EVALUATION OF S-MATRIX

All kinematical and dynamical effects of the
collision process are contained in the
scattering matrix

=121

where @ Is generally a linear combination
of one- and two-particle operators.



DISENTANGLE DYNAMICS
from KINEMATICS
by a GRAPHICAL METHOD

» Keh-Ning Huang,
Review of Modern Physics 51, 215 (1979).

 All dynamics are expressed in terms of
Dynamical Parameters

10



MANY-PARTICLE SYSTEM

n active particles

N-n spectator particles

Su=(f1Q1i)

N-particles system

Active particles . Particles connected by Q@ .
Spectator particles : All other particles

The number of active particles in the S-matrix is
at most two.

11



S-Matrix for One Active Particle
S;',?z<f|9‘“|f>=fdn (D715 1)

N
QY = Yu(i)
i=1

where dr; = d°r; with the spin variable
included implicitly.

To evaluate s, it suffices to know the
one-particle transition matrix I';;(1;1).

12



One-Particle Transition Matrix

’ N r_‘ ! ’ !
J

NY [ 3 3 i
1 d Fy:+-- d- Iy l{’j'(rl, | ST I'N)le.(rl, | IR I'N)
N .

where integrations over spectator particles
{2,...,N} corresponds physically to the
ensemble average over spectator particles.

13



S-Matrix for Two Active Particles

f dridr v(12)T7(12:1°2)

(2)
Sff

N
Q% = Su(ij)

<]
Knowing T'(1;1) and T'(12:12) s all
that is needed to evaluate the S-matrix
S +i for any collision process,

14



Optimizing
N-particle wave functions

:) reduced to

Optimizing
2-particle transition Matrix

15



BARE STATES :

1

@]

S

DRESSED STATES :

1

C

a

1

How to dress a state?

S

S

initial state

final state

initial state

final state

16



ACTIVE PARTICLES
dressed by Spectator Particles

The dressing of active particles is performed
formally by taking ensemble average over
Spectator Particles :

Cp(leoons 1 -oom)

N (‘ . P !
:( ) Aot - -dey (12N | £ (12 N
N,

N i 3 3 t
= d Fn+1® d I'n lP,‘u“(rl s oy - r“\") lP;ﬂ(r] N LIS r“\")
N :

17



RELATIVISTIC EQUATION OF MOTION

0 : :
iarﬁ(l; 1) =wplsi(151)

for the one-particle transition matrix

18



TIME-INDEPENDENT FORM
of the Equation of Motion

AT (15 1) =T (15 1)A(1)

+2 f dry[v(12) — v(1 2)|T4(12:12) = wel (15 1)

where h(1) and v(12) denote one-particle
and two-particle operators in the total
Hamiltonian.

19



Multiconfiguration Relativistic Random-
Phase-Approximation (MCRRPA)

The exact hierarchy equations may be solved
iIndependently by expressing the two-particle
transition matrix I'r;(12;1°2") in terms of the one-
particle transition matrix L1510,

, ] , ,
[(12:12) = 5(1 — Ppo)(1 = Pyo)o(1: 1) 4(2:2)

P;; . exchange operator for particles i and j
[o(1; 1) : one-particle density-matrix for the
Fermi vacuum.

20



RELATIVISTIC EQUATION OF MOTION
for the 2-Particle Correlation Function

a / ! ! ’
iarﬁ(u; 12)=wsl 4(12;12)

Time-Independent Form
(1) + h()IT (12, 12) = T(12; 12)[A(1) + h(2)]
+ [v(12) —u(1 2)]T (12, 12)

+3 f drs3[v(13) + v(23) —v(1'3) — v(23)][4(123;123)

—wsl7(12;12)

21



This equation may be solved independently by
making the approximation
[;(123;123)
E%(l + P12P13 + Pz P13 — P1a — Py — Py3)
X(1+PyyPyy + PyyPyy — Py —Pyy —Ppy)
XTo(1; 1) £(23;2'3)

22



ONE-PARTICLE TRANSITION MATRIX
[r(l;1) = r}?(l; 1) + rff;)(l; 1)

Positive-frequency part : final-state correlations
Y1) =T A1) + T 1)

Negative-frequency part : initial-state correlations
1) =TH A1)+ 1)

23



ANGULAR-MOMENTUM-COUPLING
DIAGRAM

ryah="»

et Ja1 Q;

Graphical notations in
K.-N. Huang, Rev. Mod. Phys. 51, 215 (1979).

