Photosynthetic Light Harvesting and Electronic Quantum Coherence Effects

Yuan-Chung Cheng

yuanchung@ntu.edu.tw

Department of Chemistry National Taiwan University

Summer Lectures on QIS:
Quantum Transport in Chaotic and Disordered Systems,
National Center for Theoretical Sciences (South), Tainan, Taiwan
August 28, 2010

Outline

 Part I: Introduction to photosynthetic light harvesting & theoretical backgrounds

 Part II: Quantum coherence in LH2 from purple bacteria – optimization of light harvesting through delocalization of excitons

 Part III: Excitonic quantum coherence in light harvesting – coherence assistant excitation energy transfer

Outline

 Part I: Introduction to photosynthetic light harvesting & theoretical backgrounds

 Part II: Quantum coherence in LH2 from purple bacteria – optimization of light harvesting through delocalization of excitons

 Part III: Excitonic quantum coherence in light harvesting – coherence assistant excitation energy transfer

Outline (Part I)

 Brief introduction to photosynthetic light harvesting

 Architectures of photosynthetic light-harvesting apparatus: purple bacteria, green sulfur bacteria, and plants

 Theoretical descriptions for excitation energy transfer in photosynthesis

Light Harvesting in Photosynthesis

...Secondary electron transfer reactions, Water splitting, Proton transport across thylakoid membrane, Reduction of NADP+, ATP synthesis...

Primary Processes of Photosynthesis

Light harvesting in the antenna & charge separation in the reaction center → remarkable, near unity quantum yield

PHOTOSYNTHESIS

Bassi Group

Light-harvesting Apparatus of Purple Bacteria

AFM of native photosynthetic membranes of a purple bacterium Bahatyrova et al., *Nature* **430**, 1058 (2004)

Architecture of a spherical chromatophore vesicle

Şener M K et al. PNAS 2007;104:15723-15728

Light-harvesting Apparatus of Purple Bacteria

AFM of native photosynthetic membranes of a purple bacterium Bahatyrova et al., *Nature* **430**, 1058 (2004)

Hu et al., Q. Rev. Biophys. 35, 1 (2002)

Photosynthetic Pigment-Protein Complexes

LH2 from Rhodopseudomonas acidophila Strain 7050

Bacterial Chlorophyll Arrangement in LH2

Light-harvesting Apparatus of Green Sulfur Bacteria

James Allen & coworkers, Photosynth. Res., 75:49 2003

Fenna-Matthews-Olson Complex from Green Sulfur Bacteria

PDB ID: 4bcl, 1m50

Energy Transfer Time Scales in FMO

Energy transfer from one end to the other in a few ps

J. Adolphs & T. Renger, Biophys. J. 91, 2778 (2006).

Light-harvesting Apparatus of Higher Plants

^{*}http://www.hpc.unm.edu/~aroberts/main/photosyn.htm

Photosynthetic Membrane

Photosystem I

Photosystem II Supercomplex

-

Light-Harvesting Complex II (LHCII)

42 Chls; found in plants; most important LHC on Earth

Structure of the PS II Core Complex

Chlorophyll network in the PSII core complex

Photosystem I Supercomplex of Plants

PS I Core complex 96 Chls

Chlorophyll Arrangement in the PS I Core

"the paradigmatic scenario of transport phenomena in noisy environments"

- electronic couplings & excitons
- complex network
- static & dynamical disorder
- "wet & warm" protein environments
- quantum coherence

Pdb id: 1JB0

PS I Core complex 96 Chls

A complex chlorophyll network for light harvesting

Architecture of Photosynthesis is Optimized to:

Cover the solar spectrum
Protect against photochemical
damage

Transmit excitation to the reaction center with near unit efficiency

Achieve robustness & efficiency in highly disordered & complex EET networks

Repair damage and regulate the efficiency of light harvesting (PSII)

Theoretical Background

From the perspective of a physical chemist

Frenkel Exciton Model

 ϵ_1 , ϵ_2 : site energy, transition energy modified by proteins

Exciton Hamiltonian and Excitonic Coupling

- Excitations interact with each other through excitonic coupling J
- H_e → transition energies and excitonic couplings in multichromophoric systems!!

