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Motivation: Challenges in the study of strongly correlated systems

Wheat‐chessboard problem

1st square:  1 grain
2nd square:  2 grains
3rd square:    4 grains
4th square:       8 grains
……
64th square:      263  grains

1 + 2 + 4 + 8 + ⋅⋅⋅⋅⋅⋅ + 263 =  264 -1   
= 18446744073709551615 grains

Non-perturbative: quantum field theory not always useful

Exponential Wall: total degree of freedom grows exponentially with 
system size



Weak Coupling Approach

Density Functional Theory(1960s)

• Most successful numerical method for treating weak 
coupling systems

• Based on LDA or similar approximation
Walter Kohn

Treat many-body interactions by certain mean-field approximation 

264  → 64



Strong Coupling Approach

Numerical Renormalization Group

• Wilson NRG 1960s–1980s
Kondo problem

• Density-matrix renormalization group (White 1992)
Most accurate numerical method for studying 1D 
quatnum systems
Poor performance in 2D

264 → a particularly selected set of basis states 

K. Wilson

Quantum Monte Carlo



Characteristic Energy Scales

Numerical Renormalization Group                 Density Functional Theory   
Quantum Monte Carlo               Dynamical Mean Field

Cold atoms  3He-superfluid  4He-superfluid  CMR     simple metal
heavy fermions QHE high-Tc semiconductor

superconductor

10-6 10-4 10-2 100 102 104 T(K)

Energy

Strong coupling                                        Weak coupling

low                    Dimensionality                   high
strong Quantum fluctuations                weak
weak Coulomb screening                 strong



Concept of renormalization group

• 1943 Ernst Stueckelberg initialized a renormalization 
program to attack the problems of infinities in QED

but his paper was rejected by Physical Review.

• 1953 Ernst Stueckelberg and Andre Petermann
opened the field of renormalization group Ernst Stueckelberg
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Block Spin Renormalization Group

Leo P. Kadanoff

1966 Kadanoff introduced the block spin RG scheme in combine with 
the scaling invariance to solve the problem of phase transition and 
critical phenomena



Numerical Renormalization Group Method

Kenneth Wilson

• 1974 Wilson opened the field of numerical 
RG by combining the idea of renormalization 
group with numerical calculations. 

• He solved the famous single-impurity Kondo 
model (Kondo effect). 



To represent a targeted state

by an approximate wavefunction using a 
limited number of basis states 

such that their overlap is maximized 

Basic Idea of Numerical Renormalization Group
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Wilson block-spin NRG 

2H

Diagonalize H，keep the states according to their energy

4 2 2 4
L R LRH H H H= + +

keep the lowest D states of H2

2 2
L R LR

n n n nH H H H= + +

keep the lowest D states of H4



Reasons for the Failure of Wilson block-spin NRG

1. Interface effect is too big 

2. Big truncation error: 

total D2 states, but only D
of them retained 

3. Criterion of truncation:

energy is not a good 
indicator of basis states

Example: Particle on a lattice
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Improved NRG method

T. Xiang and G. A. Gehring, J. Mag. Mag. Mat. 104-107, 861 (1992). 

1. Boundary error is reduced

2. Truncation error is reduced

Retain D states from 2D states

3. Criterion of truncation: Energy



Density Matrix Renormalization Group (DMRG)
System             Environment

n3 m4  

m1 m2

n2 m3

|i〉sys |j〉env

,
ij sys env

i j

f i jψ = ∑

S. White, PRL (1992)

Use Environment as a 
pump to probe the 
basis states in System



NRG versus DMRG

System

Wilson NRG

Energy is the only quantity that 
can be used to measure the 

weight of a basis state

DMRG

Use a sub-system as a pump to 
probe the other part of the system

The weight is measured by the 
entanglement between Sys and Env

Sys Env
System

He βρ −=
H

sys envTr e βρ −=



Quantum Information:
Schmidt decomposition

Λn
2 is the eigenvalue of reduced 

density matrix

What is a “Density Matrix” measurement?

