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• II-Applications and thermodynamical aspects
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• Review

• Classical Mutual Information

• Measurement process

• Local accessible and Local Inaccessible Mutual Information

• Thermodynamical aspects

• Redefinition of Discord and measurement interpretation

• Correlation as a mean to produce Work

• Quantum Deficit

• Irreversibility of entanglement

• Distribution of Correlation
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Mutual Information

(Classical)

4

H(X) = −
∑
j

p(xj) log2 p(xj) H(Y ) = −
∑
k

p(yk) log2 p(yk)

H(X,Y ) = −
∑
j,k

p(xj , yk) log2 p(xj , yk)

H(X,Y)

I(X:Y)

I(X : Y ) ≡ H(X : Y ) = H(X) +H(Y )−H(X,Y )

H(X|Y ) = H(X,Y )−H(Y ) H(Y |X) = H(X,Y )−H(X)
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Post and pre-selected 

states
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ρAB

A B
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Post and pre-selected 

states

5

ρAB

Measurement on B with outcome k

A B

k
Πk = |φk〉〈φk|BρkAB =

ΠkρABΠk

pk

pk = Tr{ΠkρAB}
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states
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ρAB

Measurement on B with outcome k

A B

k
Πk = |φk〉〈φk|BρkAB =

ΠkρABΠk

pk

ρkA =
TrB{ΠkρABΠk}

pk

Post-selected state

pk = Tr{ΠkρAB}
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Post and pre-selected 

states

5

ρAB

Measurement on B with outcome k

A B

k
Πk = |φk〉〈φk|BρkAB =

ΠkρABΠk

pk

ρkA =
TrB{ΠkρABΠk}

pk

Post-selected state

ρA =
∑
k

pkρ
k
A == TrB{ρAB}

Pre-selected state

pk = Tr{ΠkρAB}
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(quantum) Mutual 

Information

S(A : B) = SA − S(A|B)

JA|B = S(ρA)−
∑
j

pjS(ρ
j
A)

pj = TrAB

{
ΠB

j ρABΠ
B
j

}
, ρjA =

TrB{ΠB
j ρABΠ

B
j }

pj

J←
AB = max

{ΠB
j }

⎡⎣S(ρA)−∑
j

pjS(ρ
j
A)

⎤⎦
Classical Correlation

L. Henderson and V. Vedral, J. Phys. A 34, 6899 (2001)
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Local accessible and 

Inaccessible information

7

J←
AB = max

{Πk}

[
SA −

∑
k

pkSA|k

]
,

(Quantum Discord)δ←AB = IAB − J←
AB

SA SBIAB

IAB = SA + SB − SAB

77777777

EF (ρAB) = EAB = min
E

{∑
i

piS(ρ
A
i )

}
E = {pi, |ψAB

i 〉}
(Entanglement of Formation)
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Redefinition

