GENERAL ÁSPECTS ON CLASSICAL AND QUANTUM CORRELATION- II

Quantum Information Science

MARCOS C. DE OLIVEIRA UNIVERSITY OF CAMPINAS - SP, BRAZIL

6TH WINTER SCHOOL ON QUANTUM INFORMATION SCIENCE - TAIWAN -2012

Wednesday, February 15, 2012

• II-Applications and thermodynamical aspects

- Review
 - Classical Mutual Information
 - Measurement process
 - Local accessible and Local Inaccessible Mutual Information
- Thermodynamical aspects
 - Redefinition of Discord and measurement interpretation
 - Correlation as a mean to produce Work
 - Quantum Deficit
 - Irreversibility of entanglement
 - Distribution of Correlation

Measurement on *B* with outcome *k* ρ_{AB} ρ_{AB} ρ_{AB} ρ_{AB} $p_{k}^{k} = \frac{\prod_{k} \rho_{AB} \prod_{k}}{p_{k}}$ $\prod_{k} = |\phi_{k}\rangle \langle \phi_{k}|_{B}$ $p_{k} = Tr\{\prod_{k} \rho_{AB}\}$

$$\rho_A^k = \frac{Tr_B\{\Pi_k \rho_{AB} \Pi_k\}}{p_k}$$

Post-selected state

(QUANTUM) MUTUAL INFORMATION

$$S(A:B) = S_A - S(A|B)$$
$$J_{A|B} = S(\rho_A) - \sum_j p_j S(\rho_A^j)$$
$$p_j = \operatorname{Tr}_{AB} \left\{ \Pi_j^B \rho_{AB} \Pi_j^B \right\}, \ \rho_A^j = \frac{\operatorname{Tr}_B \{ \Pi_j^B \rho_{AB} \Pi_j^B \}}{p_j}$$
$$J_{AB}^{\leftarrow} = \max_{\{\Pi_j^B\}} \left[S(\rho_A) - \sum_j p_j S(\rho_A^j) \right]$$

Classical Correlation

L. Henderson and V. Vedral, J. Phys. A 34, 6899 (2001)

Wednesday, February 15, 2012

LOCAL ACCESSIBLE AND INACCESSIBLE INFORMATION

Wednesday, February 15, 2012

$$J_{AB}^{\leftarrow} = \max_{\{\Pi_k\}} \left[S_A - \sum_k p_k S_{A|k} \right],$$

$$J_{AB}^{\leftarrow} = \max_{\{\Pi_k\}} \left[S_A - \sum_k p_k S_{A|k} \right],$$
$$J_{AB}^{\leftarrow} = S_A - \min_{\{\Pi_k\}} \sum_k p_k S_{A|k},$$

$$J_{AB}^{\leftarrow} = \max_{\{\Pi_k\}} \left[S_A - \sum_k p_k S_{A|k} \right],$$
$$J_{AB}^{\leftarrow} = S_A - \min_{\{\Pi_k\}} \sum_k p_k S_{A|k},$$
$$J_{AB}^{\leftarrow} = S_A - S(A|B)_q, \quad S(A|B)_q \equiv \min_{\{\Pi_k\}} \sum_k p_k S_{A|k},$$

$$J_{AB}^{\leftarrow} = \max_{\{\Pi_k\}} \left[S_A - \sum_k p_k S_{A|k} \right],$$
$$J_{AB}^{\leftarrow} = S_A - \min_{\{\Pi_k\}} \sum_k p_k S_{A|k},$$
$$J_{AB}^{\leftarrow} = S_A - S(A|B)_q, \quad S(A|B)_q \equiv \min_{\{\Pi_k\}} \sum_k p_k S_{A|k},$$

 $\delta_{AB}^{-} = I_{AB} - J_{AB}^{-}$

J

$$J_{AB}^{\leftarrow} = \max_{\{\Pi_k\}} \left[S_A - \sum_k p_k S_{A|k} \right],$$
$$J_{AB}^{\leftarrow} = S_A - \min_{\{\Pi_k\}} \sum_k p_k S_{A|k},$$
$$J_{AB}^{\leftarrow} = S_A - S(A|B)_q, \quad S(A|B)_q \equiv \min_{\{\Pi_k\}} \sum_k p_k S_{A|k},$$

