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Introduction
• Can we use a quantum computer to solve hard optimzation problems.

Is the “Quantum Adiabatic Algorithm” useful?

• To answer this, need to know the complexity of the Quantum
Adiabatic Algorithm for large sizes .

• Discuss the Monte Carlo method that will be used to do this.

• Results for a particular problem (Exact Cover) .

• Conclusions .
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Problem Studied I
What problems could be studied more efficiently on quantum computer
than a classical computer if a quantum computer can eventually be built?
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Problem Studied I
What problems could be studied more efficiently on quantum computer
than a classical computer if a quantum computer can eventually be built?

There are algorithms for some specific problems which are much more
efficient than the fastest classical algorithm.

The best known is Shor’s factoring algorithm which factors an integer of n

bits in a time which is of order n3, i.e. polynomial in n, as opposed to the
best classical algorithm which takes a time of order exp(c n1/3 log2/3n) .

Relevant for encryption : =⇒ Important in commerce and for the military.
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Problem Studied
Can a quantum computer solve a general class of hard problems:
“optimization problems” in which we need to minimize a function of N
binary variables, zi = 0, 1, with constraints.

In particular, we are interested in an important subset of optimization
problems called

NP-Complete.

Note: Integer factoring is be-
lieved to be not NP-Complete .

It is in the quantum polyno-
mial complexity class BQP.

Does BQP include
NP-Complete ?

complete

satisfiability

BQPNP−

random

NP

Integer
factoring

spin glass
ground state  (3d)

spin glass
ground state (2d)P
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Problem Studied: II

For NP-Complete problems we are interested in how the computer time,
the complexity, depends on N. All known classical algorithms have
exponential complexity ,

complexity ∝ exp(const. N) .

for both “worst case” and “typical” instances.
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Problem Studied: II

For NP-Complete problems we are interested in how the computer time,
the complexity, depends on N. All known classical algorithms have
exponential complexity ,

complexity ∝ exp(const. N) .

for both “worst case” and “typical” instances.

Could a quantum computer solve typical instances of NP-Complete
problems with just polynomial complexity , i.e.

complexity ∝ Nσ ,

for some value of σ?

If so, the “quantum polynomial” complexity class (called BQP) would
include not only all problems in P, and integer factoring, but also all
problems in NP.

Would be an extremely exciting result for the quantum computing community.
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Quantum Adiabatic Algorithm
Quantum Adiabatic Algorithm (QAA) , Farhi et al. (2001) (related to
“quantum annealing”, Kadowaki and Nishimori (1998)) (also Fazio’s talk).

The Hamiltonian is represented by the connections in the quantum
computer (i.e. it is an analogue computer ).
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“quantum annealing”, Kadowaki and Nishimori (1998)) (also Fazio’s talk).

The Hamiltonian is represented by the connections in the quantum
computer (i.e. it is an analogue computer ).

Problem Hamiltonian HP is a function of the bits, zi = 0, 1, or equivalently
the Ising spins σz

i = 1 − 2zi = ±1.

Add a “driver Hamiltonian”, which is simple and does not commute with

HP . The simplest is a “transverse field” HD = −h
∑

σx
i .

The total Hamiltonian is

H = [1 − λ(t)] HD + λ(t) HP ,

where the “control parameter” λ(t) varies from 0 at t = 0 to 1 at t = T ,
the running time , or complexity .
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Quantum Adiabatic Algorithm
Quantum Adiabatic Algorithm (QAA) , Farhi et al. (2001) (related to
“quantum annealing”, Kadowaki and Nishimori (1998)) (also Fazio’s talk).

The Hamiltonian is represented by the connections in the quantum
computer (i.e. it is an analogue computer ).

Problem Hamiltonian HP is a function of the bits, zi = 0, 1, or equivalently
the Ising spins σz

i = 1 − 2zi = ±1.

Add a “driver Hamiltonian”, which is simple and does not commute with

HP . The simplest is a “transverse field” HD = −h
∑

σx
i .

The total Hamiltonian is

H = [1 − λ(t)] HD + λ(t) HP ,

where the “control parameter” λ(t) varies from 0 at t = 0 to 1 at t = T ,
the running time , or complexity .
At t = 0, just have HD. Prepare the system in its ground state. Evolve the
system slowly enough that the process is adiabatic .
At t = T , just have HP . If the evolution is adiabatic, the system is in the
ground state of HP and the problem is solved . – p.6



Complexity of the QAA

How does T vary with N

in order to maintain adiabatic evolution with high probability?

λ
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Complexity of the QAA

How does T vary with N

in order to maintain adiabatic evolution with high probability?

The problem is severe at an “avoided level crossing” with a small
“minimium gap” between the ground state and the first excited state.