8

J←
AB = max

{Πk}

[
SA −

∑
k

pkSA|k

]
,
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Redefinition

8

J←
AB = max

{Πk}

[
SA −

∑
k

pkSA|k

]
,

J←
AB = SA − min

{Πk}

∑
k

pkSA|k,
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Redefinition

8

J←
AB = max

{Πk}

[
SA −

∑
k

pkSA|k

]
,

J←
AB = SA − min

{Πk}

∑
k

pkSA|k,

J←
AB = SA − S(A|B)q, S(A|B)q ≡ min

{Πk}

∑
k

pkSA|k,
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Redefinition

8

δ←AB = IAB − J←
AB

J←
AB = max

{Πk}

[
SA −

∑
k

pkSA|k

]
,

J←
AB = SA − min

{Πk}

∑
k

pkSA|k,

J←
AB = SA − S(A|B)q, S(A|B)q ≡ min

{Πk}

∑
k

pkSA|k,
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Redefinition

8

δ←AB = IAB − J←
ABIAB = SA + SB − SAB

J←
AB = max

{Πk}

[
SA −

∑
k

pkSA|k

]
,

J←
AB = SA − min

{Πk}

∑
k

pkSA|k,

J←
AB = SA − S(A|B)q, S(A|B)q ≡ min

{Πk}

∑
k

pkSA|k,
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Redefinition

8

δ←AB = IAB − J←
ABIAB = SA + SB − SAB

J←
AB = max

{Πk}

[
SA −

∑
k

pkSA|k

]
,

J←
AB = SA − min

{Πk}

∑
k

pkSA|k,

J←
AB = SA − S(A|B)q, S(A|B)q ≡ min

{Πk}

∑
k

pkSA|k,

IAB = SA − SA|B
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Redefinition

8

δ←AB = IAB − J←
ABIAB = SA + SB − SAB

J←
AB = max

{Πk}

[
SA −

∑
k

pkSA|k

]
,

J←
AB = SA − min

{Πk}

∑
k

pkSA|k,

J←
AB = SA − S(A|B)q, S(A|B)q ≡ min

{Πk}

∑
k

pkSA|k,

IAB = SA − SA|B δ←AB = S(A|B)q − SA|B
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Entanglement 

manipulation

9

Local Operation and Classical Communication
(LOCC)
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Entanglement 

manipulation
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Local Operation and Classical Communication
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Entanglement 

manipulation

9

Local Operation and Classical Communication
(LOCC)

999999
EF (ρAB) = EAB = min

E

{∑
i

piS(ρ
A
i )

} E = {pi, |ψAB
i 〉}
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Simmilarities

10

Thermodynamics

Entanglement
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Simmilarities

10

• A system’s entropy cannot decrease if the system is closed.

• Energy is a resource for doing work

Thermodynamics

Entanglement
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Simmilarities

• The entanglement of a bipartite system cannot be increased by 
LOCC.

• Entanglement can be a resource for doing work

10

• A system’s entropy cannot decrease if the system is closed.

• Energy is a resource for doing work

Thermodynamics

Entanglement
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Szilard Thermal 

Machine
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Szilard Thermal 

Machine

11

Infinitesimal work

δW = Fδx
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Szilard Thermal 

Machine

11

Infinitesimal work

δW = PAδx
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Szilard Thermal 

Machine

11

Infinitesimal work

δW = PδV
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Szilard Thermal 

Machine
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Infinitesimal work

δW = PδV

Consider 1-molecule gas as ideal
PV = NkBT, N = 1
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Infinitesimal work
Consider 1-molecule gas as ideal

PV = NkBT, N = 1

δW =
kBT

V
δV
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Szilard Thermal 

Machine

11

Infinitesimal work
Consider 1-molecule gas as ideal

PV = NkBT, N = 1

δW =
kBT

V
δV

W =

∫ V2

V1

kBT

V
δV
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Szilard Thermal 

Machine

11

Infinitesimal work
Consider 1-molecule gas as ideal

PV = NkBT, N = 1

δW =
kBT

V
δV

W = kBT ln
V2

V1

V2 = 2V1
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Szilard Thermal 

Machine

11

Infinitesimal work
Consider 1-molecule gas as ideal

PV = NkBT, N = 1

δW =
kBT

V
δV

W = kBT ln
V2

V1

W = kBT ln 2

V2 = 2V1
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Szilard Thermal 

Machine

11

Infinitesimal work
Consider 1-molecule gas as ideal

PV = NkBT, N = 1

δW =
kBT

V
δV

W = kBT ln
V2

V1

W =
kBT

log2 e
log2 2 = 1

kBT

log2 e
= 1

V2 = 2V1

1 bit of work was extracted from the system
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We cannot extract work if the state is not known

We can if there exists classical correlation

(00)  or  (11) with equal probabilityTwo bits:
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We cannot extract work if the state is not known

We can if there exists classical correlation

(00)  or  (11) with equal probabilityTwo bits:

0 0 or 1
00

1
1

or
can be used for work 

extraction
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We cannot extract work if the state is not known