System               Environment

n sys env
n

n nψ = Λ∑

Mathematician:
Singular value decomposition
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DMRG Wavefunction: Matrix Product State

S Ostlund, S Rommer, PRL 1995

The wavefunction generated by the DMRG iteration is a matrix-product 
state

It can be also regarded as a variational ansatz of many-body wavefunction

mi local basis

D×D matrix
1 2 1[ ]x xA m

xi xi+1                                bond variables

( )
1

1 1[ ]... [ ] ...
L

L L
m m

Tr A m A m m mΨ = ∑
L



Valence bond solid state

S=1/2

S=1/2
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Affleck, Kennedy, Lieb, Tasaki, PRL 59, 799 (1988)



Haldane Conjecture

Haldane

1i i
i

H S S += ⋅∑
Integer Heisenberg spin chain has a finite excitation gap

Y2BaNiO5

Ni2+ ：S = 1

Energy gap



Is there any order in the 
Haldane spin chain?

Hidden Order

Nd2BaNiO5

Hidden “antiferromagnetic” order

↑ 0 0 0 ↓ 0 ↑ 0 0 ↓ 0 ↑ 0 0 0 ↓ 0 ↑ 0 0 0 0 ↓

↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

S = -1 (↑) ,  0,  1 (↓)

YBa2Cu3O6

Antiferromagneti Neel order

Neel        
Nobel 1970



Accuracy of the DMRG in 1D

1D S=1 Heisenberg model

Ground state energy

Quantum Monte Carlo                                -1.4015(5)

DMRG -1.401484038971(4)
(keep  D = 100 states)
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DMRG: Can calculate all static, thermodynamic, dynamic quantities

Heisenberg 



Extend DMRG to 2D: Map 2D lattice to 1D

Multi-chain mapping:

The width of the lattice is fixed
Diagonal-path:

Lattice grows in both directions

T Xiang, J Z Lou, Z B Su, PRB 64, 104414 (2001)

DMRG is essentially a 1D method



Ground state energy of the 2D Heisenberg model
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DMRG               -0.3346               -0.1814

MC                     -0.334719           -0.1819

SW                     -0.33475             -0.1822

Free boundary conditions

ΔE(L) ~1/L

Periodic boundary conditions: 

ΔE(L) ~ (1/L)3



S1 S2 S3 S4 S5 S6

4 5          12         13

3 6          11         14

2 7          10         15

1          8           9          16

1             2             3             4             5        6          7 

1D

2D

2D 1D mapping

• Introduce long-range coupling

• Break the square lattice symmetry

• Demand grows exponentially with 
lattice size in order to satisfy the 
Area Law 

Why is the performance of DMRG poor in 2D?



Area Law of Entanglement Entropy

For a gapped system

1
entanglement min~ ~ lndS L D−

D×D matrix
1 2 1[ ]x xA m

1D (d=1)            Dmin ~ L0

2D (d=2) Dmin ~ eL

Dmin grows exponentially with the system size

( )
1

1 1[ ]... [ ] ...
L

L L
m m

Tr A m A m m mΨ = ∑
L

environment

system
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Tensor-Network Wavefunction

keep the locality of local 
interactions

satisfy the area law: 

The number of dangling bonds 
is proportional to the cross 
section

Tensor network state = tensor product state               
:  vertex state model                                     Niggemann, Zittartz, 96
:  projected entangled-pair state (PEPS)      Cirac, Verstraete, 04



Two Problems Need To Be Solved

1. How to determine the local tensor?

2. How to evaluate the expectation values, given a 
tensor-product wavefunction?

∏
∈
∈

=Ψ

whitej
blacki

jijyyxiyyxzyx mmmBmATr
jjjiiiiii

 ][][λλλ



How to determine the local tensor?

1. Variational approach

to minimize
• Converging slowly

• The bond dimension that can be treated is small 

D  ≤ 5 

|
HΨ Ψ

Ψ Ψ

[ ]
i i ix y z i i

i

Tr T m mΨ = ∏

Gu, Levin, Wen, PRB (2008)



How to determine the local tensor?