Bite basis"

- Excitation energy transfer induced by excitonic coupling J
- When J is significant, the eigenstates of H_e has to be considered → excitons

Excitonic Coupling and Photosynthetic Excitons

- Excitonic coupling J can result in delocalized excitations → excitons
- Optical transitions correspond to excitonic transitions

$$H_e = egin{bmatrix} E_1 & 0 & \cdots & 0 \ 0 & E_2 & \cdots & 0 \ dots & dots & dots \ 0 & 0 & \cdots & E_N \end{bmatrix}$$

exciton basis"

Disordered Exciton Hamiltonian

 Static disorder due to heterogeneous protein environments described by Gaussian random variables:

$$E_n = E_0(n) + \delta E_I + \delta E_D(n)$$

$$J_{nm} = J_0(n,m) + \delta J(n,m)$$

- Often sampled over Gaussian disorder using Monte Carlo simulation method
- Lead to localized exciton states (Anderson localization)

Dynamics in the Condensed Phase

Energy of an individual chromophore *i* modulated by its protein environment:

$$\omega_{eg}^{i}(t) = \langle \omega_{eg} \rangle + \delta \omega_{i}(t) + \varepsilon_{i}$$

 $\delta\omega_i(t)$ \rightarrow fast, dynamical changes ϵ_i \rightarrow slow, static changes $f(\epsilon_i)$: inhomogeneous broadening

Modeling Excitation Energy Transfer: System-Bath Model

 $\mathbf{E}_{\mathbf{S}} = \mathbf{\omega}_{0} + \delta \mathbf{\omega}_{i}(t) + \mathbf{\varepsilon}_{i}$ time (fs)

- Environments (baths)
 - → harmonic oscillators
- System-bath couplings
 - → correlation function:

$$C(t) = \langle \delta \omega(t) \delta \omega(0) \rangle$$

or spectral densities:

$$\Omega(\omega) = \sum_{\alpha} \frac{c_{\alpha}^{2}}{2m_{\alpha}\omega_{\alpha}} \delta(\omega - \omega_{\alpha})$$

Reduced density matrix:

$$\rho = \sum_{n} P_{n} \mid \psi_{n} \rangle \langle \psi_{n} \mid$$

 \rightarrow $H_{\rm e}$ and $\Omega(\omega)$ determine the dynamics, $\rho(t)$.

Redfield Picture of Excitation Energy Transfer

When system-bath coupling is weak, we can use Redfield equation to describe energy transfer:

exciton Hamiltonian dissipation determined by
$$\Omega(\omega)$$
 by $\Omega(\omega)$

population coherence

$$\rho = \begin{bmatrix} \rho_{11}^{\bullet} & \rho_{12}^{\bullet} & \dots & \rho_{1N} \\ \rho_{12} & \rho_{22} & \dots & \rho_{2N} \\ \vdots & \vdots & & \vdots \\ \rho_{1N} & \rho_{2N} & \dots & \rho_{NN} \end{bmatrix} \quad \text{p: reduced-system density matrix}$$

$$\rho : \text{reduced-system density matrix}$$

$$\rho : \text{N: number of chromophores}$$

$$\mathfrak{R}[]: \begin{array}{c} \rho_{nn} \to \rho_{mm} : \text{ population dynamics (incoherent)} \\ \rho_{nm} \to \rho_{n'm'} : \text{ coherence dynamics} \end{array}$$

Förster Picture of Excitation Energy Transfer

When electronic coupling is weak, we can use Forster's resonance energy transfer formula (or can we?):

$$k_F = \frac{J^2}{2\pi\hbar^2} \int_{-\infty}^{\infty} d\omega E_D(\omega) I_A(\omega)$$

Donor

No EET to/from dark states!