We can if there exists classical correlation

(00)  or  (11) with equal probabilityTwo bits:

0 0 or 1
00

1
1

or
can be used for work 

extraction

For random variable 
X with n-bits

Wc = n−H(X)
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12

We cannot extract work if the state is not known

We can if there exists classical correlation

(00)  or  (11) with equal probabilityTwo bits:

0 0 or 1
00

1
1

or
can be used for work 

extraction

For random variable 
X with n-bits

Wc = n−H(X)

For state      encoded 
in n-qubits

ρ

WT = n− S(ρ)
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Work extraction
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Work extraction
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ρAB

• Alice and Bob share many copies 
of a state ρAB

ρAB

ρAB

Wednesday, February 15, 2012



Work extraction
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ρAB

• Alice and Bob share many copies 
of a state

• They use the information 
about        to do work through 
a Szilard thermal machine. 

ρAB

ρAB

ρAB
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Work extraction
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ρAB

ρAB

• Alice and Bob share many copies 
of a state

• They use the information 
about        to do work through 
a Szilard thermal machine. 

• If they operate globally WT

ρAB

ρAB

ρAB
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Work extraction

13

ρAB

ρAB

• Alice and Bob share many copies 
of a state

• They use the information 
about        to do work through 
a Szilard thermal machine. 

• If they operate globally

• If they operate locally through LOCC

WT

Wl

ρAB

ρAB

ρAB
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Quantum deficit

14

WT = [n− S(ρAB)]
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Quantum deficit

14

Wl = [nA − S(ρA)] + [nB − S(ρB)],

WT = [n− S(ρAB)]

nA + nB = n
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Quantum deficit

14

Wl = [nA − S(ρA)] + [nB − S(ρB)],
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information
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Quantum deficit

14

Wl = [nA − S(ρA)] + [nB − S(ρB)],

WT = [n− S(ρAB)]

nA + nB = n

Δ = WT −Wl Quantity of non-localizable 
information

Δ←
BA = min

{Pj}
S(ρ′A)− S(ρAB)

one-way quantum 
deficit
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Quantum deficit

14

Wl = [nA − S(ρA)] + [nB − S(ρB)],

WT = [n− S(ρAB)]

nA + nB = n

Δ = WT −Wl Quantity of non-localizable 
information

Δ←
BA = min

{Pj}
S(ρ′A)− S(ρAB)

one-way quantum 
deficit

Δ̃←
BA (ρAB) =

1

n
Δ←

BA

(
ρ⊗n
AB

) regularized 1-way q. 
deficit
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Maxwell Demons

15

Classical

Quantum

ΔW/kBT = [SB + S(A|B)q]− S(A,B)
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Maxwell Demons

15

Classical

Quantum

ΔW/kBT = [SB + S(A|B)q]− S(A,B)
ΔW/kBT = S(A|B)q − SA|B
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Maxwell Demons

15

Classical

Quantum

ΔW/kBT = [SB + S(A|B)q]− S(A,B)

ΔW = kBTδ
←
AB

ΔW/kBT = S(A|B)q − SA|B
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Regularized versions

16

Δ̃←
BA (ρAB) =

1

n
Δ←

BA

(
ρ⊗n
AB

)
Q. Deficit
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Regularized versions
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Δ̃←
BA (ρAB) =

1

n
Δ←

BA

(
ρ⊗n
AB

)

δ̃←BA (ρAB) =
1

n
δ←BA

(
ρ⊗n
AB

)
Q. Deficit

Q. Discord
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Regularized versions

16

Δ̃←
BA (ρAB) =

1

n
Δ←

BA

(
ρ⊗n
AB

)

δ̃←BA (ρAB) =
1

n
δ←BA

(
ρ⊗n
AB

)

δ̃←BA (ρAB) = Δ̃←
BA (ρAB)

Q. Deficit

Q. Discord
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Entanglement as resource for QIT
Unit of entanglement |e-bit〉 = 1√