λ

E
0

E1

∆ minE

E

The dashed lines show a crossing
that the ground state and first excited
would have in the absence of any cou-
pling between them. However, there
is actually “level repulsion” so the two
levels, shown by the solid lines, do
not cross but have a minimum gap
∆Emin.
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Complexity of the QAA

How does T vary with N

in order to maintain adiabatic evolution with high probability?

The problem is severe at an “avoided level crossing” with a small
“minimium gap” between the ground state and the first excited state.

λ

E
0

E1

∆ minE

E

The dashed lines show a crossing
that the ground state and first excited
would have in the absence of any cou-
pling between them. However, there
is actually “level repulsion” so the two
levels, shown by the solid lines, do
not cross but have a minimum gap
∆Emin.

Landau-Zener theory . To stay in ground state, time ∝ (∆Emin)
−2.
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Quantum Phase Transition
As λ(t) is varied the system is likely to go through a Quantum Phase
Transition where the gap will be particularly small.

Hence we are, effectively interested in:

The Size Dependence of the Energy Gap at a Quantum Phase
Transition
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Early Simulations
So far: just simulations of the QAA on a classical computer.
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Early Simulations
So far: just simulations of the QAA on a classical computer.

Farhi et al. (2001), Hogg (2003): integrated the time dependent
Schrödinger equation. Limited to very small sizes , N . 20–24, because
the number of basis states 2N grows exponentially.

The time to get the true ground state with some finite probability found to
vary as Nσ with σ ≃ 2.

i.e. Polynomial complexity!
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Farhi et al. (2001), Hogg (2003): integrated the time dependent
Schrödinger equation. Limited to very small sizes , N . 20–24, because
the number of basis states 2N grows exponentially.

The time to get the true ground state with some finite probability found to
vary as Nσ with σ ≃ 2.

i.e. Polynomial complexity!

But sizes are very small. Perhaps “crossover” to exponential complexity at
larger sizes.

How can we do larger sizes? Can’t include all 2N states. Need to do
some sort of sampling of the states.

=⇒ “Monte Carlo" methods
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Monte Carlo Simulations
In Monte Carlo simulations of classical systems we generate configurations
in a stochastic manner, but not completely at random, rather with the
Boltzmann distribution. This is done in an iterative manner as follows:
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Boltzmann distribution. This is done in an iterative manner as follows:

If the system is in state l then we take the next state to be m, which
typically differs from l by a single spin flip, with some probability wl→m

(otherwise the next state is again l).
We choose the probabilities to satisfy the detailed balance condition :

P eq
l wl→m = P eq

m wm→l

for each pair of states l and m. Then one can show that “eventually” the
system will come to thermal equilibrium.
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Monte Carlo Simulations
In Monte Carlo simulations of classical systems we generate configurations
in a stochastic manner, but not completely at random, rather with the
Boltzmann distribution. This is done in an iterative manner as follows:

If the system is in state l then we take the next state to be m, which
typically differs from l by a single spin flip, with some probability wl→m

(otherwise the next state is again l).
We choose the probabilities to satisfy the detailed balance condition :

P eq
l wl→m = P eq

m wm→l

for each pair of states l and m. Then one can show that “eventually” the
system will come to thermal equilibrium.
One can then determine 〈A〉 as a time average from states generated
after equilibration is reached, i.e.

〈A〉 ≃
1

Nmeas

Nmeas
∑

α=1

Aα .

– p.10



Monte Carlo Simulations
A common way of implementing the detailed balance condition, is the
Metropolis probability

wl→m =

{

exp[−β(Em − El)] if Em > El

1 otherwise
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However, so far we have described a classical problem which has only
thermal fluctuations.
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Monte Carlo Simulations
A common way of implementing the detailed balance condition, is the
Metropolis probability

wl→m =

{

exp[−β(Em − El)] if Em > El

1 otherwise

However, so far we have described a classical problem which has only
thermal fluctuations.

How can we also simulate quantum fluctuations using Monte Carlo
methods?
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Quantum Monte Carlo: I
In Quantum Monte Carlo (QMC) simulations, we can only study
equilibrium (time-dependent) quantum fluctuations.
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Quantum Monte Carlo: I
In Quantum Monte Carlo (QMC) simulations, we can only study
equilibrium (time-dependent) quantum fluctuations.

Cannot study the (non-equilibrium) evolution of a time dependent
Hamiltonian. However, as we shall see, we can determine the gap ∆E
for each λ, and hence determine the minimum gap .

QMC depends on the correspondence between the time evolution

operator in quantum mechanics e−iHt and the Boltzmann operator in

statistical mechanics e−Hβ
. We see that β ≡ T −1 is like imaginary

time .

