# Mechanism of symmetry breaking in matrix product states

# Anders W Sandvik

**Boston University** 

## Collaborators

Chen Liu (Boston University) Ling Wang (Boston University → U of Vienna) Ying-Jer Kao (National Taiwan University, Taipei) Yu-Cheng Su (National Taiwan University, Taipei)



## Outline

- Optimization of periodic matrix product states
- Mechanism of symmetry breaking
  - I-d periodic transeverse-field Ising model
  - critical form of the magnetization curve (finite N, N= $\infty$ )
  - Imitations of finite computer precision(?)

## • Use of discrete symmetries in MPSs (extension of MPS)

- ▶ Spin inversion, lattice reflection, translation
- ▶ Tested on I-d Heisenberg chain, including frustrated J1-J2 model

## Matrix product states (MPSs)

Consider a periodic chain of S=1/2 spins

$$\begin{split} |\Psi\rangle &= \sum_{\{s_i\}} W(s_1, s_2, \dots, s_N) | s_1, s_2, \dots, s_N\rangle, \quad s_i = \uparrow, \downarrow \\ &A(s) = \begin{pmatrix} a_{11}^s & \cdots & a_{1D}^s \\ a_{21}^s & \cdots & a_{2D}^s \\ \cdots & \cdots & \cdots \\ a_{D1}^s & \cdots & a_{DD}^s \end{pmatrix} \\ \end{split}$$

- MPSs can be implicitly generated by DMRG (Ostlund & Romer, 1995)
- Can be used independently of DMRG as a class of variational states (1 dim)

## Graphical representation of airs and MPSs



These can be easily evaluated; scaling for periodic chain: standard way costs ND<sup>5</sup>

- Pippan, White, Evertz, ArXiv:0801.1947; good approximation (SVD) with ND<sup>3</sup> cost
- Monte Carlo sampling (Sandvik & Vidal, 2007); ND<sup>3</sup>

### How to optimize the matrices in MPS calculations

- Local energy minimization, "sweep" through the lattice (Verstraete et al.)
- Imaginary-time evolution (projecting out the ground state) (Vidal)

## Minimize the energy variationally with translational invariance?

**Stochastic Optimization (using first derivatives)** 



The stochastic method is guaranteed to reach the global minimum if:

- "cooled" sufficiently slowly
- for all local minima on "funnel walls": b<a

Seems to work well for MPS optimization

- Starting from random matrices or ones optimized for smaller D
- Steepest decent or line minimization can be faster at final stages



## **Test: Antiferromagnetic Heisenberg chain**

$$H = \sum_{i=1}^{N} \mathbf{S}_{i} \cdot \mathbf{S}_{i+1} = \sum_{i=1}^{N} [S_{i}^{z} S_{i+1}^{z} + \frac{1}{2} (S_{i}^{+} S_{i+1}^{-} + S_{i}^{-} S_{i+1}^{+})]$$

Comparison with N=100 results by: Pippan, White, Evertz, ArXiv: 0801.1947





Exactly as in classical transfer-matrix method;

- keep only largest eigenvalue of P when  $N \rightarrow \infty$
- Imaginary-time evolution (ground state) projection) can be applied (Vidal, Cirac et al.)

#### Question: How is symmetry breaking manifested in MPS (finite N and $N \rightarrow \infty$ )?

#### Test: transverse-field Ising model

- true exponent  $\beta = 1/8$
- how does this exponent emerge?
- what is the  $h \rightarrow h_c$  behavior for finite D?

#### Stochastic optimization?

Energy derivatives involve summing N contributions; time-consuming for  $N \rightarrow \infty$ 

#### Optimize in a trivial (stupid?) way

- Propose random changes in the matrix elements, accept if energy improves
- easy to do in quadruple precision





### Symmetry breaking for finite N

#### First-order transition (D fixed)

- discontinuity decreases with increasing N; continuous for  $N \rightarrow \infty$
- level crossing between symmetric and symmetry-broken states (E minima)



#### Infinite chain MPS - optimization using derivatives

The derivative of the energy with respect to a matrix element is of the form

$$\frac{\partial E}{\partial a_{ij}^{\sigma}} = C_{ij}^{\sigma} + \sum_{l=1}^{N-2} D_{ij}^{\sigma}(l) \qquad D(l) \sim \operatorname{Tr}\{XB^{l}XB^{N-2-l}\}$$

D(I) is a correlation function; D(I) $\rightarrow$ 0 when I $\rightarrow\infty$ 

impose cut-off l<sub>cut</sub> in optimization for N=∞; investigate dependence on l<sub>cut</sub>



#### Limitations of computer (double) precision?

- optimizations using increasing Icut
- compare with quadruple-precision derivative-free stochastic optimization



- h = 1.07179
- h = 1

For large  $I_{cut}$  the limitation on E is the truncation error of double precision

The magnetization close to  $h_c(D)$  is limited by the precision achievable for E





-10

-12

0

2

4

128/l<sub>cut</sub>

6

8

- seems to affect also imaginary-time proj
- but... critical long-distance correlation functions have been reproduced to high presision (Vidal, McCulloch,...)