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Frustration

• Large number of degenerate classical ground states

• Emergence of novel spin-disordered ground states due 
to quantum fluctuations

• Hard to study numerically: size limitation in Exact 
Diagonalization, sign problem in QMC (also fermion), 
dimension limit for DMRG (d=1)

or

AF
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Negative Sign Problem

• Negative matrix elements

• Fluctuations in signs:ensemble average diverges at 
low temperature
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Simulation of Quantum Systems
• Is it possible to classically simulate faithfully a 

quantum system? 

• To represent a quantum state:

classical representation requires dn complex 
coefficients which grows exponentially with n

• Ground states of quantum many-body systems are 
usually entangled.

|ψ� =
d�

i1,i2,...,in=1

ci1i2...in |i1i2 . . . in�
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Entanglement
Complementary viewpoints on entanglement:
• Quantum information theory: a crucial resource to 

process and send information in novel ways

• Quantum many-body physics: entanglement gives rise 
to exotic phases of matter

• Numerical simulation of strongly correlated quantum 
systems: source of difficulties !!

What kind of superpositions appear in nature?
symmetries, local interactions, little entanglement
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Entanglement: Matrix Product State

• Between each nearest-neighbor lattice site, we introduce a D-
dimensional maximally entangled state: 

• At each lattice site there are two ends to these maximally 
entangled states

• Operator A: project D2 to d (AKLT GS: D=2, d=3)

• We reexpress the 2N coefficients of in terms of about 2D2N 
parameters (linear in N)

• Key ingredient behind the success of DMRG
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S. Ostlund and S. Rommer, Phys. Rev. Lett. 75, 3537(1995)
Afflect, Kennedy, Lieb, Tasaki, Commun Math Phys 115 (1988)
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Tensor product states
• Extension similar ideas to higher dimension:  

tensor product states, projected entangled paired 
state (PEPS)

|ψ� =
�

{s}

tTr{A(s1)A(s2) · · ·A(sN )}|s1, s2, . . . , sN �

Aijkl: rank-4 tensor
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F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066
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Variational wave function
• Use tensor product state as trial wave function

E =
�ψ|H|ψ�
�ψ|ψ� ≥ E0
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Variational Energy

• Computationally intensive: DN_bond

• Direct computation of contraction is impossible: 
approximation (RG schemes)
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Tensor Contraction
• Contracting the internal indices, 

the four-leg tensor can be 
viewed as a single tensor.

• External link dimension becomes 
D2 after one contraction; 
exponential growth as we keep 
contracting D4,D8......

• Computationally intensive; 
Impossible to store intermediate 
results.

• Need some RG scheme.
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Tensor entanglement renormalization

• Introduce cut-off for the bond-contraction

H. C. Jiang, Z. Y. Weng, and T. Xiang, Phys. Rev. Lett.  101, 090603 (2008)
Gu, Levin, Wen,  Phys. Rev. B, 78, 205116 (2008)

• Singular Value Decomposition: rank-3 tensors S
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Tranverse ising model

H = −
�

�ij�

σ
z
i σ

z
j − h

�

i

σ
x
i

• D=2, Dcut=18, non-MF 
results is obtained

• Method is not variational
‣ Locally optimized
‣ SVD truncation

• Translational invariance 
explicitly broken

Gu, Levin, Wen,  Phys. Rev. B, 78, 205116 (2008)
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Distribution of Singular Values

Transverse Ising Model, 8x8, h=3.08 Fully Frustrated XX model, 8x8, h=1

Frustrated Systems Remain Difficult
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Plaquette-Renormalization

Wang, Kao, Sandvik, arXiv:0901.0214
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8-index tensor: D8 4-index tensor: Dcut4
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8-index dbl-tensor: D16 4-index dbl-tensor: Dcut8 

Renormalization of an 8-index plaquette tensor using 
auxiliary 3-index tensors S.
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Plaquette renormalized trial wave function 

• We treat the elements in the A 
and S tensors as variational 
parameters, and minimize the 
total energy. 

