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Outline

e Optimization of periodic matrix product states
e Mechanism of symmetry breaking
» |-d periodic transeverse-field Ising model
» critical form of the magnetization curve (finite N, N=00)
» limitations of finite computer precision(?)
* Use of discrete symmetries in MPSs (extension of MPS)
» Spin inversion, lattice reflection, translation

» Tested on |-d Heisenberg chain, including frustrated |,-J» model




Matrix product states (MPSs)
Consider a periodic chain of S=1/2 spins
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Wi(s1,82,...,8n) = Tr[A(s1)A(s2) - A(sn)]

e MPSs can be implicitly generated by DMRG (Ostlund & Romer, 1995)
e Can be used independently of DMRG as a class of variational states (1 dim)
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Graphical representation of a;®* and MPSs
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These can be easily evaluated; scaling for periodic chain: standard way costs ND?®
e Pippan, White, Evertz, ArXiv:0801.1947; good approximation (SVD) with ND® cost
e Monte Carlo sampling (Sandvik & Vidal, 2007); ND?3




How to optimize the matrices in MPS calculations
¢ | ocal energy minimization, “sweep” through the lattice (Verstraete et al.)
¢ [maginary-time evolution (projecting out the ground state) (Vidal)

Minimize the energy variationally with translational invariance?

Stochastic Optimization (using first derivatives)
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Steepest decent Line minimization Stochastic method
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The stochastic method is guaranteed to b

reach the global minimum if:
e “cooled” sufficiently slowly
e for all local minima on “funnel walls”: b<a

Seems to work well for MPS optimization
e Starting from random matrices or ones optimized for smaller D
e Steepest decent or line minimization can be faster at final stages




Test: Antiferromagnetic Heisenberg chain

N
H=>S8,
1=1

Comparison with N=100 results by: Pippan, White, Evertz, ArXiv: 0801.1947
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+— Stochastic MPS optimization
e—e Pippan, Evertz, White
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Good results, but the method is very slow




Infinite chain MPS
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Exactly as in classical transfer-matrix method; (01) = Tr{O, PN~}
e keep only largest eigenvalue of P when N—oo Tr{P"}

¢ [maginary-time evolution (ground state
projection) can be applied (Vidal, Cirac et al.)

Question: How is symmetry breaking

manifested in MPS (finite N and N—o0)? "

Test: transverse-field Ising model I
* true exponent B=1/8 08k N = oc
* how does this exponent emerge? I N

* what is the h—hc behavior for finite D? (. - S o707, - ZZ(U.

Stochastic optimization?
Energy derivatives involve summing N 0.4
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contributions; time-consuming for N—e o lD)=§
Optimize in a trivial (stupid?) way 02 «.p=6
¢ Propose random changes in the matrix I
. . | | |
elements, accept if energy improves 030 0.2 0.4 0.6

e casy to do in quadruple precision
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relative change = 3 x 10~
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E/N

.274624764007379568601740
.274624764007380869060010
.274624764007382167234777
.2746247640073830184994438
.274624764007392878608852
.274624764007400992225410
.274624764007405559290561
.274624764007410209949167
.274624764007416468671250
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converged optimized data
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.0107523120526
.0107537678231
.0107581552419
.0107499540804
.0107457713217
.0107333530705
.0107279581661
.0107265535218
.0107241180809
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[h (D)-hj/h (D)

) = max change in matrix elements
0.0000001652
0.0000001502 ~ =Xample
0.0000001366 Evolution of the
0.0000001241
o 0000001128  ©Nergy and the
0.0000001026 magnetization
0.0000000933
0.0000000848
0.0000000771

Small change in E—
much larger (relative) change in m?
e can be serious close to hc

Messages:

* For N=e (or large N), numerical
precision may limit access to
critical behavior

* For finite D, asymptotic critical
behavior is of mean-field type;
cross-over to true exponent




Symmetry breaking for finite N

First-order transition (D fixed)

e discontinuity decreases with increasing N; continuous for N—co
e level crossing between symmetric and symmetry-broken states (E minima)
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Behavior versus matrix size D
e for given N, h¢(D) = 0
® no symmetry-breaking for N<eo, D=co
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Infinite chain MPS - optimization using derivatives

The derivative of the energy with respect to a matrix element is of the form
OE N—2
o o ! N—2—1
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tJ =1

D(l) is a correlation function; D()—0 when |0
e impose cut-off lcut in optimization for N=eo; investigate dependence on lcut
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Limitations of computer (double) precision?

e optimizations using increasing lcut
e compare with quadruple-precision derivative-free stochastic optimization

I ! I ! | . .
3 independent optimizations 1 For large lcut the limitation on E is the
NI truncation error of double precision
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> The magnetization close to h¢(D) is
SERp) limited by the precision achievable for E
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Dependence on matrix dimension D; D=2,3,4
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Message: Computer precision may be a 2
limitation when studying critical properties = |-
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e seems to affect also imaginary-time proj
e but... critical long-distance correlation -101
functions have been reproduced to high I
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