 $I_{AB} = S_A + S_B - S_{AB} \qquad \delta_{AB}^{\leftarrow} = I_{AB} - J_{AB}^{\leftarrow}$

$$J_{AB}^{\leftarrow} = \max_{\{\Pi_k\}} \left[S_A - \sum_k p_k S_{A|k} \right],$$
$$J_{AB}^{\leftarrow} = S_A - \min_{\{\Pi_k\}} \sum_k p_k S_{A|k},$$
$$J_{AB}^{\leftarrow} = S_A - S(A|B)_q, \quad S(A|B)_q \equiv \min_{\{\Pi_k\}} \sum_k p_k S_{A|k},$$

$$I_{AB} = S_A + S_B - S_{AB} \qquad o_{AB} = I_{AB} - J_{AB}$$
$$I_{AB} = S_A - S_{A|B}$$

$$J_{AB}^{\leftarrow} = \max_{\{\Pi_k\}} \left[S_A - \sum_k p_k S_{A|k} \right],$$
$$J_{AB}^{\leftarrow} = S_A - \min_{\{\Pi_k\}} \sum_k p_k S_{A|k},$$
$$J_{AB}^{\leftarrow} = S_A - S(A|B)_q, \quad S(A|B)_q \equiv \min_{\{\Pi_k\}} \sum_k p_k S_{A|k},$$
$$= S_A + S_B - S_{AB} \quad \delta_{AB}^{\leftarrow} = I_{AB} - J_{AB}^{\leftarrow}$$

$$I_{AB} = S_A + S_B - S_{AB} \qquad \delta_{AB}^{\prime} = I_{AB} - J_{AB}^{\prime}$$
$$I_{AB} = S_A - S_{A|B} \qquad \delta_{AB}^{\prime} = S(A|B)_q - S_{A|B}$$

8

ENTANGLEMENT MANIPULATION

Local Operation and Classical Communication (LOCC)

ENTANGLEMENT MANIPULATION

Local Operation and Classical Communication (LOCC)

ENTANGLEMENT MANIPULATION

Local Operation and Classical Communication (LOCC)

$$E_{\mathcal{F}}(\rho_{AB}) = E_{AB} = \min_{\mathcal{E}} \left\{ \sum_{i} p_i S(\rho_i^A) \right\} \quad \mathcal{E} = \{ p_i, |\psi_i^{AB}\rangle \}$$

Wednesday, February 15, 2012

SIMMILARITIES

Thermodynamics

Entanglement

SIMMILARITIES

Thermodynamics

- A system's entropy cannot decrease if the system is closed.
- Energy is a resource for doing work

Entanglement

SIMMILARITIES

Thermodynamics

- A system's entropy cannot decrease if the system is closed.
- Energy is a resource for doing work

Entanglement

- The entanglement of a bipartite system cannot be increased by LOCC.
- Entanglement <u>can</u> be a resource for doing work

1

Infinitesimal work

$$\delta W = F \delta x$$

Infinitesimal work

$$\delta W = PA\delta x$$

Infinitesimal work

 $\delta W = P \delta V$

Infinitesimal work Consider 1-molecule gas as ideal $PV = Nk_BT, N = 1$

 $\delta W = P \delta V$

Infinitesimal work Consider 1-molecule gas as ideal $PV = Nk_BT, N = 1$

$$\delta W = \frac{k_B T}{V} \delta V$$

Infinitesimal work Consider 1-molecule gas as ideal $PV = Nk_BT, N = 1$ $\delta W = \frac{k_BT}{V} \delta V$ $W = \int_{V}^{V_2} \frac{k_BT}{V} \delta V$

Infinitesimal work Consider 1-molecule gas as ideal $PV = Nk_BT, N = 1$ $\delta W = \frac{k_BT}{V} \delta V$ $W = k_BT \ln \frac{V_2}{V_1}$ $V_2 = 2V_1$

Infinitesimal work Consider 1-molecule gas as ideal $PV = Nk_BT, N = 1$ $\delta W = \frac{k_BT}{V} \delta V$ $W = k_BT \ln \frac{V_2}{V_1}$ $V_2 = 2V_1$

 $W = k_B T \ln 2$

Infinitesimal work Consider 1-molecule gas as ideal $PV = Nk_BT, N = 1$ $\delta W = \frac{k_B T}{V} \delta V$ $W = k_B T \ln \frac{V_2}{V_1}$ $V_2 = 2V_1$ $W = \frac{k_B T}{\log_2 e} \log_2 2 = 1 \qquad \frac{k_B T}{\log_2 e} = 1$

1 bit of work was extracted from the system

We cannot extract work if the state is not known

We cannot extract work if the state is not known We can if there exists classical correlation

For random variable X with *n*-bits

$$W_c = n - H(X)$$

For random variable X with *n*-bits

 \longrightarrow 0 or 1

$$W_c = n - H(X)$$

can be used for work extraction

For state *ρ* encoded in *n*-qubits

$$W_T = n - S(\rho)$$

or

• Alice and Bob share many copies of a state ρ_{AB}

 ρ_{AB}

 ρ_{AB}

 ρ_{AB}

- Alice and Bob share many copies of a state ρ_{AB}
- They use the information Alice is about ρ_{AB} to do work through a Szilard thermal machine.