Outline

 Part I: Introduction to photosynthetic light harvesting & theoretical backgrounds

 Part II: Quantum coherence in LH2 from purple bacteria – optimization of light harvesting through delocalization of excitons

 Part III: Excitonic quantum coherence in light harvesting – coherence assistant excitation energy transfer

Outline (Part II)

- Light-harvesting apparatus of purple bacteria & the structure of LH2
- Dynamics of light harvesting in the LH2 complex
- B850, B800, and the excitation energy transfer between them
- Optimization of the LH2 complex using quantum coherence
- Concluding remarks

Light-harvesting Apparatus of Purple Bacteria

AFM of native photosynthetic membranes of a purple bacterium Bahatyrova et al., *Nature* **430**, 1058 (2004)

Hu et al., Q. Rev. Biophys. 35, 1 (2002)

Sun Light Absorption by Photosynthetic Pigments

Photosynthetic membranes of purple bacteria

Frese R N et al. PNAS 2004;101:17994-17999

http://course1.winona.edu/sberg/

Pigment Distribution of Photosynthetic Organisms

Photosynthetic microorganisms

http://www.textbookofbacteriology.net

Components of Purple Bacteria Photosynthetic Membranes

Three pigment-protein complexes

B800 B850 B875

Clear energy transfer pathways from high to low energies

B800→B850→B875→P

Frese R N et al. PNAS 2004;101:17994-17999

Light-harvesting Apparatus of Purple Bacteria

- Rapid excitation energy transfer (EET)
 τ_{EET} << τ_{fluorescence}
- Almost unity quantum yield (>95%)
- Architecture highly tuned to gain optimal light harvesting efficiency

Take LH2 as an illustrative example!

LH2 from Rps. acidophila: Structure

- Pigment-protein complex
- 9-fold symmetry

LH2 from Rps. acidophila: Structure

- Pigment-protein complex
- 9-fold symmetry
- B800 ring:
 - 9 BChl a molecules
 - Mg-Mg ~ 21Å
- B850 ring:
 - 18 BChl a molecules
 - Mg-Mg ~ 9Å

LH2 from Rps. acidophila: Excitations

Excitonic couplings

• $J_{B800} \sim -30 \text{ cm}^{-1}$

• $J_{B800-850} \sim 20 \text{ cm}^{-1}$

• $J_{B850} \sim 300 \text{ cm}^{-1}$

 The system exhibits significant disorder

- Dynamical
- Quasi-static
- Static

So, how do we describe EET in such complex systems?

Optimization of LH2 via Quantum Coherence

Electronic coherence manifested as excitation delocalization are heavily utilized for optimal efficiency in **LH2**:

- Ultrafast coherent dynamics and spectral tuning mechanism in the B850 system
- Multichromophoric effects in the B800 to B850 inter-ring energy transfer
- Coherence signatures in the B800 system and robustness of light harvesting

B850 Intra-Ring EET

B850 Intra-Ring Couplings

B850 BChl a
 molecules are closely
 packed and exhibit
 strong couplings
 J_{B850} ~ 300 cm⁻¹

 The exciton states are highly delocalized despite static disorder

B850 Transition Dipole Arrangements

FIG. 1. Model of the arrangement of BChls for the B850 band of LH2 in Rps. Acidophila. The arrows represent the transition dipole moment vectors

Jang & Silbey

B850 Energy Levels & Spectrum

B850 Intra-Ring Dynamics

- Coherent EET dynamics depending on disorder
- Rapid inter-ring relaxation
- Exciton delocalized on 4 BChls on average

van Grondelle & Novoderezhkin, PCCP 2005.

Dynamics of LH2 Light Harvesting

- Energy tuning to efficiently accept energy from B800
- Rapid inter-ring relaxation
- Lowest one-exciton state with very weak fluorescence – ideal for *energy storage*
- All made possible by electronic coherence

Van Grondelle & Novoderezhkin, PCCP 2005.

B800-B850 Inter-Ring Couplings

• B800 & B850 BChls are weakly coupled $J_{B800-850} \sim 20 \text{ cm}^{-1}$

 The EET dynamics should be described by the Forster resonance energy transfer theory

Problems with the Forster Theory

Extremely small spectral overlap

- B800->B850 EET
 rate predicted by
 simple Forster theory
 is 10 times slower
 than observed
- Also in H→B→P, Car
 S1→BChl,...

Generalized Forster Theory

 Includes multichromophoric effects in the FRET formula (MC-FRET):

$$k_F^{MC} = \sum_{j',j''} \sum_{k',k''} \frac{J_{j',k'}J_{j'',k''}}{2\pi\hbar^2} \int_{-\infty}^{\infty} d\omega E_D^{j'',j'}(\omega) I_A^{k',k''}(\omega)$$

The cross terms represent coherence effects within the Sumi, Scholes & Fleming, Jang, Newton, and Silbey... donor and the acceptor, respectively.

