Workshop on QIS and QMP, Dec 20, 2009

Plaquette Renormalized Tensor Network States: Application to Frustrated Systems

Ying-Jer Kao 高英哲 Department of Physics and Center for Quantum Science and Engineering National Taiwan University

Hsin-Chih Hsiao, Ji-Feng Yu(NTU) Anders W. Sandvik, Ling Wang (Boston)

- Large number of degenerate classical ground states
- Emergence of novel spin-disordered ground states due to quantum fluctuations
- Hard to study numerically: size limitation in Exact Diagonalization, sign problem in QMC (also fermion), dimension limit for DMRG (d=1)

- Negative matrix elements
- Fluctuations in signs:ensemble average diverges at low temperature

Simulation of Quantum Systems

• Is it possible to classically simulate faithfully a quantum system?

• To represent a quantum state:

$$
|\psi\rangle = \sum_{i_1, i_2, ..., i_n=1}^d c_{i_1 i_2 ... i_n} |i_1 i_2 ... i_n\rangle
$$

classical representation requires *dn* complex coefficients which grows exponentially with *n*

• Ground states of quantum many-body systems are usually entangled.

Entanglement

Complementary viewpoints on entanglement:

- Quantum information theory: a crucial resource to process and send information in novel ways
- Quantum many-body physics: entanglement gives rise to exotic phases of matter
- Numerical simulation of strongly correlated quantum systems: source of difficulties !!

What kind of superpositions appear in nature? symmetries, local interactions, little entanglement

- Between each nearest-neighbor lattice site, we introduce a Ddimensional maximally entangled state: $|\phi\rangle = \frac{1}{\sqrt{2}}$ *D* $\sum |\alpha \alpha$ >
- At each lattice site there are two ends to these $\sum_{\alpha=1}^{\infty} a_{\alpha=1}$ entangled states
- Operator *A*: project *D2* to *d* (AKLT GS: *D=2, d=3*)

$$
|\psi\rangle = \sum_{i=1}^d A_1(i_1)A_2(i_2)\cdots A_N(i_N)|i_1,i_2,\ldots,i_N\rangle
$$

- We reexpress the 2^N coefficients of in terms of about $2D^2N$ parameters (linear in *N*)
- Key ingredient behind the success of DMRG

Tensor product states

• Extension similar ideas to higher dimension: tensor product states, projected entangled paired state (PEPS)

Variational wave function

• Use tensor product state as trial wave function

Variational Energy

$$
H = \sum_{i} H_i
$$

$$
H_i = \hat{O}_i^0 + \hat{O}_i^1 \hat{O}_j^2 + \dots
$$

$$
\langle \psi | H | \psi \rangle = \operatorname{tr} [T_i^0 \otimes T \otimes T \otimes \ldots] \n+ \operatorname{tr} [T_i^1] \otimes T_j^2 \otimes T \otimes \ldots] + \ldots
$$

$$
\begin{array}{c|c} T & T & T \\ \hline T & T^1 & T^2 \\ \hline T & T & T \\ \hline \end{array}
$$

$$
T^a = \sum_{s,s'} A^{s'\ast} \otimes A^s \langle s' | \hat{O}^a | s \rangle
$$

- Computationally intensive: DN_bond
- Direct computation of contraction is impossible: approximation (RG schemes)

Tensor Contraction

- Contracting the internal indices, the four-leg tensor can be viewed as a single tensor.
- External link dimension becomes $D²$ after one contraction; exponential growth as we keep contracting D^4, D^8
- (b) • Computationally intensive; Impossible to store intermediate results.
- Need some RG scheme.

• Introduce cut-off for the bond-contraction

Department of Physics National Taiwan University H. C. Jiang, Z. Y. Weng, and T. Xiang, Phys. Rev. Lett. 101, 090603 (2008) Gu, Levin, Wen, Phys. Rev. B, 78, 205116 (2008)

布尔兴

Tranverse ising model

$$
H = -\sum_{\langle ij \rangle} \sigma^z_i \sigma^z_j - h \sum_i \sigma^x_i
$$

- \bullet D=2, D_{cut}=18, non-MF results is obtained
- Method is not variational
	- Locally optimized
	- SVD truncation
- Translational invariance explicitly broken

Gu, Levin, Wen, Phys. Rev. B, 78, 205116 (2008)

Plaquette-Renormalization

d compositor de la compos
La compositor de la compo

enormalization of an o-muex plaquette tensor usil
uviliary 2 indox tensors S auxiliary 3-index tensors S. \overline{b} Renormalization of an 8-index plaquette tensor using

Department of Physics National Taiwan University

j

Plaquette renormalized trial wave function

$$
\psi \rangle = \sum_{\{s\}, i, j, k, l, ...} (A_1^{s_1})_{i, j, k, l} (A_2^{s_2})_{k, m, n, o} (S_1)_{m, j, p} (S_2)_{q, p, r} \cdots | s_1 s_2 \cdots s_N \rangle
$$

=
$$
\sum_{\{s\}} t Tr(A_1^{s_1} \otimes A_2^{s_2} \otimes S_1 \otimes S_2 \otimes \cdots \otimes A_N^{s_N}) | s_1 s_2 \cdots s_N \rangle
$$

- We treat the elements in the A and S tensors as variational parameters, and minimize the total energy.
- **Principal axis method:** derivative-free, but computationally expensive.