 ρ_{AB}

 ρ_{AB}

 W_T

- Alice and Bob share many copies of a state ρ_{AB}
- They use the information $Alice \frown \rho_{AB}$ about ρ_{AB} to do work through a Szilard thermal machine.
- If they operate globally

- Alice and Bob share many copies of a state ρ_{AB}
- They use the information Alice \bigcirc about ρ_{AB} to do work through a Szilard thermal machine.
- If they operate globally

 ρ_{AB}

 ρ_{AB}

 ρ_{AB}

• If they operate locally through LOCC $\longrightarrow W_l$

 $W_T = [n - S(\rho_{AB})]$

 $W_T = [n - S(\rho_{AB})]$

 $W_{l} = [n_{A} - S(\rho_{A})] + [n_{B} - S(\rho_{B})], \ n_{A} + n_{B} = n$

$$W_T = [n - S(\rho_{AB})]$$

 $W_{l} = [n_{A} - S(\rho_{A})] + [n_{B} - S(\rho_{B})], \ n_{A} + n_{B} = n$

$$\Delta = W_T - W_l$$
 Quantity of non-localizable information

$$W_T = [n - S(\rho_{AB})]$$
$$W_l = [n_A - S(\rho_A)] + [n_B - S(\rho_B)], \ n_A + n_B = n$$

$$\Delta = W_T - W_l$$
 Quantity of non-localizable information

$$\Delta_{BA}^{\leftarrow} = \min_{\{P_j\}} S(\rho'_A) - S(\rho_{AB}) \quad \begin{array}{c} \text{one-way quantum} \\ \text{deficit} \end{array}$$

$$W_T = [n - S(\rho_{AB})]$$
$$W_l = [n_A - S(\rho_A)] + [n_B - S(\rho_B)], \ n_A + n_B = n$$

$$\Delta = W_T - W_l$$
 Quantity of non-localizable information

$$\Delta_{BA}^{\leftarrow} = \min_{\{P_j\}} S(\rho'_A) - S(\rho_{AB}) \quad \begin{array}{c} \text{one-way quantum} \\ \text{deficit} \end{array}$$
$$\widetilde{\Delta}_{BA}^{\leftarrow}(\rho_{AB}) = \frac{1}{n} \Delta_{BA}^{\leftarrow}(\rho_{AB}^{\otimes n}) \quad \begin{array}{c} \text{regularized 1-way q.} \\ \text{deficit} \end{array}$$

Wednesday, February 15, 2012

REGULARIZED VERSIONS

 $\widetilde{\Delta}_{BA}^{\leftarrow}(\rho_{AB}) = \frac{1}{n} \Delta_{BA}^{\leftarrow}(\rho_{AB}^{\otimes n}) \quad \text{Q. Deficit}$

REGULARIZED VERSIONS

$$\widetilde{\Delta}_{BA}^{\leftarrow}(\rho_{AB}) = \frac{1}{n} \Delta_{BA}^{\leftarrow}(\rho_{AB}^{\otimes n}) \quad \text{Q. Deficit}$$

$$\widetilde{\delta}_{BA}^{\leftarrow}(\rho_{AB}) = \frac{1}{n} \delta_{BA}^{\leftarrow}(\rho_{AB}^{\otimes n}) \quad \text{Q. Discord}$$

REGULARIZED VERSIONS

$$\widetilde{\Delta}_{BA}^{\leftarrow}(\rho_{AB}) = \frac{1}{n} \Delta_{BA}^{\leftarrow}(\rho_{AB}^{\otimes n}) \quad \text{Q. Deficit}$$

$$\widetilde{\delta}_{BA}^{\leftarrow}(\rho_{AB}) = \frac{1}{n} \delta_{BA}^{\leftarrow}(\rho_{AB}^{\otimes n}) \quad \text{Q. Discord}$$

$$\widetilde{\delta}_{BA}^{\leftarrow}\left(\rho_{AB}\right) = \widetilde{\Delta}_{BA}^{\leftarrow}\left(\rho_{AB}\right)$$