2
(|00〉+ |11〉)
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With 1 e-bit:
•teleport 1 qubit
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• 1 bit secret correlation (QKD)
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Entanglement 

manipulation

17

Entanglement as resource for QIT
Unit of entanglement |e-bit〉 = 1√

2
(|00〉+ |11〉)

With 1 e-bit:
•teleport 1 qubit
• communicate 2 bits CC sending 1 qubit
• 1 bit secret correlation (QKD)

Manipulating states by LOCC:
•e-bits can be converted in other entangled states
•distillable states can be converted in e-bits
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Entanglement Dilution

18

|e-bit〉
|e-bit〉

|e-bit〉
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Entanglement Dilution
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Entanglement Dilution

18[Bennett et al PRA 96]

(Ent. Cost)M = N/EC
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Entanglement Dilution

18

EC := best rate
M

N
= S(ρra)

[Bennett et al PRA 96]

(Ent. Cost)M = N/EC
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Entanglement 

Distillation

19

(Distillable Ent.)

‘
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Entanglement 

Distillation
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(Distillable Ent.)
N ′ = MED = NED/EC

‘
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Entanglement 
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ED := best rate
N

M
= S(ρra)

(Distillable Ent.)
N ′ = MED = NED/EC

‘
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Entanglement 
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ED := best rate
N

M
= S(ρra)

(Distillable Ent.)
N ′ = MED = NED/EC

ED = EC

‘

N ′ = N
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Entanglement 

Distillation

19

ED := best rate
N

M
= S(ρra)

(Distillable Ent.)

The amount of entanglement was conserved
LOCC Manipulations are reversible over pure states

N ′ = MED = NED/EC

ED = EC

‘

N ′ = N
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Entanglement 

Irreversibility

20
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Entanglement 

Irreversibility

20

What about mixed states?
Mixed states means noisy ⇒ losses (irreversibility)
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Entanglement 

Irreversibility
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What about mixed states?
Mixed states means noisy ⇒ losses (irreversibility)

n′ �= n

Wednesday, February 15, 2012



Entanglement 

Irreversibility

20

What about mixed states?
Mixed states means noisy ⇒ losses (irreversibility)

n′ �= n

Widely believed that only pure states are reversible
Vidal PRL 01,02 Vollbrecht PRA04, Yang PRL 05
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EC(ρab) =
1

n
EF (ρ⊗n

ab ) Type A

ED(ρab) = max
V

1

k
IC

(
V ρ⊗k

)
Type B

If

for finite n and k then entanglement is irreversible

Marcio F. Cornelio, MCO and Felipe F. Fanchini, PRL 107, 020502 (2011).
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EC(ρab) = lim
n→∞

1

n
EF (ρ⊗n

ab )

EC(ρab) =
1

n
EF (ρ⊗n

ab ) Type A

ED(ρab) = max
V

1

k
IC

(
V ρ⊗k

)
Type B

If

for finite n and k then entanglement is irreversible

Marcio F. Cornelio, MCO and Felipe F. Fanchini, PRL 107, 020502 (2011).
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EC(ρab) = lim
n→∞

1

n
EF (ρ⊗n

ab )

IC = max{0,−Sa|b,−Sb|a}

V is a LOCC over k copies of 

ED(ρab) = lim
k→∞

max
V

{
1

k
IC(V ρ⊗k)

}
,

ρab

EC(ρab) =
1

n
EF (ρ⊗n

ab ) Type A

ED(ρab) = max
V

1

k
IC

(
V ρ⊗k

)
Type B

If

for finite n and k then entanglement is irreversible

Marcio F. Cornelio, MCO and Felipe F. Fanchini, PRL 107, 020502 (2011).
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Irreversibility

22

EC(ρ(σ)ab )− ED(ρ(σ)ab ) ≥ Δa|c(σac)

EC(ρ(σ)ab )− ED(ρ(σ)ab ) = Δa|c(σac)

in general

for certain classes of
states

c: environment
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Entanglement

Trade-off between the bipartite entanglement of A with B and 
the entanglement of A with C.

