Tensor Renormalization Group and its Application

Tao Xiang (向 濤)

Institute of Physics / Institute of Theoretical Physics

Chinese Academy of Sciences

txiang@aphy.iphy.ac.cn

Motivation: Challenges in the study of strongly correlated systems

- ✓ Non-perturbative: quantum field theory not always useful
- Exponential Wall: total degree of freedom grows exponentially with system size

Wheat-chessboard problem			
1st square:	1 grain		
2nd square:	2 grains		
3rd square:	4 grains		
4th square:	8 grains		
64th square:	2 ⁶³ grains		

 $1 + 2 + 4 + 8 + \dots + 2^{63} = 2^{64} - 1$ = 18446744073709551615 grains

Weak Coupling Approach

Treat many-body interactions by certain mean-field approximation

 $2^{64} \rightarrow 64$

Density Functional Theory(1960s)

Walter Kohn

- Most successful numerical method for treating weak coupling systems
- Based on LDA or similar approximation

Strong Coupling Approach

 $2^{64} \rightarrow$ a particularly selected set of basis states

Quantum Monte Carlo

K. Wilson

Numerical Renormalization Group

- Wilson NRG 1960s-1980s
 - Kondo problem
- Density-matrix renormalization group (White 1992)
 - Most accurate numerical method for studying 1D quatnum systems
 - Poor performance in 2D

Characteristic Energy Scales

Strong coupling		Weak coupling
low	Dimensionality	high
strong	Quantum fluctuations	weak
weak	Coulomb screening	strong

Concept of renormalization group

 1943 Ernst Stueckelberg initialized a renormalization program to attack the problems of infinities in QED

but his paper was rejected by Physical Review.

• 1953 Ernst Stueckelberg and Andre Petermann opened the field of renormalization group

Ernst Stueckelberg

Block Spin Renormalization Group

Leo P. Kadanoff

1966 Kadanoff introduced the block spin RG scheme in combine with the scaling invariance to solve the problem of phase transition and critical phenomena

Numerical Renormalization Group Method

Kenneth Wilson

- 1974 Wilson opened the field of numerical RG by combining the idea of renormalization group with numerical calculations.
- He solved the famous single-impurity Kondo model (Kondo effect).

Basic Idea of Numerical Renormalization Group

Refine a basis set by performing a series of basis transformations

Wilson block-spin NRG

Diagonalize H, keep the states according to their energy

Reasons for the Failure of Wilson block-spin NRG

- 1. Interface effect is too big
- 2. Big truncation error:

total D^2 states, but only D of them retained

3. Criterion of truncation:

energy is not a good indicator of basis states

Example: Particle on a lattice

Improved NRG method

T. Xiang and G. A. Gehring, J. Mag. Mag. Mat. 104-107, 861 (1992).

Density Matrix Renormalization Group (DMRG)

S. White, PRL (1992)

Use Environment as a pump to probe the basis states in System

NRG versus DMRG

$$\rho = e^{-\beta H}$$

Use a sub-system as a pump to probe the other part of the system

$$\rho_{sys} = Tr_{env}e^{-\beta H}$$

The weight is measured by the entanglement between Sys and Env

What is a "Density Matrix" measurement?

$$\left|\psi\right\rangle = \sum_{i,j} f_{ij} \left|i\right\rangle_{sys} \left|j\right\rangle_{env}$$

DMRG Wavefunction: Matrix Product State

S Ostlund, S Rommer, PRL 1995

- The wavefunction generated by the DMRG iteration is a matrix-product state
- ✓ It can be also regarded as a variational ansatz of many-body wavefunction

$$\left|\Psi\right\rangle = \sum_{m_{1}\cdots m_{L}} Tr\left(A[m_{1}]...A[m_{L}]\right) \left|m_{1}...m_{L}\right\rangle$$

 $A_{x_1x_2}[m_1] D \times D$ matrix

Valence bond solid state

S=1
$$H = \sum_{i} \frac{1}{2} \left[S_{i} \cdot S_{i+1} + \frac{1}{3} \left(S_{i} \cdot S_{i+1} \right)^{2} + \frac{2}{3} \right]$$

$$\left|\Psi\right\rangle = \sum_{m_{1}\cdots m_{L}} Tr\left(A[m_{1}]\dots A[m_{L}]\right) \left|m_{1}\dots m_{L}\right\rangle$$
$$A[-1] = \begin{pmatrix} 0 & 0\\ \sqrt{2} & 0 \end{pmatrix} \quad A[0] = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} \quad A[1] = \begin{pmatrix} 0 & \sqrt{2}\\ 0 & 0 \end{pmatrix}$$

Affleck, Kennedy, Lieb, Tasaki, PRL 59, 799 (1988)

Haldane Conjecture

Integer Heisenberg spin chain has a finite excitation gap

$$H = \sum_{i} S_{i} \cdot S_{i+1}$$

Haldane

Ni²⁺ :
$$S = 1$$

Hidden Order

 Nd_2BaNiO_5

YBa₂Cu₃O₆

Neel Nobel 1970

Accuracy of the DMRG in 1D

DMRG: Can calculate all static, thermodynamic, dynamic quantities

$$H = J \sum_{i=1}^{N} \vec{S}_i \cdot \vec{S}_{i+1}$$

Heisenberg

Extend DMRG to 2D: Map 2D lattice to 1D

DMRG is essentially a 1D method

T Xiang, J Z Lou, Z B Su, PRB 64, 104414 (2001)

Ground state energy of the 2D Heisenberg model

Why is the performance of DMRG poor in 2D?