ENTANGLEMENT MANIPULATION

ENTANGLEMENT MANIPULATION

Entanglement as resource for QIT Unit of entanglement $|e-bit\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

ENTANGLEMENT MANIPULATION

Entanglement as resource for QIT Unit of entanglement |e-bit

$$|\text{e-bit}
angle = \frac{1}{\sqrt{2}}(|00
angle + |11
angle)$$

With 1 e-bit:

- teleport 1 qubit
- communicate 2 bits CC sending 1 qubit
- 1 bit secret correlation (QKD)
ENTANGLEMENT MANIPULATION

Entanglement as resource for QIT

Unit of entanglement $|\text{e-bit}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

With 1 e-bit:

- teleport 1 qubit
- communicate 2 bits CC sending 1 qubit
- 1 bit secret correlation (QKD)

Manipulating states by LOCC:

- e-bits can be converted in other entangled states
- distillable states can be converted in e-bits

 $M = N/E^{\mathcal{C}}$ (Ent. Cost)

[Bennett et al PRA 96]

$$M = N/E^{\mathcal{C}}$$
 (Ent. Cost)
 $E^{\mathcal{C}} := \text{ best rate } \frac{M}{N} = S(\rho_a^r)$

18

[Bennett et al PRA 96]

(Distillable Ent.)

(Distillable Ent.)

19

What about mixed states? Mixed states means noisy \Rightarrow losses (irreversibility)

What about mixed states? Mixed states means noisy \Rightarrow losses (irreversibility)

 $n' \neq n$

What about mixed states? Mixed states means noisy \Rightarrow losses (irreversibility)

 $n' \neq n$

Widely believed that only pure states are reversible Vidal PRL 01,02 Vollbrecht PRA04, Yang PRL²05

If

$$E^{\mathcal{C}}(\rho_{ab}) = \frac{1}{n}E^{\mathcal{F}}(\rho_{ab}^{\otimes n}) \quad \text{Type A}$$

$$E^{\mathcal{D}}(\rho_{ab}) = \max_{V} \frac{1}{k}I^{\mathcal{C}}(V\rho^{\otimes k}) \quad \text{Type B}$$
for finite *n* and *k* then entanglement is irreversible

Marcio F. Cornelio, MCO and Felipe F. Fanchini, PRL 107, 020502 (2011).

$$E^{\mathcal{C}}(\rho_{ab}) = \lim_{n \to \infty} \frac{1}{n} E^{\mathcal{F}}(\rho_{ab}^{\otimes n})$$

If

$$E^{\mathcal{C}}(\rho_{ab}) = \frac{1}{n}E^{\mathcal{F}}(\rho_{ab}^{\otimes n}) \quad \text{Type A}$$

$$E^{\mathcal{D}}(\rho_{ab}) = \max_{V} \frac{1}{k}I^{\mathcal{C}}(V\rho^{\otimes k}) \quad \text{Type B}$$
for finite *n* and *k* then entanglement is irreversible

Marcio F. Cornelio, MCO and Felipe F. Fanchini, PRL 107, 020502 (2011).

$$E^{\mathcal{C}}(\rho_{ab}) = \lim_{n \to \infty} \frac{1}{n} E^{\mathcal{F}}(\rho_{ab}^{\otimes n})$$
$$E^{\mathcal{D}}(\rho_{ab}) = \lim_{k \to \infty} \max_{V} \left\{ \frac{1}{k} I^{C}(V\rho^{\otimes k}) \right\}, I^{C} = \max\{0, -S_{a|b}, -S_{b|a}\}$$

V is a LOCC over *k* copies of ρ_{ab}

$$E^{\mathcal{C}}(\rho_{ab}) = \frac{1}{n} E^{\mathcal{F}}(\rho_{ab}^{\otimes n}) \quad \text{Type A}$$
$$E^{\mathcal{D}}(\rho_{ab}) = \max_{V} \frac{1}{k} I^{\mathcal{C}} \left(V \rho^{\otimes k} \right) \quad \text{Type B}$$

for finite *n* and *k* then entanglement is irreversible

Marcio F. Cornelio, MCO and Felipe F. Fanchini, PRL 107, 020502 (2011).