If

There is no way to A  get entangled to C without decreasing 
entanglement with B.

|ψ〉 = 1√
2
(|0A, 0B〉+ |1A, 1B〉)

23

Concurrence
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Entanglement

Trade-off between the bipartite entanglement of A with B and 
the entanglement of A with C.

23

EA|BC = EA|B + EA|C + τABC

Concurrence
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Entanglement

Trade-off between the bipartite entanglement of A with B and 
the entanglement of A with C.

23

EA|BC = EA|B + EA|C + τABC

C2
A(BC) = C2

AB + C2
AC + τABC

V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000)

Concurrence
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Distribution of 

Correlation

24
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Distribution of 

Correlation

24

• Classical Correlation can be distributed at will.

V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000)
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Distribution of 

Correlation

Correlation between two stochastic variables: (X,Y)

24

H(X : Y ) ≡ H(X) +H(Y )−H(X,Y )

• Classical Correlation can be distributed at will.

V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000)
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Distribution of 

Correlation

Correlation between two stochastic variables: (X,Y)

24

H(X : Y ) ≡ H(X) +H(Y )−H(X,Y )

H(X : Y, Z) �≤ H(X : Y ) +H(X : Z)

• Classical Correlation can be distributed at will.

V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000)

•Not always subadditive
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Distribution of 

Correlation

Correlation between two stochastic variables: (X,Y)

24

H(X : Y ) ≡ H(X) +H(Y )−H(X,Y )

H(X : Y, Z) �≤ H(X : Y ) +H(X : Z)

• Classical Correlation can be distributed at will.

V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000)

•Not always subadditive

•Not always superadditive.
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Classical Correlation
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Classical Correlation
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Suppose we can increase H(X:Y) to be maximal 
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Classical Correlation

25

H(X) ≤ H(Y ) H(X : Y ) = H(X)

Suppose we can increase H(X:Y) to be maximal 
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Classical Correlation

25

H(X) ≤ H(Y ) H(X : Y ) = H(X)

H(X : Z) = H(X : Y )−H(X|Z)

Suppose we can increase H(X:Y) to be maximal 

So
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increases linearly with H(X:Y), being only constrained by 

Classical Correlation

25

H(X) ≤ H(Y ) H(X : Y ) = H(X)

H(X : Z) = H(X : Y )−H(X|Z)

H(X : Z) ≤ H(X : Y )

Suppose we can increase H(X:Y) to be maximal 

So
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Quantum Systems

• Extension of classical form

Not always subadditive

26

S(A : B) ≡ IAB = SA + SB − SAB

S(A : B,C) �≤ S(A : B) + S(A : C)

S(A : B) = SA − S(A|B)
Proper form
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Local accessible and 

Inaccessible information

27

SA SBIAB
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Local accessible and 

Inaccessible information

27

J←
AB = max

{Πk}

[
SA −

∑
k

pkSA|k

](CC)
SA SB
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Local accessible and 

Inaccessible information

27

J←
AB = max

{Πk}

[
SA −

∑
k

pkSA|k

](CC)

(QD)
δ←AB = IAB − J←

AB

SA SB
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Local accessible and 

Inaccessible information

27

J←
AB = max

{Πk}

[
SA −

∑
k

pkSA|k

](CC)

(QD)
δ←AB = IAB − J←

AB

Discrepancy: Δ←
AB ≡ J←

AB − δ←AB −IAB ≤ Δ←
AB ≤ IAB

SA SB
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Local accessible and 

Inaccessible information

27

J←
AB = max

{Πk}

[
SA −

∑
k

pkSA|k

](CC)

(QD)
δ←AB = IAB − J←

AB

Discrepancy: Δ←
AB ≡ J←

AB − δ←AB −IAB ≤ Δ←
AB ≤ IAB

Balance between the gain in work extraction by the use of global operations over 
local ones, and the work extracted locally only. 