Area Law of Entanglement Entropy

$$\left|\Psi\right\rangle = \sum_{m_{1}\cdots m_{L}} Tr\left(A[m_{1}]\dots A[m_{L}]\right) \left|m_{1}\dots m_{L}\right\rangle \qquad A_{x_{1}x_{2}}[m_{1}] \quad D \times D \text{ matrix}$$

> 1D (d=1) $D_{min} \sim L^0$

> 2D (d=2) $D_{min} \sim e^L$ D_{min} grows exponentially with the system size

Tensor-Network Wavefunction

$$\left|\Psi\right\rangle = Tr \prod_{\substack{i \in black \\ j \in white}} \lambda_{x_i} \lambda_{y_i} \lambda_{z_i} A_{x_i y_i y_i}[m_i] B_{x_j y_j y_j}[m_j] \left|m_i m_j\right\rangle$$

- ✓ keep the locality of local interactions
- \checkmark satisfy the area law:

The number of dangling bonds is proportional to the cross section

Tensor network state = tensor product state

- : vertex state model
- : projected entangled-pair state (PEPS)

Niggemann, Zittartz, 96 Cirac, Verstraete, 04

Two Problems Need To Be Solved

$$\left|\Psi\right\rangle = Tr \prod_{\substack{i \in black \\ j \in white}} \lambda_{x_i} \lambda_{y_i} \lambda_{z_i} A_{x_i y_i y_i}[m_i] B_{x_j y_j y_j}[m_j] \left|m_i m_j\right\rangle$$

1. How to determine the local tensor?

2. How to evaluate the expectation values, given a tensor-product wavefunction?

How to determine the local tensor?

$$|\Psi\rangle = Tr \prod_{i} T_{x_i y_i z_i} [m_i] |m_i\rangle$$

Gu, Levin, Wen, PRB (2008)

How to determine the local tensor?

$$\left|\Psi\right\rangle = Tr \prod_{\substack{i \in black \\ j \in white}} \lambda_{x_i} \lambda_{y_i} \lambda_{z_i} A_{x_i y_i y_i}[m_i] B_{x_j y_j y_j}[m_j] \left|m_i m_j\right\rangle$$

Jiang, Weng, Xiang, PRL **101**, 090603 (2008) 1D: Vidal, PRL **98**, 070201 (2007)

Projection Approach

$$\lim_{\beta \to \infty} e^{-\beta H} |\Psi\rangle = \text{ground state}$$
$$\lim_{M \to \infty} \left(e^{-\tau H} \right)^{M} |\Psi\rangle = \text{ground state}$$

Heisenberg model

$$H = \sum_{\langle ij \rangle} H_{ij} = H_x + H_y + H_z$$
$$H_{ij} = JS_i \cdot S_j$$

Projection Iteration

$$e^{-\tau H} \approx e^{-\tau H_z} e^{-\tau H_y} e^{-\tau H_x} + o(\tau^2)$$
$$H_{\alpha} = \sum_{i \in black} H_{i,i+\alpha} \qquad (\alpha = x, y, z)$$

Trotter-Suzuki decomposition

1. One iteration

$$\begin{aligned} \left| \Psi_{1} \right\rangle &= e^{-\tau H_{x}} \left| \Psi_{0} \right\rangle \\ \left| \Psi_{2} \right\rangle &= e^{-\tau H_{y}} \left| \Psi_{1} \right\rangle \\ \left| \widetilde{\Psi}_{0} \right\rangle &= e^{-\tau H_{z}} \left| \Psi_{2} \right\rangle \end{aligned}$$

2. Repeat the above iteration until converged

Projection: x-bond

 $\left|e^{-\tau H_{x}}\right|\Psi\right\rangle = Tr \prod \left\langle m_{i}'m_{j}'\right|e^{-\tau H_{i,j}}\left|m_{i}m_{j}\right\rangle\lambda_{x_{i}}\lambda_{y_{i}}\lambda_{z_{i}}A_{x_{i}y_{j}y_{i}}[m_{i}]B_{x_{i}y_{j}y_{i}}[m_{j}]\left|m_{i}'m_{j}'\right\rangle$ $i=i+\hat{x}$ Step I $S_{y_i z_i m'_i, y_j z_j m'_j}$ (a) (b) $= \sum \sum \langle m'_i m'_j | e^{-H_{ij}\tau} | m_i m_j \rangle$ Zi $m_i m_i x$ λ_z Λ_u Step λ_x $\lambda_{y_i}\lambda_{z_i}A_{xy_iz_i}[m_i]\lambda_x B_{xy_jz_j}[m_j]\lambda_{y_j}\lambda_{z_j}$ B Step II Yi Step II SVD $S_{y_i z_i m_i, y_j z_j m_j} = \sum U_{y_i z_i m_i, x} \tilde{\lambda}_x V_{x, y_j z_j m_j}^T$ (d) (c) $\langle \lambda_y \rangle$ Step III λ_z Truncate basis space Step III $\tilde{\lambda_x}$ $A_{xy_i z_i}[m_i] = \lambda_{y_i}^{-1} \lambda_{z_i}^{-1} U_{y_i z_i m_i, x},$ Ĩ λ_z $B_{xy_j z_j}[m_j] = \lambda_{y_j}^{-1} \lambda_{z_j}^{-1} V_{y_j z_j m'_j, x}.$

