

Space-time Qubits, **Event Operators and Closed Timelike Curves** T.C.Ralph, C.M.Myers, J.Pienaar, T.Downes, G.J.Milburn Department of Physics School of Physical Sciences The University of Queensland

Defence Science and Technology Organization

Overview

- * Quantum Information on Closed Timelike Curves
- * Space-time Qubits
- * Event operators and a space-time description of Quantum Information on Closed Timelike Curves

* Conclusions

Creation of a Closed Timelike Curve

VOLUME 61, NUMBER 13

PHYSICAL REVIEW LETTERS

26 SEPTEMBER 1988

PHYSICAL REVIEW A 70, 032309 (2004)

Quantum computational complexity in the presence of closed timelike curves

Dave Bacon*

Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125, USA and Department of Physics, California Institute of Technology, Pasadena, California 91125, USA (Received 28 October 2003; published 13 September 2004)

PRL 102, 210402 (2009) PHYSICAL REVIEW LETTERS

week ending 29 MAY 2009

Localized Closed Timelike Curves Can Perfectly Distinguish Quantum States

Todd A. Brun,¹ Jim Harrington,² and Mark M. Wilde^{1,3}

¹Communication Sciences Institute, Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA

²Applied Modern Physics (P-21), MS D454, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ³Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Received 7 November 2008; published 27 May 2009)

PRL 103, 170502 (2009)

PHYSICAL REVIEW LETTERS

week ending 23 OCTOBER 2009

Can Closed Timelike Curves or Nonlinear Quantum Mechanics Improve Quantum State Discrimination or Help Solve Hard Problems?

Charles H. Bennett,^{1,*} Debbie Leung,^{2,†} Graeme Smith,^{1,‡} and John A. Smolin^{1,§} ¹*IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA* ²*Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada* (Received 2 September 2009; published 21 October 2009)

PHYSICAL REVIEW A 70, 032309 (2004)

Quantum computational complexity in the presence of closed timelike curves

Dave Bacon*

Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125, USA and Department of Physics, California Institute of Technology, Pasadena, California 91125, USA (Received 28 October 2003; published 13 September 2004)

PRL 102, 210402 (2009) PHYSICAL REVIEW LETTERS

week ending 29 MAY 2009

Localized Closed Timelike Curves Can Perfectly Distinguish Quantum States

Todd A. Brun,¹ Jim Harrington,² and Mark M. Wilde^{1,3}

¹Communication Sciences Institute, Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA

²Applied Modern Physics (P-21), MS D454, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ³Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Received 7 November 2008; published 27 May 2009)

PRL 103, 170502 (2009)

PHYSICAL REVIEW LETTERS

week ending 23 OCTOBER 2009

Can Closed Timelike Curves or Nonlinear Quantum Mechanics Improve Quantum State Discrimination or Help Solve Hard Problems?

Charles H. Bennett,^{1,*} Debbie Leung,^{2,†} Graeme Smith,^{1,‡} and John A. Smolin^{1,§} ¹*IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA* ²*Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada* (Received 2 September 2009; published 21 October 2009)

...but all these treatments are non-relativistic (not even dynamic)...

$$\rho = Tr_2[U(\rho_{in} \otimes \rho)U^{\dagger}]$$

• Heisenberg Picture

• Heisenberg Picture

- Heisenberg Picture
- Field ground-state

time

- Heisenberg Picture
- Field ground-state
- Retain Pauli description
 of qubits

2-tier approach

 $|0\rangle = |vacuum\rangle \quad \ |1\rangle = |1st\; excited\rangle$

2-tier approach

$$\begin{split} |0\rangle &= |vacuum\rangle \quad |1\rangle = |1st\; excited\rangle \\ \mbox{Field Pauli's:} \quad Z &= 1 - 2a^{\dagger}a \quad X = a^{\dagger}(1 - a^{\dagger}a) + (1 - a^{\dagger}a)a \\ \quad Y &= i(a^{\dagger}(1 - a^{\dagger}a) - (1 - a^{\dagger}a)a) \end{split}$$

2-tier approach

$$\begin{split} |0\rangle &= |vacuum\rangle \quad |1\rangle = |1st\; excited\rangle \\ \mbox{Field Pauli's:} \quad Z &= 1 - 2a^{\dagger}a \quad X = a^{\dagger}(1 - a^{\dagger}a) + (1 - a^{\dagger}a)a \\ \quad Y &= i(a^{\dagger}(1 - a^{\dagger}a) - (1 - a^{\dagger}a)a) \end{split}$$

$$|0
angle = |0
angle_1|1
angle_2$$
 $|1
angle = |1
angle_1|0
angle_2$

2-tier approach

$$\begin{split} |0\rangle &= |vacuum\rangle \quad |1\rangle = |1st \; excited\rangle \\ \mbox{Field Pauli's:} \quad Z &= 1 - 2a^{\dagger}a \quad X = a^{\dagger}(1 - a^{\dagger}a) + (1 - a^{\dagger}a)a \\ \quad Y &= i(a^{\dagger}(1 - a^{\dagger}a) - (1 - a^{\dagger}a)a) \end{split}$$

$$|0\rangle = |0\rangle_1 |1\rangle_2 \quad |1\rangle = |1\rangle_1 |0\rangle_2$$

