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Outline

• Optimization of periodic matrix product states

• Mechanism of symmetry breaking

" 1-d periodic transeverse-field Ising model

"  critical form of the magnetization curve (finite N, N=#)

"  limitations of finite computer precision(?)

• Use of discrete symmetries in MPSs (extension of MPS)

" Spin inversion, lattice reflection, translation

" Tested on 1-d Heisenberg chain, including frustrated J1-J2 model



|Ψ〉 =
∑

{si}

W (s1, s2, . . . , sN )|s1, s2, . . . , sN 〉, si =↑, ↓

W (s1, s2, . . . , sN ) = Tr[A(s1)A(s2) · · · A(sN )]

Matrix product states (MPSs)

These can be easily evaluated; scaling for periodic chain: standard way costs ND5

• Pippan, White, Evertz, ArXiv:0801.1947; good approximation (SVD) with ND3 cost

• Monte Carlo sampling (Sandvik & Vidal, 2007); ND3
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Consider a periodic chain of S=1/2 spins

• MPSs can be implicitly generated by DMRG (Ostlund & Romer, 1995)

• Can be used independently of DMRG as a class of variational states (1 dim) 



The stochastic method is guaranteed to 

reach the global minimum if:

•  “cooled” sufficiently slowly

• for all local minima on “funnel  walls”: b<a

Seems to work well for MPS optimization

• Starting from random matrices or ones optimized for smaller D

• Steepest decent or line minimization can be faster at final stages

How to optimize the matrices in MPS calculations

• Local energy minimization, “sweep” through the lattice (Verstraete et al.)

• Imaginary-time evolution (projecting out the ground state)  (Vidal)

Minimize the energy variationally with translational invariance?

Stochastic Optimization (using first derivatives)

Steepest decent Line minimization Stochastic method

δ =
δ0

kα
, k = 1, 2, . . .

−gradient
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Test: Antiferromagnetic Heisenberg chain

Comparison with N=100 results by: Pippan, White, Evertz, ArXiv: 0801.1947

N = 100

Good results, but the method is very slow



Infinite chain MPS

Exactly as in classical transfer-matrix method; 

• keep only largest eigenvalue of P when N!!

• Imaginary-time evolution (ground state

   projection) can be applied (Vidal, Cirac et al.)

〈O1〉 =
Tr{O1PN−1}

Tr{PN}

= Tr{PN}

= P
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Test: transverse-field Ising model

• true exponent $=1/8

• how does this exponent emerge?

• what is the h!hc behavior for finite D?

N =∞

Stochastic optimization?

Energy derivatives involve summing N

contributions; time-consuming for N!!

Optimize in a trivial (stupid?) way

• Propose random changes in the matrix 

elements, accept if energy improves

•  easy to do in quadruple precision

Question: How is symmetry breaking

manifested in MPS (finite N and N!!)?



β = 1/2

β = 1/8

converged optimized data

Messages:

• For N=! (or large N), numerical 

precision may limit access to 

critical behavior

• For finite D, asymptotic critical 

behavior is of mean-field type; 

cross-over to true exponent

E/N
mz =

1
N

N∑

i=1

Sz
i

δ
Example

Evolution of the

energy and the

magnetization

     -1.274624764007379568601740    0.0107523120526   0.0000001652

     -1.274624764007380869060010    0.0107537678231   0.0000001502

     -1.274624764007382167234777    0.0107581552419   0.0000001366

     -1.274624764007383018499448    0.0107499540804   0.0000001241

     -1.274624764007392878608852    0.0107457713217   0.0000001128

     -1.274624764007400992225410    0.0107333530705   0.0000001026

     -1.274624764007405559290561    0.0107279581661   0.0000000933

     -1.274624764007410209949167    0.0107265535218   0.0000000848

     -1.274624764007416468671250    0.0107241180809   0.0000000771

relative change = 3× 10−14 3× 10−3

Small change in E!
much larger (relative) change in mz

• can be serious close to hc

= max change in matrix elements



Symmetry breaking for finite N

D = 2

First-order transition (D fixed)

• discontinuity decreases with increasing N; continuous for N!!

• level crossing between symmetric and symmetry-broken states (E minima)

N = 12, D = 2

Behavior versus matrix size D

• for given N, hc(D) ! 0

• no symmetry-breaking for N<!, D=!



D = 2

Infinite chain MPS - optimization using derivatives

The derivative of the energy with respect to a matrix element is of the form

∂E

∂aσ
ij

= Cσ
ij +

N−2∑

l=1

Dσ
ij(l) D(l) ∼ Tr{XBlXBN−2−l}

D(l) is a correlation function; D(l)!0 when l!!

• impose cut-off lcut in optimization for N=!; investigate dependence on lcut



Limitations of computer (double) precision?

• optimizations using increasing lcut

• compare with quadruple-precision derivative-free stochastic optimization

The magnetization close to hc(D) is 

limited by the precision achievable for E

For large lcut the limitation on E is the 

truncation error of double precision 

• h = 1.071796
• h = 1.07179
• h = 1

3 independent optimizations



• D = 4
• D = 3
• D = 2

Dependence on matrix dimension D; D=2,3,4

Message: Computer precision may be a 

limitation when studying critical properties

• seems to affect also imaginary-time proj

• but... critical long-distance correlation 

functions have been reproduced to high 

presision (Vidal, McCulloch,...)