Wednesday, February 15, 2012

TC

IRREVERSIBILITY

 $E^{\mathcal{C}}(\rho_{ab}^{(\sigma)}) - E^{\mathcal{D}}(\rho_{ab}^{(\sigma)}) \ge \Delta_{a|c}(\sigma_{ac})$ in general

 $E^{\mathcal{C}}(\rho_{ab}^{(\sigma)}) - E^{\mathcal{D}}(\rho_{ab}^{(\sigma)}) = \Delta_{a|c}(\sigma_{ac}) \text{ for certain classes of states}$

ENTANGLEMENT

Trade-off between the bipartite entanglement of A with B and the entanglement of A with C.

If
$$|\psi\rangle = \frac{1}{\sqrt{2}} (|0_A, 0_B\rangle + |1_A, 1_B\rangle)$$

There is no way to A get entangled to C without decreasing entanglement with B.

Concurrence

ENTANGLEMENT

Trade-off between the bipartite entanglement of A with B and the entanglement of A with C.

$$\mathcal{E}_{A|BC} = \mathcal{E}_{A|B} + \mathcal{E}_{A|C} + \tau_{ABC}$$

Concurrence

ENTANGLEMENT

Trade-off between the bipartite entanglement of A with B and the entanglement of A with C.

$$\mathcal{E}_{A|BC} = \mathcal{E}_{A|B} + \mathcal{E}_{A|C} + \tau_{ABC}$$

Concurrence $C_{A(BC)}^2 = C_{AB}^2 + C_{AC}^2 + \tau_{ABC}$

V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000)

23

• Classical Correlation can be distributed at will.

• Classical Correlation can be distributed at will.

Correlation between two stochastic variables: (X, Y)

$$H(X:Y) \equiv H(X) + H(Y) - H(X,Y)$$

• Classical Correlation can be distributed at will.

Correlation between two stochastic variables: (X, Y)

$$H(X:Y) \equiv H(X) + H(Y) - H(X,Y)$$

•Not always subadditive

 $H(X:Y,Z) \not\leq H(X:Y) + H(X:Z)$

• Classical Correlation can be distributed at will.

Correlation between two stochastic variables: (X, Y)

$$H(X:Y) \equiv H(X) + H(Y) - H(X,Y)$$

•Not always subadditive

 $H(X:Y,Z) \not\leq H(X:Y) + H(X:Z)$

•Not always superadditive.

Suppose we can increase H(X:Y) to be maximal

Suppose we can increase H(X:Y) to be maximal $H(X) \le H(Y) \longrightarrow H(X:Y) = H(X)$

Suppose we can increase H(X:Y) to be maximal $H(X) \le H(Y) \longrightarrow H(X:Y) = H(X)$

So H(X : Z) = H(X : Y) - H(X|Z)

Suppose we can increase H(X:Y) to be maximal $H(X) \le H(Y) \longrightarrow H(X:Y) = H(X)$

So H(X:Z) = H(X:Y) - H(X|Z)

increases linearly with H(X:Y), being only constrained by $H(X:Z) \le H(X:Y)$

QUANTUM SYSTEMS

• Extension of classical form

$$S(A:B) \equiv I_{AB} = S_A + S_B - S_{AB}$$

Not always subadditive

 $S(A:B,C) \not\leq S(A:B) + S(A:C)$

Proper form $S(A:B) = S_A - S(A|B)$

LOCAL ACCESSIBLE AND INACCESSIBLE INFORMATION

Balance between the gain in work extraction by the use of global operations over local ones, and the work extracted locally only.

CORRELATION DISCREPANCY

 ρ_{ABC} pure:

 ρ_{ABC} pure:

$$E_{AB} = \delta_{AC}^{\leftarrow} + S_{A|C}$$

$$E_{AB} = E_F(\rho_{ab}) = \min_{\mathcal{E}} \left\{ \sum_i p_i E_F(|\varphi_i\rangle) \right\}$$

M. Koashi and A. Winter, PRA 69, 022309 (2004) F. F. Fanchini, M. F. Cornelio, MCO, and A. O.Caldeira, PRA 84, 012313 (2011).

 ρ_{ABC} pure:

 $E_{AB} = \delta_{AC}^{\leftarrow} + S_{A|C}$ $E_{AC} = \delta_{AB}^{\leftarrow} + S_{A|B}$

$$E_{AB} = E_F(\rho_{ab}) = \min_{\mathcal{E}} \left\{ \sum_i p_i E_F(|\varphi_i\rangle) \right\}$$

M. Koashi and A. Winter, PRA 69, 022309 (2004) F. F. Fanchini, M. F. Cornelio, MCO, and A. O.Caldeira, PRA 84, 012313 (2011).

