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Entanglement 

Useful resource for quantum information processing
(including quantum computing)

Entanglement is common in many-body systems

Can entanglement be a useful tool to distinguish
quantum phase transitions?

Near quantum phase transitions, behavior of
entanglement is “singular”



Entanglement and criticality 

Entropy of L spins

S ~ c/3 log L
[Vidal et al. ’03, Calabrese
and Cardy ‘04]

Concurrence (nearest nb.)

dC/dh diverges

[Osterloh, Amico, Falci & Fazio ’02, 
Osborne & Nielsen ‘02]

subsystem the rest
L

In 1D:

Singularity of C is related
singularity in ground-state
energy quantum criticality

[Wu, Sarandy & Lidar ‘04]



Some remarks on concurrence and entropy 

Singularity of concurrence not necessarily gives 
quantum phase transition [Yang ‘05]

For certain models, concurrence is maximum (but
not singular) at quantum critical point, e.g. XXZ model

[Gu, Lin & Li ‘03]

Concurrence works for two qubits

Single or few sites entropy is easy to calculate (once state
is given), but not so for large block entanglement

require knowledge of 2L Schmidt numbers



Focus of this work: Elusive transitions

In infinite-order transition, no divergence for correlation

functions concurrence will not detect such transition

A different type of transition: divergence in localizable
entanglement length

Will not use concurrence nor entropy
instead use geometric measure of entanglement
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Geometric measure of entanglement

Compare entangled state 

to product states:

As interested in thermodynamic limit
can define entanglement density:

Entanglement revealed by maximum overlap



Geometric measure of entanglement

Search for best Hartree approximation

Maximum overlap is the probability amplitude
for optimal local measurement



Fidelity measure

Overlap between different ground states

cf. geometric measure: between ground and product states

Also requires knowledge of ground states

See Prof. H-Q Lin’s talk

[Zanardi et al.
Prof Lin and co-workers]

Not entanglement measure
But fidelity is a very useful tool to identify critical points



Geometric entanglement vs. concurrence 
and entropy (near criticality)

Blocks of (L=1,2) spins

dε(1,2) /dh diverges
[Wei et al. ’05]

Concurrence
dC/dh diverges

Blocks of L (large »ξ) spins

[Orus ‘08]

LL L

ε(L) = c/12 log ξ

Entropy

S ~ c/3 log L



Approaches to calculate 
geometric measure in spin models

II.Exact diagonalization to find ground states

Translation invariance can reduce number of parameters:

Parametrize product states

Numerical optimization of 

FM-
like:

AFM-
like:

I. Analytic? Only a few examples so far



Geometric measure for MPS
III. When ground states are approximated by MPS

Use results of Orús ’08 (translation invariance)

In general, no translation invariance 
can use variational MPS approach to find lowest

MPS with bond dimension =1 for the Hamiltonian: 

Efficient, easier than finding ground states
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Benchmark I: 
XY models in transverse fields

Ground states exactly solvable

Phase diagram

r

Ferro

Ordered
Oscillatory ParamagneticAnisotropy

External field

2nd order



Geometric entanglement: analytic results 

E

0r =

1r =

1/ 2r =

h
∂
∂
E

XX
class

Ising class

[Wei et al. ’05]

Entanglement is singular across transitions



Singular behavior near critical points

Across critical line h=1 the field-derivative of 
entanglement diverges

I. Ising universality class r≠0
ν=1

II. XX (isotropic) universality class r=0
ν=1/2

h
∂
∂
E[Wei et al. ’05]



Benchmark II:Ising model in
transverse and longitudinal fields

Ground states not exactly solvable

Phase diagram

λ0
0

1

h

2nd order

1st order



Geometric entanglement: from iTEBD

λ0
0

1

h

2nd order

1st order

[Orús & Wei ’09]

Entanglement is singular across the transition (only one point)

[Ground states
from iTEBD]

At fixed λ,vary h



At fixed h, vary longitudinal field λ

λ0
0

1

h

2nd order

1st order

Singular behavior across 1st order transition is different

[Orús & Wei ’09]
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Δ
-1 1

FM Critical Gapped
AFM

1st order ∞-order
KT transition

XXZ model

A discontinuity
of entanglement



Geometric entanglement

XXZ: Near KT transition

[Orús & Wei ’09]



Finite-size scaling

XXZ: Near KT transition

[Orús & Wei ’09]



Localizable entanglement

XXZ: Near KT transition

[Verstraete, Martín-Delgado & Cirac ’04]

[Popp, Verstraete, Martín-Delgado & Cirac ’05]

i i+1i i+1



Deformed AKLT model (spin 1)

Subtle transition: an transition in localizable entanglement
(from finite entanglement length to infinite at transition point)

When μ=0 it’s AKLT model



Deformed AKLT model (spin 1)

Ground state

↑↓ − ↓↑

P 1 1 0 0
2 2

e ee e
μ μ

μ μ
−

−= + ↑↑ + − ↓↓ + ↑↓ + ↓↑



Deformed AKLT model
Subtle transition: an transition in localizable entanglement
(from finite to infinite)

Not detectable by statistical mechanical approaches

entanglement length

correlation length

[Verstraete, Martin-Delgado
& Cirac ’04]

At AKLT: perfect end-end teleportation (ent. swapping)  

Away from AKLT, teleportation by non-maximally 
entangled states fidelity decreases w. distance



Deformed AKLT model: 
geometric entanglement model

Choose product state to be product of nearest-two-site
states

[Orús & Wei ’09]
Closest product state



Deformed AKLT model: 
geometric entanglement model

Geometric entanglement is singular across the
localizable-entanglement transition [Orús & Wei ’09]

Geometric entanglement is related to 
optimal local measurement



Summary

XXZ model: Geometric entanglement shows jump at
1st order FM transition (Δ= -1) and cusp at 
∞-order transition from critical phase to gapped AFM (Δ=1)

similar to localizable entanglement

Benchmark geometric entanglement for Ising models
with transverse and longitudinal fields via analytic & iTEBD

2nd order and 1st quantum phase transitions have
different singular behaviors

Deformed AKLT: finite-to-infinite entanglement length 
can also be detected by geometric entanglement 



Outlook

Area law via entanglement entropy, is there
area law using geometric entanglement?

Two or higher dimensions; see results by Huang & Lin ‘09

Detecting topological phases?

: entangled state with NxN sites

LxL
(i,j)-th block
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Overlap and correlation functions

( )1 , with  1
2

I r rρ σ= + =
r r
�

A single spin state                     can be expressed
in terms of a density matrix 

N-spin separable pure state:

( ) ( ) ( )1 2
1 1 1
2 2 2S S NI r I r I rφ φ σ σ σ= + ⊗ + ⊗ ⊗ +

r r r r r r
� � L �

The overlap square

α β↑ + ↓

( )2
S S ψ
φ φΛ =

Is a linear combination of all correlation functions



At fixed h, vary longitudinal field λ

λ0
0

1

h

2nd order

1st order

[Orús & Wei ’09]