Expectation values

$$
H = \sum_{i} \hat{O}_{i}^{0} + \sum_{\langle i,j \rangle} \hat{O}_{i}^{1} \hat{O}_{j}^{2} + \sum_{\langle\langle i,j \rangle\rangle} \hat{O}_{i}^{1} \hat{O}_{j}^{2} + \cdots
$$

Normalization factor: $\langle \psi | \psi \rangle = t Tr \big[T_1 \otimes T_2 \otimes R_1 \otimes \cdots \otimes T_N \big]$ Two-body interaction:

$$
\langle \psi | \hat{O}_i^1 \hat{O}_j^2 | \psi \rangle = tTr \Big[T_1 \otimes T_2 \otimes R_1 \otimes \cdots \otimes T_i^1 \otimes T_j^2 \otimes \cdots \otimes T_i^1 \otimes T_j^2 \otimes \cdots \otimes T_i^1 \otimes T_j^2 \otimes \cdots \otimes T_j^2 \otimes A_j^{s_j^*} \otimes A_j^{s_j^*} \Big]
$$

$$
T_j^a = \sum_{s_j, s_j} A_j^{s_j^*} \otimes A_j^{s_j^*} \langle s_j | \hat{O}_j^a | s_j \rangle
$$

 $R_i = S_i^* \otimes S_i$

Plaquette-Renormalization of TNS

- **Effective reduced** tensor network for a 8x8 lattice
- Summing over all unequivalent bonds and sites
- Method is variational
- Optimize T and R globally
- Size scaling: L²Log(L)

Transverse Ising Model

- Assume translational invariance: all initial T's are the same.
- Globally optimized T and R.
- $h_c = 3.33$ (3.04, QMC)
- \bullet m_z~ (h-h_c)^β, β ~0.40
- h~h_c, β ~0.50 mean-field like. (Sanvik's talk).

Transverse Ising Model

- Spins at different lattice sites inside the plaquette have different environments.
- We use different tensors inside a plaquette.

$$
M_2^2
$$
 at $\vec{Q} = (\pi, 0)$ or $\vec{Q} = (0, \pi)$

Department of Physics National Taiwan University

H. J. Schulz, T. A. Ziman and D. Poilblanc, J. Phys. I 6 (1996) 675-703

 $M_2^2(D=2)$

 $M_2^2(exact)$

 0.8

 $M_2^2(D=3)$

 M_2^2 (exact)

 $0.8\,$

 0.6

0.6

Building block: plaquette

- 12 internal sums. Maximum computational effort: *D8*.
- Each free index and summation contributes *D.*

$$
T^{(1),\alpha\beta}_{\quad\gamma\delta}=\sum_{\alpha_1,\alpha_2,\ldots,\delta_1,\delta_2,ijkl}S^{(1),\alpha}_{\alpha_1\alpha_2}S^{(1),\beta}_{\beta_1\beta_2}S^{(1),\gamma}_{\gamma_1\gamma_2}S^{(1),\delta}_{\delta_1\delta_2}T^{(0),\alpha_1l}T^{(0),\alpha_2j}_{\quad\gamma_2i}T^{(0),j\beta_1}_{\quad\quad k\delta_2}T^{(0),l\beta_2}_{\quad\quad \gamma_1k}
$$

Department of Physics National Taiwan University

Computational Costs

- Globally optimized T and R.
- Contraction calculation is highly parallelizable.
- IBM Blue Gene/L at BU. D=2, takes weeks to optimize.
- Bottleneck: plaquette internal contractions.
- Take advantage of GPU (Graphic Processing Unit).

GPU supercomputing

• The GPU is specialized for compute-intensive, massively data parallel computation

nVidia Tesla 10-Series Processor

NTU CQSE GPU cluster 16x Tesla S1070=64 Teraflops

GPU kernel Strategy

- Inputs: $T(D⁴)$, $S(D³)$ (unchanged during contraction)
	- ‣ Load into texture memory (optimized for 2D read)
- Output: \overline{I}' (D^4)
- Thread block geometry up to $3D$ (t_x, t_y, t_z) , grid of blocks geometry up to $2D (b_x, b_y)$.
	- Reshape $\overline{\mathsf{T}}$ into a D^2 x D^2 matrix, S into a DxD² matrix.
	- \cdot Use D^2xD^2 thread blocks, each block has DxD threads. Each block computes an element of \overline{T} . Use block indices (b_x , b_y) to represent external indices.

NVIDIA

Benchmark: One plaquette contraction

- CPU code: Intel Core 2 Duo E4700 2.6GHz
	- D=6, 2.1 GFLOPS
	- D=8, 3.4 GFLOPS
- GPU, Single Precision code (unoptimized):
	- ‣ D=6, 24.9 GFLOPS (GTX8800), 49.7GFLOPS (GTX280)
	- ‣ D=8, 92.2 GFLOPS (GTX280)
- 10x to 30x speedup. A factor of at least 8 performance hit for DP.
- GPU code requires optimization
	- ‣ Bank conflict in shared memory R/W
	- ‣ Low stream multiprocessor occupancy
	- ‣ Current scheme D bound by shared memory size
	- ‣ Global memory bandwidth hiding

Conclusion

- Tensor network states are promising candidates to understand frustrated quantum spin systems.
- In plaquette renormalized tensor network representation, no approximations are made when contracting the effective renormalized tensor network.
- Non-MFT results even with the smallest possible nontrivial tensors and truncation $(D = 2)$
- Larger internal bond dimension D is necessary to get the right physics.
- GPU can potentially speed up the computationally intensive part of the calculation.
- Use Monte Carlo sampling in the future.