MC-FRET Theory for B800-B850 EET

- Distribution of EET rate calculated using the MC-FRET theory is in excellent agreement with experiments
- The most effective channel involves EET from B800 to dark k= ±2 B850 states

B800 Coherence & B800-B850 Inter-Ring EET

B800 Intra-Ring Couplings

- B800 BChls are weakly coupled J_{B800} ~ -30 cm⁻¹
- B800 band is inhomogeneously broadened, static disorder σ > 60 cm⁻¹
- Conventional wisdom considers B800 excitations as localized on a single site, i.e. no coherence

Single-molecule fluorescenceexcitation spectroscopy

Kohler & coworkers, PNAS 2003.

Spectrum of the B800 System

B800 exhibits an asymmetric shape that

was difficult to explain based on localized excitations

- Non-Gaussian form
- Pronounced blue tail

Figure 7. B800-only absorption spectrum (solid circles) obtained after removing the contribution from the B850 absorption spectrum. The dashed line shows the simulated B800 absorption spectrum with a disorder width of 150 cm⁻¹, and the solid line is the simulated spectrum with a disorder width of 100 cm⁻¹.

Coherence Signature of B800

 Simulation including coherence effects is in excellent agreement with experiments

Asymmetric
lineshape because
coherences redistribute oscillator
strengths in the
B800 excitons

Coherence Signature of B800

- Transition dipoles of B800 states show anticorrelated energy dependence
- On average, excitations are delocalized among dimers

Coherence Effects in B800 Intraband EET

 Hole-burning & single-molecule experiments indicate energy dependent homogeneous linewidth in the B800 band

 Explained by relaxation within dimer states

Coherence Effects in B800-B850 Interband EET

Monomer model

Dimer Model

Coherence Effects in B800-B850 Interband EET

- Narrower distribution of B800->B850 EET rates enabled by rapid EET between B800 dimer states
- Quantum coherence in B800 makes light harvesting more robust!

Remarks

- Quantum coherences as represented in delocalized exciton states are necessary for the understanding of LH2 light harvesting: photosynthetic excitons!
- Purple bacteria have employed quantum mechanical rules to optimize the efficiency of light harvesting

Outline

 Part I: Introduction to photosynthetic light harvesting & theoretical backgrounds

 Part II: Quantum coherence in LH2 from purple bacteria – optimization of light harvesting through delocalization of excitons

 Part III: Excitonic quantum coherence in light harvesting – coherence assistant excitation energy transfer

Outline (Part III)

- Light harvesting & excitonic coherence
- Experimental evidences for quantum coherence effects in photosynthetic light harvesting
- Quantum dynamical modeling of coherent excitation energy transfer (EET) in light harvesting
- Coherence assisted excitation energy transfer
- Concluding remarks

Incoherent Hopping Model of Light Harvesting

The conventional paradigm of light harvesting

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Quantum effects in coherent dynamics?

Coherent Evolution of Density Matrix

Time-evolution of a superposition of

stationary

$$|\Psi(t)\rangle = ae^{-i\omega_1 t} |e_1\rangle + be^{-i\omega_2 t} |e_2\rangle$$

Density matrix with excitonic coherence

$$|\Psi(t)\rangle\langle\Psi(t)| = |a|^2 |e_1\rangle\langle e_1| + |b|^2 |e_2\rangle\langle e_2|$$

$$+ab^*e^{-i(\omega_1-\omega_2)t} \mid e_1\rangle\langle e_2\mid +a^*be^{i(\omega_1-\omega_2)t}\mid e_2\rangle\langle e_1\mid$$

- Coherence oscillation results in energy population moving rever
- Cohe phase oscillation ence ing 2-D photon echo spectroscopy: quantum beats in 2-D signals

Two-dimensional Electronic Spectroscopy

Electronic Coherence in FMO (77K)

- 2D electronic spectra show quantum beats on the diagonal cuts
- Strong evidence for long-lasting excitonic coherence (> 600 fs) in the Fenna-Matthews-Olson Complex
 - → coherent wavelike energy transfer
- True electronic quantum effect may play a role in energy transfer

