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Entanglement

0 Useful resource for quantum information processing
(including quantum computing)

o Entanglement is common in many-body systems

0 Near quantum phase transitions, behavior of
entanglement is “singular”

o Can entanglement be a useful tool to distinguish
quantum phase transitions?



Entanglement and criticality

a In1D:

Concurrence (nearest nb.)

=

» dC/dh diverges

>SS ~c/3 Iog L [Osterloh, Amico, Falci & Fazio '02,

[Vidal et al. ’03, Calabrese Osborne & Nielsen ‘02]
and Cardy ‘04]

Entropy of L spins

subsystem the rest

» Singularity of C is related
singularity in ground-state
energy=>» quantum criticality

[Wu, Sarandy & Lidar ‘04]



Some remarks on concurrence and entropy

0 Singularity of concurrence not necessarily gives
quantum phase transition [Yang ‘05]

o For certain models, concurrence is maximum (but
not singular) at quantum critical point, e.g. XXZ model

[Gu, Lin & Li ‘03]

o Concurrence works for two qubits

0 Single or few sites entropy is easy to calculate (once state
IS given), but not so for large block entanglement
=> require knowledge of 2L Schmidt numbers



Focus of this work: Elusive transitions

0 In infinite-order transition, no divergence for correlation

functions = concurrence will not detect such transition

o A different type of transition: divergence in localizable
entanglement length

a Will not use concurrence nor entropy
=» instead use geometric measure of entanglement
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Geometric measure of entanglement

o Compare entangled state |U)

to product states: gy = & |4l
) = ® [¢1)

o Entanglement revealed by maximum overlap
Apax (V) = max (D)

B (W) = —logy A2, ()

max

a As interested in thermodynamic limit
=» can define entanglement density:

£= lim v, Ey = N 'En(D)

N—o0



Geometric measure of entanglement

0 Search for best Hartree approximation
S |l
) = ® [o)
o Maximum overlap is the probability amplitude
for optimal local measurement

Apax (0) = max (DT, En(¥)=—log, A2, (V)

max

o10) (6]
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Fidelity measure

[Zanardi et al.
Prof Lin and co-workers]

O, o) = 3 log (BN Ta (V)

a See Prof. H-Q Lin’s talk

o Overlap between different ground states

=» cf. geometric measure: between ground and product states

a0 Not entanglement measure
But fidelity is a very useful tool to identify critical points

o Also requires knowledge of ground states



Geometric entanglement vs. concurrence
and entropy (near criticality)

Entropy Concurrence
S~c/l3loglL dC/dh diverges

@ @

Blocks of L (large »¢) spins Blocks of (L=1,2) spins

e O LC IC RO )

eM=clM2log £ d ¢ (12) /dh diverges
[Orus "08] [Wei et al. ’05]



Approaches to calculate
geometric measure in spin models

|. Analytic? Only a few examples so far

. Exact diagonalization to find ground states|¥)
N :
+ Parametrize product states |®) = ® ol
6l = cos §71[0) + ¢/ sin 617)[1)
» Numerical optimization of Apax(¥) = max |(®| D))

{0,9}
B (W) = —logy A2, ()

max

+ Translation invariance can reduce number of parameters:

pl2i—1 = g, 271 =
FM- gli) _ g gl _ o AFM- 07 =000 .
like: ! like: gl = g, 2] = ¢,



Geometric measure for MPS

I1l. When ground states are approximated by MPS |Uups)

+ Use results of Orus '08 (translation invariance)
1 d; )"
EW () = — lim —log ( f;)
n—oon iy (EnL)

max (T)T ® L ® 7}*)
-

dr, =

+ In general, no translation invariance
=» can use variational MPS approach to find lowest
MPS with bond dimension =1 for the Hamiltonian:

H = —|Vmps) (Vnmps|

=>» Efficient, easier than finding ground states
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Benchmark |:
XY models in transverse fields

H=-3%" (1 Tl i) LT i) hg[ﬂ)

2 £ £ 2 Yy Yy <

*» Ground states exactly solvable
2n order

**Phase diagram 0

Ordered

Oscillatory Y Paramagnetic

Anisotropy r 0.5

h

External field



Geometric entanglement: analytic results

[Wei et al. ‘093]

=>» Entanglement is singular across transitions



Singular behavior near critical points

Q Across critical line h=1 the field-derivative of
entanglement diverges

[Wei et al. '03]

|. Ising universality class r+0

= v =1
0E(r, h) 1
o N—%log2|h—1|, for h — 1

lI. XX (isotropic) universality class r=0
= v =1/2

0E(0, h) N logy (m/2) 1 for s 1

oh V2nr  V1-=h




Benchmark |l:Ising model in
transverse and longitudinal fields

H = — Z (Jg]agﬂ] + holll + )\a:[lf])

7
*» Ground states not exactly solvable

h

2" order cl 1

**Phase diagram




Geometric entanglement: from iTEBD

_ (] [4]
o At fixed A,vary h - Z ( U+ holl + Ao )
[Orus & Wei '09]
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0.08¢

2" order cl 1 0.06!