Working through the details, one ends up with a Classical Action comprising
copies of the system at different values of imaginary time τ where
0 ≤ τ < β. One discretizes imaginary time (Trotter decomposition) into
Lτ “time slices” separated by the time-slice width ∆τ . We have

T −1 ≡ β = Lτ /∆τ .

The exact quantum mechanical Hamiltonian is reproduced in the limit
∆τ → 0. However, this limit is not necessary for our purposes. – p.12



Quantum Monte Carlo: II
One simulates a classical action in space and imaginary time with Ising
spins Si(τm) = ±1 where τm = m∆τ and m = 0, 1, · · · , Lτ − 1.

−

τ∆

K
12

Kτ

K
12

K
12

Kτ
τ∆

τ
β

0
1

3

2

β

At each time slice 3 sites are
shown. An independent Ising spin
Si(τ) lives at each site and each
of the Lτ time slices. If spins i and
j have an interaction in HP , then,
each time slice, these spins inter-
act with a coupling

Kij = ∆τJij ,

the same for each slice. Spins on
the same site but at neighboring
time slices are coupled by an inter-
action Kτ , where

e−2Kτ = tanh(∆τ h),

again the same for all slices.

The slice at time τ = β is identi-
fied with the slice at τ = 0 (i.e. we
have periodic boundary conditions
in the imaginary time direction). – p.13



Time Dependence
We will assume that T is sufficiently low that the system is in its ground

state , i.e. T ≪ ∆E ≡ E1 − E0 .
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Time Dependence
We will assume that T is sufficiently low that the system is in its ground

state , i.e. T ≪ ∆E ≡ E1 − E0 .
In quantum mechanics, correlations between a spin at an initial (real) time
t0 and a later time t0 + t have the form

C(t) ≡
1

N

N
∑

i=1

〈σz
i (t0)σ

z
i (t0 + t)〉 =

1

N

N
∑

i=1

[

∑

n

∣

∣〈0|σz
i |n〉

∣

∣

2

]

ei(En−E0)t .
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∣
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∣

∣
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]

ei(En−E0)t .

In imaginary time, the complex exponentials are replaced by real,
decaying exponentials:

C(τ ) ≡
1

N

N
∑

i=1

〈Si(τ0)Si(τ0 + τ )〉 =
1

N

N
∑

i=1

[

∑

n

∣

∣〈0|σz
i |n〉

∣

∣

2
e−(En−E0)τ

]

.
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decaying exponentials:

C(τ ) ≡
1

N

N
∑

i=1

〈Si(τ0)Si(τ0 + τ )〉 =
1

N

N
∑

i=1

[

∑

n

∣

∣〈0|σz
i |n〉

∣

∣

2
e−(En−E0)τ

]

.

Hence, at large τ , we have

C(τ ) = q +
1

N

N
∑

i=1

∣

∣〈0|σz
i |1〉

∣

∣

2
e−(E1−E0)τ ,

where q = N−1
∑

i〈σ
z
i 〉2 is the (Edwards-Anderson) spin glass order

parameter. – p.14



Sample results for C(τ )

Results for the time dependent
correlation function against τ for
one instance of the Exact Cover
problem with N = 128 near the
location of the minimium gap.
Note that the vertical axis is loga-
rithmic. Fitting to the straight line
region gives a slope (equal to the
gap ∆E) equal to 0.0354.

We took Lτ = 300,∆τ = 1,
so T−1 ≡ β = 300. Hence the

condition T ≪ ∆E is well sat-
isfied.

Equilibration and error bars
The simulations are long to ensure the system comes to equilibrium.
The simulation is run many times to reduce the noise and (from the
variance between runs) to determine the error bars.
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Exact Cover Problem: I
We simulated the same problem as Farhi et al., namely Exact Cover , an
NP Complete problem.
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Exact Cover Problem: I
We simulated the same problem as Farhi et al., namely Exact Cover , an
NP Complete problem.

We have N bits and form randomly M triples of bits (known as
“clauses” ). The energy of a clause is 0 if one bit is 1 and the other two
are 0; otherwise the energy is positive. Writing in terms of spin variables,
σz

i = 1 − 2bi, the simplest such Hamiltonian HP is given by

HP =
1

4

M
∑

α=1

(

σz
α1

+ σz
α2

+ σz
α3

− 1
)2

=
1

2

M
∑

α=1

(

2 − σz
α1

− σz
α2

− σz
α3

+ σz
α1

σz
α2

+ σz
α2

σz
α3

+ σz
α3

σz
α1

)

where α1, α2 and α3 are the three spins in clause α.
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where α1, α2 and α3 are the three spins in clause α.

If there is a “satisfying assignment” the energy is zero. Otherwise the
energy is a positive integer.
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Exact Cover Problem: I
We simulated the same problem as Farhi et al., namely Exact Cover , an
NP Complete problem.