G.S. Engel, T.R. Calhoun, E.L. Read, T. Ahn, T. Mancal, Y.-C. Cheng, R.E. Blankenship & G.R. Fleming, Nature 446, 782 (2007)

New Insights into Photosynthetic Light Harvesting

- Recent experiments indicate that quantum coherence can play a role in light harvesting
- Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems, G.S. Engel, T.R. Calhoun, E.L. Read, T. Ahn, T. Mancal, Y.-C. Cheng, R.E. Blankenship & G.R. Fleming, *Nature* 446, 782 (2007).

 Coherence Dynamics in Photosynthesis: Protein Protection of Excitonic Coherence, H. Lee, Y.-C. Cheng & G.R. Fleming, Science 316, 1462 (2007).

New Insights into Photosynthetic Light Harvesting

- Recent experiments indicate that quantum coherence can play a role in light harvesting – even at ambient temperature
- Long-lived quantum coherence in photosynthetic complexes at physiological temperature, Gregory S. Engel and coworkers, arXiv:1001.5108v1 (2010).

 Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,
 G. D. Scholes and coworkers,
 Nature, 463, 644 (2010).

Quantum Coherence in FMO at Physiological Temperature

Gregory S. Engel and coworkers, *arXiv*:1001.5108v1 (2010) http://arxiv.org/abs/1001.5108

How does such long-lasting electronic coherence affect light harvesting?

Combine experimental results & theoretical modeling to find out!

Strategy for Theoretical Investigations

- In order to elucidate how quantum coherence affects excitation energy transfer in the FMO complex, we
 - Build an effective model for FMO excitations
 & dynamics of excitation energy transfer
 - Refine the theoretical model by comparing to experimental two-dimensional optical spectra
 - Simulate the dynamics of energy trapping both with and without quantum coherence
 - Compare the results to determine the role of electronic quantum coherence

The Fenna-Matthews-Olson Complex

FMO complex is a energy wire connected to RC through BChl 3

James Allen & coworkers, Photosynth. Res., 75:49 2003

FMO Complex: Electronic Interactions

- There is a good starting point for the model of FMO Hamiltonian
- Couplings from quantum chemistry + transition density cube calculations
- Site energies from fitting to optical spectra

Site energies		
BChl	Monomer	Trimer
1	12,445	12,410
2	12,520	12,530
3	12,205	12,210
4	12,335	12,320
5	12,490	12,480
6	12,640	12,630
7	12,450	12,440

* For C. Tep. FMO, unit in cm⁻¹

Redfield Picture of Excitation Energy Transfer

When system-bath coupling is weak, we can use Redfield equation to describe energy transfer:

exciton Hamiltonian dissipation determined by system-bath couplings
$$\partial_t \rho(t) = -i[H_e, \rho(t)] - \Re[\rho(t)]$$

exciton Hamiltonian dissipation determined

population coherence

$$\rho = \begin{bmatrix} \rho_{11} & \rho_{12} & \dots & \rho_{1N} \\ \rho_{12} & \rho_{22} & \dots & \rho_{2N} \\ \vdots & \vdots & & \vdots \\ \rho_{1N} & \rho_{2N} & \dots & \rho_{NN} \end{bmatrix} \quad \text{p: reduced-system density matrix}$$

$$\rho : \text{reduced-system density matrix}$$

$$\rho : \text{number of chromophores}$$

$$\mathfrak{R}[]: \begin{array}{c} \rho_{nn} \to \rho_{mm}: \text{ population dynamics (incoherent)} \\ \rho_{nm} \to \rho_{n'm'}: \text{ coherence dynamics} \end{array}$$

Propagating Dynamics with Bath Memory

 We use a time-nonlocal approach to retain memory effects:

$$\frac{d}{dt}\rho(t) = -i[H_e + H_{int}(t), \rho(t)] - \int_0^t K(t, \tau)\rho(\tau)d\tau$$

- Important for the description of peak shape
- $K(t,\tau)$ ← memory kernel, can be calculated from $\Omega(\omega)$ using perturbation theory
- Decompose $K(t, \tau)$ into exponentials to facilitate efficient propagation of time-nonlocal dynamics

