Numerical Study of 2D Spin Models via Tensor Product States

Pochung Chen[陳柏中], Dept of Physics, NTHU Workshop on Quantum Information Science & Many-Body Physics, 12/20/2009, NCKU

Acknowledgement & References

- Collaborators:
 - Prof. Ming-Fong Yang, Tunghai University.
 - Ms. Chen-Yen Lai, now at UC Riverside.
- Funding: National Science Council (NSC), Taiwan.
- References:
 - Pochung Chen, Chen-Yen Lai, Ming-Fong Yang, "Field Induced Spin Supersolidity in Frustrated Spin-1/2 Spin-Dimer Models", arXiv:0910.5081.
 - Pochung Chen, Chen-Yen Lai, Ming-Fong Yang, "Numerical study of spin-1/2 XXZ model on square lattice from tensor product states", JSTAT, 10, P10001, 2009.

Outline

- Introduction of tensor product state
 - Represent tensor product state.
 - Optimize tensor product state.
 - Evaluate expectation values.
- Application to 2D spin models
 - Frustrated spin ½ spin-dimer model. (Supersolidity).
 - Spin ½ XXZ model. (First order phase transition).
- Summary and outlook

Introduction to our TPS approach

- Wave-function ansatz:
 - 2D Tensor product state (2D-TPS).
- Optimization:
 - Imaginary time evolution.
 - 2D Time-Evolving Block Decimation (2D-TEBD).
- Expectation value:
 - Tensor renormalization group (2D-TRG).
- References:
 - M. Levin, C. P. Nave, PRL 99, 120601 (2007).
 - Z.C. Gu, M. Levin, X.G. Wen, PRB 78, 205116 (2008).
 - H.C. Jiang, Z.Y. Weng, T. Xiang, PRL 101, 090603(2008).

2D Tensor Product State (TPS)

Represent wave-function by a tensor network

Imaginary Time Evolution

- Use imaginary time to reach the ground state
- Assume initial state has some overlap with GS $|\Psi(0)\rangle = A_0|G\rangle + A_1|E_1\rangle + A_2|E_2\rangle + \cdots$
- Imaginary time evolution single out the GS $e^{-HT} |\Psi(0)\rangle = A_0 |G\rangle + A_1 e^{-E_1 T} |E_1\rangle + A_2 e^{-E_2 T} |E_2\rangle + \mathsf{L}$
- Obtain ground state by

$$|G\rangle = \lim_{N \to \infty} \frac{\left(e^{-\tau H}\right)^{N} |\Psi(0)\rangle}{\left\|\left(e^{-\tau H}\right)^{N} |\Psi(0)\rangle\right\|}$$

Suzuki-Trotter Formula

• Consider Hamiltonian with NN terms

$$H = \sum_{\langle ij \rangle} H_{ij} = H_{12} + H_{34} + \dots + H_{23} + H_{45} + \dots = H_{even} + H_{odd}$$

- Suzuki-Trotter Formula $e^{-\tau(A+B)} \approx e^{-\tau A} e^{-\tau B} + O(\tau^2)$
- Applied to imaginary time evolution

$$e^{-\tau H} \approx e^{-\tau H_{even}} e^{-\tau H_{odd}}$$

• Translational invariant \rightarrow Simplification

Expectation Value of 2D TPS

Represent expectation value by the tensor network of T tensors

Rewriting the Tensor Network

Rewrite rank 4 tensor **T** into product of two rank 3 tensor **S**

Coarse-Grained Tensor Network

Final 2x2 Plaque

After N iteration of RG, 2x2 plaque effective represent 2^Nx2^N lattice Tensor contract can be done exactly for the 2x2 plaque

Expectation value of TPS can be approximately but efficiently calculated via TERG

Combined TPS+TEBD+TRG Method

- Applications:
 - 2D Spin ½ Spin-Dimer Model on square lattice.
 - With frustration.
 - Spin supersolid phase.
 - 2D Spin ½ XXZ Model on square lattice.
 - First order transition.

Spin Supersolidity in Spin-1/2 Spin-Dimer Models

Anisotropic Spin-Dimer Model

Order Parameters

- $m_u^z \rightarrow$ triplet excitation density.
- m^x_s → triplet condensation density (superfluid density).
- $m_s^z \rightarrow$ checkerboard solid order (structure order).
- Supersolid phase $\rightarrow m_s^x \neq 0$ and $m_s^z \neq 0$.

Field-Induced Phase Diagram

Kwai-Kong Ng and T. K. Lee, PRL 97, 127204, 2006.

J'=0.29, Δ =3.3,

Isotropic Spin-Dimer Model

Motovation:

- Hard to realize selective anisotropy.
- Large $\Delta \approx 3$ is needed.
- Anisotropy as effective Hamiltonian of frustrating interlayer

Results (J'=0.38)

Results (**J'=0.38**, **J**_d**=0.21**)

Results (**J'=0.38**, **J_d=0.23**, **0.27**)

Phase Diagram

•Pochung Chen, Chen-Yen Lai, Ming-Fong Yang, arXiv:0910.5081.

Spin ¹/₂ XXZ Model on Square Lattice

•Pochung Chen, Chen-Yen Lai, Ming-Fong Yang, JSTAT, **10**, P10001, 2009.

XXZ Model (Δ =1.5)

Level Crossing of 1th Order Transition

Hysteresis

Summary : It Works!

- Frustrated spin-dimer model.
 - Existence of supersolid phase for a range of J_d .
 - Accurate determination of h_{c2} and h_{c3} .
 - Basic idea of the full phase diagram.
- 2D XXZ model.

- Accurate determination of first order transition.

Error Analysis

- Possible sources of error
 - Gapless excitation.
 - Trotter error.
 - Inaccurate effective environment.
 - Insufficiently large bond dimension D.
- Comparison with other TNS calculations.
 - Direct optimization of TPS (D=2).
 - iPEPS (iMPS).
 - iPEPS (Corner transfer matrix).

2D Transverse Ising Model

Bond dimension *D* dependence

Thank You

以有涯逐無涯

Use the *finiteness* to capture the *infiniteness*

Tensor network state representation of a many-body state

$$|\psi\rangle = \sum_{i_1 \cdots i_N} \psi_{i_1 \cdots i_N} |i_1 \cdots i_N\rangle \implies |\psi\rangle = \sum_{i_1 \cdots i_N} \mathbf{TN}(i_1 \cdots i_N) |i_1 \cdots i_N\rangle$$
$$\mathbf{1DMPS} \quad |\Psi\rangle = \sum_{s_1 s_2 \sqcup s_N} \mathbf{Tr} [T_1(s_1) \sqcup T_N(s_N)] s_1 s_2 \sqcup s_N\rangle$$