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Some Properties of Stress Tensor Fluctuations:

Anticorrelations

Skewed Probability Distributions



Electromagnetic analogy: electric field fluctuations near a 
perfectly reflecting plate

Ci(t − t′) = 〈Ei(t)Ei(t′)〉
electric field correlation function:

〈v2
i 〉 =

q2

m2

∫ t0

0

dt

∫ t0

0

dt′ Ci(t − t′) = constant

mean squared velocity of a particle of 
charge q and mass m:

Anticorrelations prevent 〈v2
i 〉

from growing in time.

Anticorrelations

H. Yu & LF

(Required by energy 
conservation.)



Brownian Motion of Charged Particles in an 
Expanding Universe

Bessa, Bezerra &LH

Now the equation for        contains powers of the 
scale factor multiplying the correlation function.

Result:           can now grow due to non-cancellation of 
anti-correlations.

Energy conservation no longer required.

〈v2〉

〈v2〉



Stress tensor correlations and anticorrelations in flat space
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(T.  Roman and  LF)

C(t, t′) = 〈: Ttt(t) : : Ttt : (t′)〉 = energy density correlation function



Probability distribution for quantum stress tensor 
fluctuations

Must be a skewed, non-Gaussian distribution

In general 〈(Tμν)3〉 �= 0

Expect the probability distribution to have a 
lower cutoff at the quantum inequality bound.



Quantum Inequalities

Lower bounds on averaged expectation values in 
an arbitrary quantum state:

∫
〈Tμν〉uμ uν g(τ, τ0) dτ ≥ − C

τd
0

g(τ, τ0)
τ0 d

C= sampling function

= sampling time
= positive constant

= spacetime dimension



Let u =
∫

Ttt g(t, τ) dt averaged energy density

A result for vacuum fluctuations in conformal field 
theory (2 spacetime dimensions)

C. Fewster, T. Roman & LF

u =
1√
πτ

∫ ∞

−∞
Ttt(x, t) e−t2/τ2

dt

P (x) =
πc/24

Γ(c/24)
(x + x0)

c
24−1 e−π(x+x0)

P (x) = 0 x < x0

x ≥ x0

x0

x = u τ2

= quantum inequality bound

c = central charge



 A massless scalar field in two dimensions (c = 1):

P (x) =
π1/24

Γ(1/24)

(
x +

1
24π

)−23/24

e−π(x+1/24π)

P (x) = 0 x < − 1
24π

x = τ2 u

84% chance of 
finding u < 0
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P(u) is a shifted Gamma distribution

Negative energy is more likely than positive energy

Positive fluctuations tend to be larger in magnitude

Possible applications to anthropic arguments?



“Boltzmann Brains”



〈Tμν〉 in and near de Sitter spacetime

in de Sitter: 〈Tμν〉 ∝ gμν

shifts the cosmological constant

near de Sitter: 
〈Tμν〉 contains both local geometrical terms and 

a nonlocal term
Starobinski, Horowitz & Wald

Does not lead to instability (within the limits of 
semiclassical theory) but does seem to alter to 

propagation of gravity waves
JT Hsiang, DS Lee, HL Yu & LF



Basic idea:  Look at the effects of fluctuations of the 
vacuum electromagnetic field stress tensor on the 

local expansion rate.

Possible role of stress tensor fluctuations in 
cosmological models

Treat the Raychaudhuri equation as a 
Langvin equation.

I.   A Kinematic Model

 C.H. Wu, K.W. Ng , S.P. Miao, R. Woodard & LF



Stress tensor and expansion fluctuations

uα
= 4-velocity of a congruence of timelike geodesics

θ = uα
;α= expansion of the congruence

Raychaudhuri equation 

Rμν = 8π(Tμν − 1
2
gμνT )

 Ordinary matter: focussing 



θ fluctuations

Assume σμν = ωμν = 0, so that

dθ

dλ
= −Rμνuμuν − 1

3
θ2

Let θ = θ0 + θ1, where θ0 = 3ȧ/a, and

dθ1

dt
= − (Rμνuμuν)q −

2
3
θ0θ1

θ1(t) = −a−2(t)
∫ t

t0

dt′ a2(t′) (Rμνuμuν)q

(in flat RW models)



Inflationary expansion followed by reheating 
and a radiation dominated universe

a(η) =
1

1 − Hη
, η0 < η < 0,

a(t) = eH(t−tR) , t ≤ tR ,

tR = reheating time in comoving time

η0 = conformal time
when inflation begins

a(η) = 1 + H η, η > 0,

a(t) =
√

1 + 2H(t − tR), t ≥ tR.