We have N bits and form randomly M triples of bits (known as
“clauses” ). The energy of a clause is 0 if one bit is 1 and the other two
are 0; otherwise the energy is positive. Writing in terms of spin variables,
σz

i = 1 − 2bi, the simplest such Hamiltonian HP is given by
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(
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=
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(

2 − σz
α1

− σz
α2

− σz
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+ σz
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σz
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+ σz
α2

σz
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+ σz
α3

σz
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)

where α1, α2 and α3 are the three spins in clause α.

If there is a “satisfying assignment” the energy is zero. Otherwise the
energy is a positive integer.

Note that we have an Ising model on a “random graph” with a magnetic
field on the spins which prefers them to line “up”, and antiferromagnetic
interactions between pairs of spins. – p.16



Exact Cover Problem: II
M/N ≪ 1: the number of clauses is small, it is easy to satisfy them all,
and there are many satisfying assignments .

M/N ≫ 1: there are too many clauses to be satisfied and there will be
no satisfying assignment .

N → ∞: there is a phase transition at some value of the ratio M/N

where the number of satisfying assignments tends to zero.

Following Farhi et al. we take instances with a “Unique Satisfying
Assignment” (USA). To find these with reasonable probability, we adjust
the ratio M/N for each size N . This means that we are close to the
phase transition , where the problem is expected to be particularly hard.

– p.17



Dependence of gap on λ

Results for the gap to the first ex-
cited state ∆E as a function of the
control parameter λ for one instance
with N = 64. The gap has is finite
for λ = 0 (this is due to the driver
Hamiltonian, −h

P

i σx
i , where we

took h = 1). It is also finite for
λ = 1 because we chose instances
with this property (Unique Satisfying
Assignment). There is a minimum of
the gap at an intermediate value of λ,
presumably close to a

quantum phase transition.

We compute ∆Emin for many (50)
instances for several different sizes,
N = 16,32,64,128,192 and 256.
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Size dependence
We take the median value of the minimum gap among different instances
for a gives size N to be a measure of the “typical” minimum gap.
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Size dependence
We take the median value of the minimum gap among different instances
for a gives size N to be a measure of the “typical” minimum gap.

50 instances for each size.

A log-log plot of the median of the
minimum gap as a function of the
number of bits N up to N = 64. Up
to this size the median ∆Emin

decreases as a power law,

median ∆Emin ∝ N−µ,

for these sizes, with

µ = 0.94 ± 0.13.

Complexity ∝ N2µ (if ma-

trix element effects are small)

consistent with N2 behavior found
in early work.

But this behavior does NOT continue for larger sizes because ...
– p.19



First order transition
· · · the transition becomes discontinuous (first order).

Compute the “spin glass order parameter”

q =
1

N

N
∑

i=1

〈 S
(1)
i S

(2)
i 〉 .
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Fraction First order

Instances with a first order
transition presumably have an
exponentially small gap.

The fraction which are first or-
der appears to tend to 1 for
N → ∞.

Related work:
Krzakala et al. argue (using “replica methods”) that a first order transition, between a disordered

and an more ordered state, is expected for satisfiability problems. Altshuler, Krovi, Roland

(2009), and Farhi et al. (2009) argue that there could be a first order transition bewteen two

“ordered” states for λ close to 1 (i.e. close to the problem Hamiltonian.) – p.21



Classical Algorithm
Interesting to compare the QAA with a classical algorithm.

A classical algorithm which is more
analgous to QAA is WALKSAT, a lo-
cal heuristic search algorithm. Like
simulated annealing, it includes “up-
hill" moves in a stochastic way.
Using the default value of the “noise
parameter" the complexity for the
QAA instances with USA crosses over
from power-law to (presumably) expo-
nential for N & 100.

Note: similarity with QAA.
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Stoquastic Hamiltonians
To do the QMC simulations we need to avoid the infamous “minus-sign
problem” which plagues simulations of fermions and “frustrated” quantum
spin systems (Kawashima’s talk). Systems without a sign problem are now
called “stoquastic” (Bravyi et al. (2006)). They are characterized by

• All off-diagonal matrix elements of H are negative (or can be made
so by local unitary transformations).

• All elements of the density matrix ρ ∝ exp(−βH) are non-negative.

• All eigenvector components of the ground state are positive.

Finding the ground state energy of stoquastic and general Hamiltonians
(to within a small uncertainty ǫ) are probably in different (quantum)
computational classes.

Stoquastic Hamiltonians are easier to simulate, and perhaps

less powerful for computation than general Hamiltonians.

Perhaps we could avoid the first order transition by making HD

non-stoquastic (for 0 < λ < 1). But we can’t simulate this, so we

probably won’t know unless a real quantum computer can be built. – p.23
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“sign problem” in quantum Monte Carlo.

Thank you – p.24
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