ρ_{ABC} pure: $E_{AB} + E_{AC} = \delta_{AB}^{\leftarrow} + \delta_{AC}^{\leftarrow}$

F. F. Fanchini, M. F. Cornelio, MCO, and A. O.Caldeira, PRA 84, 012313 (2011).

 ρ_{ABC} pure:

 $E_{AB} + E_{AC} + S_A - \delta_{AB}^{\leftarrow} - \delta_{AC}^{\leftarrow} = S_A$

 ρ_{ABC} pure:

$E_{AB} + E_{AC} + (S_A - \delta_{AB} \leftarrow \delta_{AC}) = E_{A(BC)}$

 ρ_{ABC} pure:

$$E_{AB} + E_{AC} + \tau_A = E_{A(BC)}$$
$$\tau_A = (S_A - \delta_{AB}^{\leftarrow} - \delta_{AC}^{\leftarrow}) = \frac{1}{2} [\Delta_{AB}^{\leftarrow} + \Delta_{AC}^{\leftarrow}]$$

 ρ_{ABC} pure:

$$E_{AB} + E_{AC} + \tau_A = E_{A(BC)}$$
$$\tau_A = (S_A - \delta_{AB}^{\leftarrow} - \delta_{AC}^{\leftarrow}) = \frac{1}{2} [\Delta_{AB}^{\leftarrow} + \Delta_{AC}^{\leftarrow}]$$

 $\tau_A \ge 0 \quad \leftrightarrow \quad J_{AB}^{\leftarrow} + J_{AC}^{\leftarrow} \ge \delta_{AB}^{\leftarrow} + \delta_{AC}^{\leftarrow}$

 ρ_{ABC} pure:

$$E_{AB} + E_{AC} + \tau_A = E_{A(BC)}$$
$$\tau_A = (S_A - \delta_{AB}^{\leftarrow} - \delta_{AC}^{\leftarrow}) = \frac{1}{2} [\Delta_{AB}^{\leftarrow} + \Delta_{AC}^{\leftarrow}]$$

 $\tau_A \ge 0 \quad \leftrightarrow \quad J_{AB}^{\leftarrow} + J_{AC}^{\leftarrow} \ge \delta_{AB}^{\leftarrow} + \delta_{AC}^{\leftarrow}$

EOF not monogamous if

$$S_A < S_q(A|B) + S_q(A|C) \le 2S_A$$

$$S_{q}(A|i) = \min_{\{\Pi_{k}\}} \sum_{k} p_{k} S(\rho_{A|k}), \qquad \rho_{A|k} = \frac{\operatorname{Tr}_{i}(\Pi_{k}^{i} \rho_{Ai} \Pi_{k}^{i})}{\operatorname{Tr}_{Ai}(\Pi_{k}^{i} \rho_{Ai} \Pi_{k}^{i})}, \quad i = B, C$$

$\tau_{ABC} \equiv \tau_A + \tau_B + \tau_C = \Delta_{\circlearrowright} \equiv \Delta_{BA}^{\leftarrow} + \Delta_{CB}^{\leftarrow} + \Delta_{AC}^{\leftarrow}$

 $\tau_{ABC} \equiv \tau_A + \tau_B + \tau_C = \Delta_{\circlearrowright} \equiv \Delta_{BA}^{\leftarrow} + \Delta_{CB}^{\leftarrow} + \Delta_{AC}^{\leftarrow}$

 $|GHZ\rangle = \theta |\uparrow\uparrow\uparrow\rangle + \phi |\downarrow\downarrow\downarrow\rangle$

 $\tau_{ABC} > 0$

 $|GHZ\rangle = \theta |\uparrow\uparrow\uparrow\rangle + \phi |\downarrow\downarrow\downarrow\rangle \qquad \longrightarrow \qquad \tau_{ABC} > 0$ $|W\rangle = \alpha |\uparrow\uparrow\downarrow\rangle + \beta |\uparrow\downarrow\uparrow\rangle + \gamma |\downarrow\uparrow\uparrow\rangle \implies \tau_{ABC} < 0$

CONCLUSIONS

- Classical Mutual Information
- Measurement process
- Local accessible and Local Inaccessible Mutual Information
- Thermodynamical aspects
- Correlation as a mean to produce Work
- Quantum Deficit and Quantum Discord
- Irreversibility of entanglement
- Distribution of Correlation