SVD: singular value decomposition

How accurate is this projection approach

Expectation Value

$$\langle \hat{O} \rangle = \frac{\langle \Psi | \hat{O} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$

$$|\Psi\rangle = Tr \prod_{i} T_{x_{i}y_{i}y_{i}}[m_{i}] |m_{i}\rangle$$
$$\langle\Psi|\Psi\rangle = Tr \prod_{i} A_{x_{i}x_{i}',y_{i}y_{i}',z_{i}z_{i}'}$$
$$A_{xx',yy',zz'} = \sum_{m} T_{xyz}[m]T_{x'y'z'}[m]$$

Bond dimension D^2

To evaluate

 $\langle arPsi | arPsi
angle$ and $\langle arPsi | O | arPsi
angle$

is equivalent to evaluating the partition functions of classical statistical models, such as the S=1/2 Ising model

Coarse Grain Tensor Renormalization Group

 $Z = Tr \prod_{x_i y_i z_i} T_{x_i y_i z_i}$

Levin & Nave, PRL (2007)

Step I: Rewiring

Bond field: measures the entanglement between *U* and *V*

Step II: Decimation

Accuracy of TRG

Ising model on triangular lattice

Second renormalization of tensor-network state (SRG)

➤ TRG:

truncation error of *M* is minimized

What needs to be minimized is the error of Z!

➤ SRG:

The renormalization effect of *M*^{env} to *M* is considered

environment

Xie et al, PRL **103**, 160601 (2009)

I. Poor Man's SRG: entanglement mean-field approach

$$Z = Tr(MM^{env}) = \sum_{ijkl} M_{ij,kl} M_{kl,ij}^{env}$$

$$M_{kj,il} = \sum_{n=1...D^4} U_{kj,n} \Lambda_n V_{il,n}$$

$$\boldsymbol{M}_{kl,ij}^{env} \approx \boldsymbol{\Lambda}_{k}^{1/2} \boldsymbol{\Lambda}_{l}^{1/2} \boldsymbol{\Lambda}_{i}^{1/2} \boldsymbol{\Lambda}_{j}^{1/2}$$

Mean field (or cavity) approximation

Accuracy of Poor Man's SRG

Ising model on triangular lattice

II. More accurate treatment of SRG

Evaluate the environment contribution *M*^{env} using TRG

Accuracy of SRG

Ising model on a triangular lattice

Error versus D

Specific Heat of the Ising model on Triangular Lattices

D = 24

Quantum Heisenberg Model on Honeycomb Lattice

Lattice size $N = 2 \times 3^{30}$

Heisenberg Model on Honeycomb Lattice Quantum Monte Carlo Result

Staggered Magnetization

Staggered Magnetization

The tensor-network state cuts the longrange correlation

The bond dimension is roughly of the order of the correlation length of the tensor-network state

The logarithmic correction to the Area Law is important here

Staggered Magnetization

Square Lattice

Kagome Lattice

Summary

- DMRG is an accurate numerical method for studying 1D quantum systems
- In 2D, the tensor-network representation of quantum manybody states is a good starting point
- The quantum tensor-network wavefunction can be accurately and efficiently evaluated by the projection method
- The partition function or expectation values of tensornetwork model/state can be accurately determined by the SRG method

Acknowledgement:

Zhiyuan Xie, Qiaoni Chen, Huihai Zhao IOP / ITP, CAS

Zhengyu Weng, Hongchen Jiang Tsinghua University

Tensor-Network Representation of Classical Statistical Model

Tensor-network representation

$$H=-J\sum_{\langle ij\rangle}S_iS_j$$

$$Z = Tr \exp(-\beta H) = Tr \prod_{\Delta} \exp(-\beta H_{\Delta})$$

$$\sigma_1 = S_2 S_3$$

$$\sigma_2 = S_3 S_1$$

$$\sigma_3 = S_1 S_2$$

$$H_{\Delta} = -J \left(\sigma_1 + \sigma_2 + \sigma_3\right)/2$$

$$\sigma_1 \sigma_2 \sigma_3 = S_2 S_3 S_3 S_1 S_1 S_2 = 1$$

Tensor-network representation

$$Z = Tr \prod_{i} T_{x_i y_i z_i}$$
$$T_{\sigma_1 \sigma_2 \sigma_3} = e^{-J\beta(\sigma_1 + \sigma_2 + \sigma_3)/2} \delta(\sigma_1 \sigma_2 \sigma_3 - 1)$$