Particle Pauli's: $\mathbf{Z} = Z_1$ $\mathbf{X} = X_1 X_2$ $\mathbf{Y} = Y_1 X_2$

2-tier approach

$$\begin{split} |0\rangle &= |vacuum\rangle \quad |1\rangle = |1st \; excited\rangle \\ \mbox{Field Pauli's:} \quad Z &= 1 - 2a^{\dagger}a \quad X = a^{\dagger}(1 - a^{\dagger}a) + (1 - a^{\dagger}a)a \\ Y &= i(a^{\dagger}(1 - a^{\dagger}a) - (1 - a^{\dagger}a)a) \end{split}$$

$$|0\rangle = |0\rangle_1 |1\rangle_2 \quad |1\rangle = |1\rangle_1 |0\rangle_2$$

Particle Pauli's: $\mathbf{Z} = Z_1$ $\mathbf{X} = X_1 X_2$ $\mathbf{Y} = Y_1 X_2$

Heisenberg evolution of single particle production

$$\hat{a}_{out}(k) = \sum_{j=1}^{N} \hat{n}_{b_j} \hat{a}_j(k) \prod_{i=0}^{j-1} (1 - \hat{n}_{b_i}) + \hat{c}\hat{u}$$

2-tier approach:

2-tier approach:

2-tier approach:

$$\hat{a}(t,x) = \int dk \ G(k) \ e^{ik(x-t+\phi^+)} \hat{a}_k$$
$$[\hat{a}(t,x_1), \hat{a}(t,x_2)^{\dagger}] = \int dk |G(k)|^2 e^{ik(x_1-x_2)}$$

CTCs equivalent circuit

CTCs equivalent circuit

Mode operators

mode operators in quantum optics

$$\hat{a}(t,x) = \int dk \ G(k) \ e^{ik(x-t+\phi^+)} \hat{a}_k$$

$$[\hat{a}(t,x_1), \hat{a}(t,x_2)^\dagger] = \int dk |G(k)|^2 e^{ik(x_1-x_2)}$$
 geodesic

mode operator

event operator

$$\bar{a}_{i}(x,t) = \int dk \ G(k) \ e^{ik(x-t+\phi^{+})} \int d\Omega \ J(\Omega) \ e^{i\Omega(t_{d}-\tau(t))} \bar{a}_{i,k,\Omega}$$

$$[\hat{a}_{t,x}, \hat{a}_{t,x'}^{\dagger}] \neq [\bar{a}_{t,x}, \bar{a}_{t,x'}^{\dagger}] \neq \int dk |G(k)|^{2} e^{ik(x-x')}$$
geodesics
event operator

mode operator

event operator

$$\bar{a}_{i}(x,t) = \int dk \ G(k) \ e^{ik(x-t+\phi^{+})} \int d\Omega \ J(\Omega) \ e^{i\Omega(t_{d}-\tau(t))} \bar{a}_{i,k,\Omega}$$

$$[\hat{a}_{t,x}, \hat{a}_{t,x'}^{\dagger}] \neq [\bar{a}_{t,x}, \bar{a}_{t,x'}^{\dagger}] \neq \int dk |G(k)|^{2} e^{ik(x-x')}$$
geodesics
event operator

mode operator

event operator

$$\bar{a}_i(x,t) = \int dk \ G(k) \ e^{ik(x-t+\phi^+)} \int d\Omega \ J(\Omega) \ e^{i\Omega(t_d-\tau(t))} \bar{a}_{i,k,\Omega}$$
$$[\hat{a}_{t,x}, \hat{a}_{t,x'}^{\dagger}] \neq [\bar{a}_{t,x}, \bar{a}_{t,x'}^{\dagger}] \neq \int dk |G(k)|^2 e^{ik(x-x')}$$

event operator

$$\begin{split} \bar{a}_i(x,t) &= \int dk \ G(k) \ e^{ik(x-t+\phi^+)} \int d\Omega \ J(\Omega) \ e^{i\Omega(t_d-\tau(t))} \bar{a}_{i,k,\Omega} \\ & [\hat{a}_{t,x}, \hat{a}_{t,x'}^{\dagger}] \neq [\bar{a}_{t,x}, \bar{a}_{t,x'}^{\dagger}] \neq \int dk |G(k)|^2 e^{ik(x-x')} \end{split}$$

does not require an interaction

$|\Psi\rangle = |0\rangle |0\rangle + |1\rangle |1\rangle$

entanglement

 $|\Psi\rangle = |0\rangle |0\rangle + |1\rangle |1\rangle$

entanglement

does not require an interaction

Space time diagram of correlation exp

Coincidence rate vs height of PBS

Space time diagram of correlation exp 2

Space time diagram of correlation exp 2

Summary

* Described a method for modeling qubits as dynamic space-time objects
* Discussed the physical content of the Deutsch approach to solving CTCs
* Generalized our space-time qubits so as to be compatible with CTCs International Relativistic Quantum Information Workshop

RQI 4

Brisbane, 22 - 26 November 2010

more information: ralph@physics.uq.edu.au