Calculate Nonlinear Spectrum

Also consider light-matter interactions with laser pulses to simulate nonlinear spectrum using dynamical propagation

exciton Hamiltonian

dissipation

$$\partial_t \rho(t) = -i[H_e + H_{int}(t), \rho(t)] - \Re[\rho(t)]$$

light-matter interactions

$$H_{\text{int}}(t) = -\mathbf{V} \cdot \sum_{a=1}^{3} \mathbf{E}_{a}(t)$$

→ Extract photon-echo signal at the phase-matching direction by selective combinations of light-matter interactions in calculations (non-trivial)

M. F. Gelin, D. Egorova, W. Domcke, JCP **123**, 164112 (2005); Y.-C. Cheng, H. Lee, G. R. Fleming, JPCA **111**, 9499 (2007).

-

Simulated 2D Spectrum for FMO

- Iterate to reach good agreement between experiment & theory (starting from Renger's model)
- Require inclusion of doubly excited states and average over a Gaussian distribution of disordered energies
- Provide refined model → basis for studying coherence effects

Coherent vs. Incoherent Model

- Use the refined theoretical model to investigate the effects of quantum coherence on excitation energy transfer
- Two theories for energy transfer dynamics:
 - Coherent: full quantum master equation
 - Incoherent: population dynamics only
 - conventional excitation hopping view
- Initial conditions: coherent superposition for the coherent picture, and population-only for the incoherent picture

Dynamics in the Site Basis

Coherent Picture

Incoherent Picture

- Reversible population redistribution in space showing interference effects due to quantum coherence
- Efficiencies of reaching BChl 3 only marginally different.

Energy Trapping from BChl 3

FMO complex is a energy wire connected to RC through BChl 3

What if an efficient energy trap is attached to BChl 3?

Coherence Assisted Energy Trapping

- Rapid trapping (50 fs) from BChl 3 enhances efficiency for the coherent case because of the suppression of back transfer
- Quantum coherence may enable excitation to find RC rapidly through reversible sampling in space → Coherence assisted energy trapping

Simple Model for Coherence Assisted Energy Trapping

Consider energy transfer within a dimer of two coherently coupled sites:

Effective A→B time: 500 fs

Bloch dynamics using 450 fs A/B dephasing time, 500 fs intrinsic A→B transfer time; actually modeled based on parameters suitable for a photosynthetic reaction center

Simple Model for Coherence Assisted Energy Trapping

Adding rapid trapping by T results in rapid A population decay

only possible because of coherent oscillation

T efficiently captures energy on B at the maxima!!

Energy trap

450 fs A/B dephasing time, 500 fs A→B transfer time, 50 fs B→T time.

Simple Model for Coherence Assisted Energy Trapping

Quantum coherence promotes the efficiency of light capture

This model explains efficient excitation energy trapping in the photosynthetic reaction center of purple bacteria

Coherence Assisted Energy Trapping

- Long-lived electronic coherence enables the system to perform rapid and reversible sampling in space to search for the trap site
- Efficient trapping process dissipates the energy and localizes the excitation
- The scheme can be more efficient than incoherent hopping and is likely to be more robust on energetically disordered landscape
- This proposal is currently being actively studied by many groups: Aspuru-Guzik (Harvard), Lloyd (MIT), Whaley (Berkeley), Plenio (Imperial College, UK)...

How is the long-lasting quantum coherence achieved?

- 1. Protein environment & correlated motions
- 2. Non-equilibrium effects in energy transfer

Coherence Photon Echo of Bacterial Reaction Center

- Protein protection of electronic quantum coherence:
 - H. Lee, <u>Y.-C. Cheng</u> & G.R. Fleming, *Science* **316**, 1462 (2007).