• Principal axis method: 
derivative-free, but 
computationally expensive.
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Expectation values
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Plaquette-Renormalization of TNS

• Effective reduced 
tensor network for a 
8x8 lattice

• Summing over all 
unequivalent bonds 
and sites

• Method is variational

• Optimize T and R 
globally

• Size scaling: L2Log(L)

R1

R2

T1

T0

T2

Wang, Kao, Sandvik, arXiv:0901.0214
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Transverse Ising Model

• Assume translational invariance: 
all initial T’s are the same.  

• Globally optimized T and R.

• hc=3.33 (3.04,QMC)

• mz~ (h-hc)β, β~0.40

• h~hc, β~0.50 mean-field like. 
(Sanvik’s talk).
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Wang, Kao, Sandvik, arXiv:0901.0214

D=Dcut=2 
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Transverse Ising Model

• Spins at different lattice sites 
inside the plaquette have 
different environments.

• We use different tensors  
inside a plaquette.
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J1-J2 Heisenberg Model

H. J. Schulz, T. A. Ziman and D. Poilblanc, J. Phys. I 6 (1996) 675-703

H = J1

�

�ij�

Si · Sj + J2

�

��ij��

Si · Sj
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Error in energy

• Improvement in 
accuracy as D 
increase.

• D also sets a 
length scale.

• J2=0 

A. W. Sandvik, Phys. Rev. B 56, 11678 (1997)
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Building block: plaquette

• 12 internal sums. Maximum 
computational effort: D8.

• Each free index and 
summation contributes D.
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α

β
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Computational Costs

• Globally optimized T and R.

• Contraction calculation is highly parallelizable. 

• IBM Blue Gene/L at BU. D=2, takes weeks to 
optimize.

• Bottleneck: plaquette internal contractions.

• Take advantage of GPU (Graphic Processing 
Unit).

Wang, Kao, Sandvik, arXiv:0901.0214
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GPU supercomputing
•The GPU is specialized for compute-intensive, massively 

data parallel computation 

1.4 billion transistors

1 Teraflop of processing power

240 processing cores

nVidia Tesla 10-Series Processor

NTU CQSE GPU cluster
16x Tesla S1070=64 Teraflops
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Host

Kernel 
1

Kernel 
2

Device
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Block
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Thread
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Thread
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Thread
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Thread
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Thread
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Thread
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GPU kernel Strategy
• Inputs:  T (D4), S (D3) (unchanged during 

contraction)
‣ Load into texture memory (optimized for 

2D read)

• Output: T’ (D4)

• Thread block geometry up to 3D (tx,ty,tz), 
grid of blocks geometry up to 2D (bx,by). 
‣ Reshape T into a D2xD2 matrix, S into a 

DxD2 matrix.
‣ Use D2xD2 thread blocks, each block has 

DxD threads. Each block computes an 
element of T’. Use block indices (bx,by) to 
represent external indices. 

S1

S1

S1

S1T0 T0

T0 T0

NVIDIA
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Benchmark: One plaquette contraction
• CPU code: Intel Core 2 Duo E4700 2.6GHz

‣ D=6, 2.1 GFLOPS
‣ D=8, 3.4 GFLOPS 

• GPU, Single Precision code (unoptimized):
‣ D=6, 24.9 GFLOPS (GTX8800), 49.7GFLOPS (GTX280)
‣ D=8, 92.2 GFLOPS (GTX280)

• 10x to 30x speedup. A factor of at least 8 performance hit for DP. 

• GPU code requires optimization
‣ Bank conflict in shared memory R/W
‣ Low stream multiprocessor occupancy
‣ Current scheme D bound by shared memory size
‣ Global memory bandwidth hiding
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Conclusion
• Tensor network states are promising candidates to 

understand frustrated quantum spin systems.

• In plaquette renormalized tensor network representation, 
no approximations are made when contracting the 
effective renormalized tensor network.

• Non-MFT results even with the smallest possible non- 
trivial tensors and truncation (D = 2)

• Larger internal bond dimension D is necessary to get the 
right physics.

• GPU can potentially speed up the computationally 
intensive part of the calculation.

• Use Monte Carlo sampling in the future.