24



TWO-PARTICLE TRANSITION MATRIX
[7(12;12) =T7(12;12) + T (12, 12)

Positive-frequency part :
[212:12) =T)(12;12) + T (12;12)

Negature-frequency part :
['(12:12) =152, 12) + T (12;12)

For example,
SN : :
[ (12;12) = 5(1 = Pi)(1 = Pry)Le(1; DF(2;2)

| -
+ (1= Pp) > AT e 0a(12:1'2)

I !
('){F(,r] J{;l {l’j(!‘ﬂl J”l '“'(;2 .)ru2

25



DIAGRAMMATICAL FORM

a Jaz —  a
] —>—e—>»—eo—»— |’
o AJ T A
/ / + a
Fae,aa(lz;lz): 2——e - —¢——— )
J_f' ‘J_i

A= (2J, + )2, + L(N, = D[(@" " g, JaaleiJ;]™

No=1\) 7' Ng—2 Na-2 'y
X [(a™ a, J, alai Ji (@ g, Jo,alag, Jo (@™ g, Jo,ale, J, ]

[(jM)a J'laJ] : coefficient of fractional parentage.

26



ELECTRON-IMPACT IONIZATION OF U®+

he electromagnetic interaction v(r)
between charged particles arising from the
exchange of one photon may be
summarized in the QED theory as the
Coulomb interaction plus transverse-
photon interaction,

| €.".=:ur| 7

u(rp) = — — (o -
F12 Fi2

€f{u;'12 —
)+(a|-vl)(az-vz)[( ]

w*ry;
The QED cross sections of electron-impact

ionization for the hydrogenlike U°'+ have
been calculated. 27
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FIG. 1. Huang et al.
28



PROTON-IMPACT IONIZATION OF
HYDROGEN

In the LAB frame
projectile : z,m,, R,
target election : —e,m, , R,

target nucleus :  Ze . m,, K,

In the CM frame
pI‘Oj@Ctﬂ@ : ze , u=(mm)/(m,+m,), R=R —R,
target election : —e, m=(mm,)/(m,+m,) , R=R, - R,

collision 1n the field of a Fixed charge Z.



2.0 | n -
E EXpel'illlent p+ —+ H — p+ + p+ + e-
e Shah and Gilbody (1981)
1 * Shah etal (1987) "
154 = Shah eral (1998) .
{1 & Kerby eral (1995)
<« Peiksma et al. (1994)
.ﬁg 1‘0_: Themy
DA present result
©
0.5 4
0.0 - — i - S
0.1 1 10 100 1000
To (keV)

FIG. 2 Lin et al.




SUMMARY

(1) A relativistic qguantum collision theory for
many-particle systems has been
proposed to treat relativistic and
particle-correlation effects in an ab initio
manner.

(1) The ensemble average over spectator
particles of the many-particle system is
formally carried out from the outset to
reduced the problem to that of active
particles only.

(i) This approach, called MCRRPA, has
been applied to photoexcitation and
photoionization with great success.



SUMMARY (continued)

(iv) We have further incorporated quantum
electrodynamic effects perturbatively in
the formulation.

(V) Our results for the electron-impact
ionization of U+ agree well with
gxisting experimental and theoretical

ata.

(Vi) The proton-impact-ionization cross
sections of hydrogen are calculated

including recoll effects and are In
excellent agreement
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Complexization

Yin-Yang
2 - [

Complementarity



Quantum measurement

Q,=1{w, p,, D(w)}
A,={ 4 p,, D(A)}
o ‘ X,=1 0, p,, D(o)}
A,=1{ 06, ps» D(0)}




Measurement of ¢ on »
<w"> = tr{pQ"}

Spectral Resolution
P = Zpin‘ , O, =| P ><Dp; |
QszaPa ; PQEZ])j’ P =[w, ><w,
o J

Q" = ZWZPQ‘



Correlations - beyond mean field

Kinematic and
Initial and
Discrete anc
Core anc
Creation anc
Shielding anc

Symmetrization anc

Dynamic
Final
Continuum
Valence
Annihilation
Polarization
Relativisitic
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