Expansion correlation function:

〈θ(η1) θ(η2)〉 − 〈θ(η1)〉〈θ(η2)〉 =

a−2(η1) a−2(η2)
∫ η1

η0

dη a−1(η)
∫ η2

η0

dη′ a−1(η′) E(Δη, r)

E(Δη, r) = flat space energy density 
correlation function

Stress tensor correlation function

 Conformally invariant fields:
CRW

μναβ(x, x′) = a−4(η) a−4(η′) Cflat
μναβ(x, x′)

Cμναβ(x, x′) = 〈Tμν(x)Tαβ(x′)〉 − 〈Tμν(x)〉〈Tαβ(x′)〉
(conformal anomaly cancels)



Effect of expansion  fluctuations on redshifting 
after reheating

Conservation law for a perfect fluid:

Expansion fluctuations imply density fluctuations

ρ̇ + θ(ρ + p) = 0

p = wρLet and integrate the conservation law to 
find the density correlation function. 

(Hawking-Olson approach to density perturbations)



ηs = conformal time of last scattering

(Non-Gaussian fluctuations)

Cρ(x1, x2) =
〈

δρ(x1)
ρ

δρ(x2)
ρ

〉

= (8π)2 �4p (1 + w)2
∫ ηs

0

dη1

a(η1)

∫ ηs

0

dη2

a(η2)

∫ η1

η0

dη

a(η)

∫ η2

η0

dη′

a(η′)
E(Δη, r)

�p = Planck length

Power spectrum of the density fluctuations:

upsets cancellation 
of anticorrelations!

Pk = 4πk3 Pk

Pk =
1

(2π)3

∫
d3r eik·r Cρ(r, ηs)



Result:

S 	 1
�p =

S =

Planck length

scale factor increase during inflation

Leading term gives an unobservable    -function 
in      ,  so ignore it.

δ
Cρ

Pk ∼ �p k6 H−3(−k S3 + H S2)

Pk ∼ �4p k6 H−2 S2Then

Not scale invariant and increases as S increases. 



II.   A Dynamical Model

Consider a single scalar inflaton field     and 
a fluctuating conformal field stress tensor.

ϕ

ϕ
ϕ

ΔϕSolve the coupled Einstein-    equations to find         , the 
fluctuation in    induced by the stress tensor fluctuations.

Basic idea:

�ϕ + V ′(ϕ) = 0

Gμν = 8πT total
μν = 8π(T infl

μν + T conf
μν )

Use the resulting inflaton fluctuations to compute a 
power spectrum of density perturbations.



Pk ∼ �4p k2 H (−k S3 + H S2) ∼ �4p k2 H S2

Result:

ignore, as before

Again not scale invariant and increases as S increases. 

Interpret the increase as due to the non-cancellation 
of the anticorrelated fluctuations.

(Non-Gaussian fluctuations)



This non-Gaussian, non-scale invariant contribution 
must be a small part of the total power spectrum. 

Constraint on the duration of inflation:

S < 1042

(
1012 GeV

TR

)3

reheat energy

Allows enough inflation to solve the horizon and 
flatness problems (S > 1023).



Opens the possibility of observing quantum gravity 
effects as a non-Gaussian, non-scale invariant 

component in the large scale structure.

 Use of transplanckian modes.

Dominant contribution comes from modes above 
the Planck scale.

 Possibility of an observational test, and a possible 
probe of transplanckian physics and quantum gravity.



Summary

Quantum stress tensor fluctuations exhibit subtle 
correlations and anticorrelations.

Their probability distribution is highly skewed.

In an expanding universe, stress tensor fluctuations 
lead to expansion and density fluctuations.

Leads to a constraint on the duration of inflation.

Possibility of an observational test? Search for a 
non-scale invariant, non-Gaussian component in the 

cosmic microwave background.