SA SB
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Correlation 

Discrepancy
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EOF Monogamy
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ρABC pure:
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EOF Monogamy

29

ρABC pure:

M. Koashi and A. Winter, PRA 69, 022309 (2004)
F. F. Fanchini, M. F. Cornelio, MCO, and A. O.Caldeira, PRA 84, 012313 (2011).

EAB = δ←AC + SA|C

F. F. Fanchini, M. F. Cornelio, MCO, and A. O.Caldeira, PRA 84, 012313 (2011).

EAB = EF (ρab) = min
E

{∑
i

piEF (|ϕi〉)
}
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EOF Monogamy

29

ρABC pure:

M. Koashi and A. Winter, PRA 69, 022309 (2004)
F. F. Fanchini, M. F. Cornelio, MCO, and A. O.Caldeira, PRA 84, 012313 (2011).

EAB = δ←AC + SA|C
EAC = δ←AB + SA|B

F. F. Fanchini, M. F. Cornelio, MCO, and A. O.Caldeira, PRA 84, 012313 (2011).

EAB = EF (ρab) = min
E

{∑
i

piEF (|ϕi〉)
}
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EOF Monogamy

29

ρABC pure:
EAB + EAC = δ←AB + δ←AC

F. F. Fanchini, M. F. Cornelio, MCO, and A. O.Caldeira, PRA 84, 012313 (2011).
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EOF Monogamy

29

ρABC pure:

EAB + EAC + SA − δ←AB − δ←AC = SA
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EOF Monogamy

29

ρABC pure:

EAB + EAC + (SA − δ←AB − δ←AC) = EA(BC)
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EOF Monogamy

29

ρABC pure:

EAB + EAC + τA = EA(BC)

τA = (SA − δ←AB − δ←AC)=
1

2
[Δ←

AB +Δ←
AC ]
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EOF Monogamy

29

ρABC pure:

EAB + EAC + τA = EA(BC)

τA = (SA − δ←AB − δ←AC)=
1

2
[Δ←

AB +Δ←
AC ]

τA ≥ 0 ↔ J←
AB + J←

AC ≥ δ←AB + δ←AC
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EOF Monogamy

29

ρABC pure:

EAB + EAC + τA = EA(BC)

τA = (SA − δ←AB − δ←AC)=
1

2
[Δ←

AB +Δ←
AC ]

τA ≥ 0 ↔ J←
AB + J←

AC ≥ δ←AB + δ←AC

EOF not monogamous if
SA < Sq(A|B) + Sq(A|C) ≤ 2SA

Sq(A|i) = min
{Πk}

∑
k

pkS(ρA|k), ρA|k =
Tri(Π

i
kρAiΠ

i
k)

TrAi(Πi
kρAiΠi

k)
, i = B,C
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Example

30

τABC ≡ τA + τB + τC = Δ�≡ Δ←
BA +Δ←

CB +Δ←
AC
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Example

30

τABC ≡ τA + τB + τC = Δ�

|GHZ〉 = θ| ↑↑↑〉+ φ| ↓↓↓〉 τABC > 0

≡ Δ←
BA +Δ←

CB +Δ←
AC
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Example

30

τABC ≡ τA + τB + τC = Δ�

|GHZ〉 = θ| ↑↑↑〉+ φ| ↓↓↓〉
|W 〉 = α| ↑↑↓〉+ β| ↑↓↑〉+ γ| ↓↑↑〉

τABC > 0

τABC < 0

30

≡ Δ←
BA +Δ←

CB +Δ←
AC
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Conclusions

• Classical Mutual Information

• Measurement process

• Local accessible and Local Inaccessible Mutual Information

• Thermodynamical aspects

• Correlation as a mean to produce Work

• Quantum Deficit and Quantum Discord

• Irreversibility of entanglement

• Distribution of Correlation

31
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