The Reaction Center of Purple Bacteria

The Reaction Center of Purple Bacteria

Probing H/B Coherence Dynamics: Two-color Electronic Coherence Photon Echo

Ordering: 750-800-750 (nm)

- |H□and |B□selectively excited
- Design to probe coherence specifically
 |g□田 in t₁, |B□田 in t₂

Experimental Data @ 77K

Mapping Coherence Dynamics in the RC

|g>\leftrigordaring|

Along t_2 : $|B\rangle\langle H|$ dephasing

signal

H. Lee, Y.-C. Cheng, G.R. Fleming, Science 316, 1462 (2007).

Mapping Coherence Dynamics

|g><H| dephasing

- Rapid |g⟩⟨H| dephasing (t₁)

 → Large E_H fluctuations.
- Slow |B⟩⟨H| dephasing (t₂)
 → Smaller E_H-E_B energy gap fluctuations.
- Energy fluctuations on B and H are highly correlated.
- Evidence for correlated protein environments!

H. Lee, Y.-C. Cheng, G.R. Fleming, Science 316, 1462 (2007).

Theoretical Modeling

Impulsive response function formalism. BPhy-BChl electronic coupling ~ 220 cm⁻¹. Transition energy fluctuations on Bphy/BChl:

$$C_{BPhy}(t) = \lambda_{BPhy} \exp(-t^2 / \tau_0^2) + \Delta_0^2,$$

$$C_{BChl}(t) = \lambda_{BChl} \exp(-t^2 / \tau_0^2) + \Delta_0^2.$$

Cross-correlation between BPhy and BChl fluctuations (described by c):

$$C_{hb}(t) = \lambda_{hb} \exp(-t^2 / \tau_0^2) + \Delta_0^2; \ \lambda_{hb} = c\sqrt{\lambda_h \lambda_b}.$$

250 cm⁻¹ vibrational mode coupled to BPhy (sawtooth pattern).

Experiment vs. Theory

H. Lee, Y.-C. Cheng, G.R. Fleming, Science 316, 1462 (2007).

Protein Protection of Electronic Coherence

- Electronic coupling alone (c=0.6) cannot explain the long dephasing time
- Strong cross-correlations (c~0.9)
 between protein environments
 responsible for long-lived |B>(H)
 coherence
- → "Protein protection of excitonic coherence"

|B $\$ | dephasing times: $t_{g,77K} = 440 fs$, $t_{g,180K} = 310 fs$

Non-equilibrium Effects in Excitation Energy transfer

- Non-equilibrium effects could be important in ultrafast dynamics
- Conventional theories assume that baths are always in equilibrium → over-estimate of coherence dephasing rate!

Photon-induced dynamics

Redfield/Forster picture

Non-equilibrium Effects Lead to Longer Decoherence Time

- Calculations based on new theoretical formalism including nonequilibrium bath effects show longer decoherence time
- New theory predicts quantum coherence lasting in the FMO complex at physiological temperature (Ishizaki &Fleming, PNAS 2000)

Benchmark calculations on a spin-boson model. Ishizaki &Fleming, JCP 2009.

Concluding Remarks

Pigments and proteins in the reaction center of a purple bacteria

- Energy transfer through quantum coherence has been revealed in photosynthetic complexes
- Coherent dynamics may promote energy trapping in light harvesting
- Correlations in protein dynamics & non-equilibrium bath effects contribute to the preservation of coherence
- More challenges ahead in gaining full understanding and applying to artificial systems

Acknowledgements

- Bob Silbey (MIT)
- Graham Fleming (UC Berkeley)
- Seogjoo Jang (Queens College, CUNY)
- The Fleming Group (UC Berkeley)

National Science Council of Taiwan

Thank You!

Quantitative Description Still Not Available

To describe the dynamics in the the intermediate regime and the long-lasting coherence dynamics require new theoretical developments. We have to go beyond the secular approximation and Redfield equation.

Benchmark calculations on a spin-boson model using several different theories. Ishizaki and Fleming, *unpublished data*.

Propagating Dynamics with Bath Memory

• Redfield theory \rightarrow does not describe full $\langle \delta \omega(t) \delta \omega(0) \rangle$

$$\frac{d}{dt}\rho(t) = -i[H_e + H_{int}(t), \rho(t)] - \Re(t) \cdot \rho(t)$$

 We use a time-nonlocal approach to retain memory effects:

$$\frac{d}{dt}\rho(t) = -i[H_e + H_{int}(t), \rho(t)] - \int_0^t K(t, \tau)\rho(\tau)d\tau$$

• *K*(t,τ) ← memory kernel, can be calculated from C(t) using perturbation theory