

Quantum dynamics in ano Josephson junctions

D¹M

PhD: Thomas Weissl Etienne Dumur Boan Pop Florent Lecocq Aurélien Fay Aurélien Fay Nicolas Didier Didier Didier Claudon

าทาเวรนเ

Post-doc: Alexey Feofanov Iulian Matei Zhihui Peng Emile Hoskinson H. Jirari Alex Zazunov

> Permanent: Wiebke Guichard Cécile Naud Bernard Pannetier Cécile Nand

PTB Braunschweig (Germany) LTL Helsinki (Finland) Rutgers (USA)

GRENOBLE

Institut Néel- LP2MC

Scientific collaborations:

Projects: ANR QUNALIO

Coherent oscillations in a dc SQUID

Outline

Introduction to superconducting qubits

Multi-levels artificial atom

- current-biased Josephson junction and dc SQUID
- quantum measurements
- quantum dynamics in a multilevel quantum system
- quantum or classical description
- lontroo lemitqo -
- decoherence processes

Two-degrees of freedom artificial atom

- inductive dc SQUID
- spectroscopy measurements
- strong non-linear coupling
- coherent oscillations

Multi-degrees of freedom system

- Josephson junction chains
- dils əsend mutnenp -
- charging effects

Optimal control for a current-biased SQUID

(H. Jirari, FH and O. Buisson, EPL 2009)

Statement of the problem

system: Desired time evolution of quantum

(\mathfrak{f})3 : blaif loutrol field : $\mathfrak{E}(\mathfrak{f})$

To have a reasonable control field, we add constraints:

- on its time dependence

Test for a two-level system: π -pulse

(H. Jirari, FH and O. Buisson, EPL 2009)

Use π -pulse as a guess for optimal control (H. Jirari, FH and O. Buisson, EPL 2009)

Effect of π -pulse in the presence of other levels (H. Jirari, F. Hekking and O. Buisson, EPL 2009)

Optimal control in the presence of other levels (H. Jirari, F. Hekking and O. Buisson, EPL 2009)

Optimal control for more complicated transitions (H. Jirari, F. Hekking and O. Buisson, EPL 2009)

(dol) .9mit 10(0)(0) 92'0 0 009 1.25 1.125 007 300 200 100 978.0 0 9°1-Power spectrum 1-200.0 Φ(t)/2π 10.0 910.0 0 () (p G.0 0.02 time. $(1/\omega_p)$ $(q\omega/r)$.9mit **⟨†**| 009 400 009 400 300 200 100 300 500 100 0 0 1.0-0 80.0-/∞, -0.05 /∞, -0.05 /∞, -0.05 2.0 Populations 99 d ssd 4.0 #*d EE d (217) 0.02 9.0 22 d (1)A \$0.04 пd (f)A 8.0 90.0 0°d (1)1do 3 80.0 (q e 101 **(0** 22 $[(t)\phi + t_0\omega] \cos{(t)} A = (t)_{tqo} a$

Outline

Introduction to superconducting qubits

Multi-levels artificial atom

- current-biased Josephson junction and dc SQUID
- quantum measurements
- quantum dynamics in a multilevel quantum system
- quantum or classical description
- optimal control
- decoherence processes

Two-degrees of freedom artificial atom

- inductive dc SQUID
- spectroscopy measurements
- strong non-linear coupling
- coherent oscillations

Multi-degrees of freedom system

- Josephson junction chains
- dils əsend mutuenp -
- charging effects

Relevant noise sources

Heavy filtering and shielding

aignificant fluctuation sources located close to the SQUID

• LF flux noise
$$V_0 = 6.5 \times 10^{-4} \Phi_0$$

Parasitic Two level fluctuators

Relaxation measurements

J. Claudon, A. Fay, L.P. Lévy, and O. Buisson (PRB2006)

Relaxation measurements

J. Claudon, A. Fay, L.P. Lévy, and O. Buisson (PRB2006)

J. Claudon, A. Fay, L.P. Lévy, and O. Buisson (PRB2006)

 $\mathsf{P}_{\mathsf{esc}}\left(\%
ight)$

Low power spectroscopy

J. Claudon, A. Fay, L.P. Lévy, and O. Buisson (PRB2006)

Manipulation at zero current bias Manipulation, Lecocq et al , PRL (2009)

At zero current:

$$H = \psi (0) (\dot{p}^{2} + \ddot{X}^{2} - \partial \ddot{X}^{4})$$

$$H = \psi (0) (\dot{p}^{2} + \ddot{X}^{2} - \partial \ddot{X}^{4})$$

Manipulation \longleftarrow Microwave current: I_b(t)

 $\overline{X}\overline{\zeta}\sqrt{2\pi\nu t}\cos(2\pi\nu t)\sqrt{2}\overline{\chi}$

Manipulation at zero current bias

Hoskinson, Lecocq et al , PRL (2009)

called: the Camelback phase qubit...

Camelback phase qubit Hoskinson, Lecocq et al , PRL (2009)

At zero current:
$$H = \hbar \omega \left(\hat{P}^2 + \hat{X}^2 - \delta \hat{X}^4 \right)$$

$$(\hat{\Phi}_{(1)}, \hat{\Phi}_{(2)})$$

$$(\hat{\Phi}_{(1)},$$

 $\overline{X}\overline{\zeta}\sqrt{2\pi\nu\xi}$ cos($2\pi\nu\xi$) $\sqrt{2}\overline{X}$

Spectroscopy at zero current bias

Hoskinson, Lecocq et al , PRL (2009)

Side bands disappears @ sweet point

Side band resonances

Coherent oscillations along the optimal line

Coherent oscillations along the optimal line

Spectroscopy versus flux bias, TLS limitation

- Improvement of the coherence time along the optimal line.
- New potential along this line,

preliminary results on double escape processes.

- Limitations : Residual dephasing can be explained by a 40 $\mu\Phi_0$ RMS flux noise.
- Too many parasitical two levels systems.
- Unknown sources of noise (low frequency current noise)

Current works: - improvement on the Josephson junction quality