2. Projection approach

• Very accurate

• Fast converging

• Large bond dimension can be treated
(more if symmetry is considered)

D ~ 70  (honeycomb lattice)  D ~ 20  (square or Kagome lattice)  

state groundlim =Ψ−

∞→

He β

β

Projection Operator

Jiang, Weng, Xiang, PRL 101, 090603 (2008)

1D: Vidal, PRL 98, 070201 (2007) 
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Projection Approach



1. One iteration

2. Repeat the above iteration until converged
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Step I

Step II

Step III

SVD: singular value decomposition

Step I

Step II

Step III Truncate basis space

Projection: x-bond



How accurate is this projection approach

λ MF Without performing the 
canonical transformation 
for the matrix product 
state

Using the canonical 
representation of the 
matrix product state: 
λ is the eigenvalue of the 
density matrix

1D Heisenberg model



Expectation Value
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To evaluate 

 〈Ψ |Ψ 〉 and 〈Ψ |O|Ψ 〉

is equivalent to 
evaluating the partition 
functions of classical 
statistical models, 
such as the S=1/2 Ising
model

Bond dimension D2



Coarse Grain Tensor Renormalization Group 

i i ix y z
i

Z= Tr T∏

Levin & Nave, PRL (2007)

Rewiring                                Decimation



Step I: Rewiring
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Bond field: measures the 
entanglement between U and V



Step II: Decimation



Accuracy of TRG

Ising model on triangular lattice

D = 24



Second renormalization of tensor-network state (SRG)

( )envZ=Tr MMTRG: 
truncation error of M is 
minimized

What needs to be minimized 
is the error of Z!

SRG: 
The renormalization effect of 
Menv to M is considered system

Xie et al, PRL 103, 160601 (2009)

environment



I. Poor Man’s SRG: entanglement mean-field approach

( ) , ,
env env

ij kl kl ij
ijkl

Z=Tr MM M M= ∑
/ / / /

,
env 1 2 1 2 1 2 1 2
kl ij k l i jM Λ Λ Λ Λ≈

Mean field (or cavity) approximation

4
, , ,

1...
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n D

M U V
=

= Λ∑

Λ = Λ1/2 Λ1/2

From environment

From system

Bond field – mean field variable 

Λ



Accuracy of Poor Man’s SRG

Ising model on triangular lattice

D = 24



II. More accurate treatment of SRG

TRG

Menv

Evaluate the environment contribution Menv using TRG
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Accuracy of SRG

Ising model on a triangular lattice

D = 24



Error versus D



Specific Heat of the Ising model on Triangular Lattices

D = 24



Quantum Heisenberg Model on Honeycomb Lattice

302 3N = ×Lattice size

Ground State Energy i j
ij

H J S S= ⋅∑
r r

SRG D = 14
E = -0.54439

SRG D = 30
E = -0.54442

Monte Carlo: 
E = -0.54454  ( ± 20 )

U. Low, Condensed Matter Physics 
2009 Vol 12, 497



Heisenberg Model on Honeycomb Lattice
Quantum Monte Carlo Result 

U. Low, Condensed Matter 
Physics 2009 Vol 12, 497

E = -0.36303 (± 13)       per bond
= -0.54454  ( ± 20 )    per site



Staggered Magnetization

SRG D = 15
M = 0.31003

Monte Carlo: 
M = 0.2681

U. Low, Condensed Matter 
Physics 2009 Vol 12, 497

M = 0.22
Reger, Riera, Young,

JPC 1989

Spin Wave: 
M = 0.24

Series expansion
M = 0.27



Staggered Magnetization

The tensor-network 
state cuts the long-
range correlation

The bond dimension is 
roughly of the order of 
the correlation length of 
the tensor-network state

The logarithmic 
correction to the Area 
Law is important here 



Staggered Magnetization

4th order polynomial fit
M = 0.263

Monte Carlo: 
M = 0.2681



Square Lattice



Kagome Lattice



Summary
DMRG is an accurate numerical method for studying 1D 
quantum systems

In 2D, the tensor-network representation of quantum many-
body states is a good starting point 

The quantum tensor-network wavefunction can be 
accurately and efficiently evaluated by the projection 
method

The partition function or expectation values of tensor-
network model/state can be accurately determined by the 
SRG method
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Triangular lattice

i j
ij

H= -J S S∑
Ising model 

i i ix y z
i

Z= Tr T∏
Tensor-network model in dual lattice

Dual lattice: honeycomb lattice

Tensor-Network Representation of Classical Statistical Model



Tensor-network representation

S1

S2                S3  σ1

σ3 σ2
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Tensor-network representation

( ) ( )/

i i i

1 2 3

1 2 3

x y z
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J 2
1 2 3

Z= Tr T

T e 1β σ σ σ
σ σ σ δ σ σ σ− + += −
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S2                S3  σ1
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