————————— 1------» 1storder 0.04f

|[Ground states
| from iTEBD]

A >
J g 0.021

=>» Entanglement is singular across the transition (only one point)



At fixed h, vary longitudinal field A

H=— Z (ag]agﬂ] + holl 4 )\O'g])
Z [Orus & Wei '09]
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=>» Singular behavior across 15t order transition is different
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XXZ model

=Y (ollo )+ oot + Aolioli)

" Gapped
Critical

-t AW
e e = Ry

! ! A

-1 1

1st order co-order
[ KT transition
A discontinuity

of entanglement



XXZ: Near KT transition

=Y (ollo )+ oot + Aolioli)

o Geometric entanglement [Orus & Wei ’09]
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XXZ: Near KT transition

z

H = Z (aﬁﬂaiﬁ” + OLi]Oz[j—H] + Aag]a[iﬂg

- | b(A)
0 Finite-size Scallng gN(A) ~ S(A) -+ T [Ords & Wei '09]
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XXZ: Near KT transition

H =3 (o101 4 ool + Aatlali+ )

0 Localizable entang|ement [Verstraete, Martin-Delgado & Cirac '04]
[Popp, Verstraete, Martin-Delgado & Cirac '05]
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Deformed AKLT model (spin 1)

i\ — 0 i,i+1 i\ — 0
Hw) =Y (i exit) Xt () e i)

(

i ~1il &l L, 21 30 2
XL»K‘E%] _ (SHS[ +1] —|—§(SHS[ —|—1])2_|_§)

sl — il + sinh (@ S,Li] + (cosh (u) — 1 S,Li] 2
L

a When u=0 it's AKLT model

0 Subtle transition: an transition in localizable entanglement
(from finite entanglement length to infinite at transition point)




Deformed AKLT model (spin 1)
Hp) =Y (@) o) x{ (@) o sl
Z,[f] = Il 4 sinh (,u)SLi] + (cosh () — 1)(55])2

0 Ground state

@:eﬂ\+1><m+eﬂ\_1><¢¢\+%\o><m+%\o><m



Deformed AKLT model

0 Subtle transition: an transition in localizable entanglement
(from finite to infinite)

> At AKLT: perfect end-end teleportation (ent. swapping)

> Away from AKLT, teleportation by non-maximally
entangled states =» fidelity decreases w. distance

4 [Verstraete, Martin-Delgado
3 ; & Cirac '04]
o 2 ;.;:;/entanglement length
g '
El _______ﬂ—ﬂ""df__\_;""——_________
T = 5 z :
v

0 Not detectable by statistical mechanical approaches



Deformed AKLT model:
geometric entanglement model

0 Choose product state to be product of nearest-two-site

states D) = (Né2) 5120-1.23])
J=1 [Orus & Wei '09]
=» Closest product state

() = [0 (a010,0)+ 3le) ) -

‘.‘tl | I___.-----I-" I N I 0.85
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=06 ==z l o8
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B (< 0) = I® (u=0) =
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Deformed AKLT model:
geometric entanglement model

o Geometric entanglement is singular across the

localizable-entanglement transition [Ordis & Wei '09)]

1
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0 Geometric entanglement is related to

optimal local measurement |¢H><¢H|

Q¢¢n¢0l0




Summary

o Benchmark geometric entanglement for Ising models
with transverse and longitudinal fields via analytic & iTEBD
=» 2"d order and 15t quantum phase transitions have
different singular behaviors

0 XXZ model: Geometric entanglement shows jump at
15t order FM transition (A= -1) and cusp at
co-order transition from critical phase to gapped AFM (A=1)
=» similar to localizable entanglement

0 Deformed AKLT: finite-to-infinite entanglement length
can also be detected by geometric entanglement



Outlook

o Two or higher dimensions; see results by Huang & Lin ‘09

0 Area law via entanglement entropy, is there
area law using geometric entanglement?

| W) : entangled state with NxN sites

N/L
|(I)product> — ® m
=1 (i.j)-th block

Erxr ~ L7

0 Detecting topological phases?
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Overlap and correlation functions

a A single spin state a|T)+ B4} can be expressed
in terms of a density matrix

1

p=§(|+F[5), with |r|=1
0 N-spin separable pure state:
1 v 1 . 1 Lo
\¢S><¢S\:E(I+r1[b)®5(l+r2[b-)®---®5(l+r,\|[b)

o The overlap square

A? = ((|¢s)(s])),

Is a linear combination of all correlation functions



At fixed h, vary longitudinal field A

H=— Z (ag]agﬂ] + holll + )\O'g])

[Orus & Wei '09]
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