Matrix Product States and the Thermodynamic Limit

 Order parameters and scaling relationsIan McCulloch
University of Queensland

19/12/2009

Outline

(1) Matrix Product States
(2) Infinite size DMRG
(3) Scaling relations in the thermodynamic limit

4 Broken symmetries

- Time-reversal symmetry
- Continuous symmetries
(5) Conclusions

MPS representations

Matrix Product State: approximate an exponential number of coefficients with a product of $D \times D$ matrices

$$
|\Psi\rangle=\operatorname{Tr} \sum_{s_{1}, s_{2}, \ldots} A^{s_{1}} A^{s_{2}} A^{s_{3}} A^{s_{4}} \cdots\left|s_{1}\right\rangle\left|s_{2}\right\rangle\left|s_{3}\right\rangle\left|s_{4}\right\rangle \cdots
$$

Λ is the wavefunction in the bipartite basis
$|\Psi\rangle=\sum_{i j} \Lambda_{i j}|i\rangle_{L}|j\rangle_{R}$
This is the variational form underlying the Density Matrix Renormalization Group Algorithm (White, 1992)

Orthonormality conditions

- Without any attention to conditioning the matrices, an MPS calculation is ill-conditioned

We make use of this gauge freedom to condition the matrices

- This is necessary to construct an orthonormal basis

Orthonormality conditions

- Without any attention to conditioning the matrices, an MPS calculation is ill-conditioned

We make use of this gauge freedom to condition the matrices

- This is necessary to construct an orthonormal basis

Matrix representation of the Hamiltonian
 I P McCulloch, J. Stat. Mech. P10014 (2007)

Convenient representation: the Hamiltonian operator as a 4-index MPO

DMRG cast as variational optimization of a tensor network for the energy

Some examples:
Sum of local terms $H=\sum X$
Boundary vectors ($0 \quad I$) and

Expand the product W^{\prime}

Matrix representation of the Hamiltonian
 I P McCulloch, J. Stat. Mech. P10014 (2007)

Convenient representation: the Hamiltonian operator as a 4-index MPO

DMRG cast as variational optimization of a tensor network for the energy

Some examples:
Sum of local terms $H=\sum_{i} X_{i}$

$$
W_{H}=\left(\begin{array}{cc}
I & 0 \\
X & I
\end{array}\right) \quad \text { Boundary vectors }\left(\begin{array}{cc}
0 & I
\end{array}\right) \text { and }\binom{I}{0}
$$

Expand the product W^{N} :

$$
\begin{array}{r}
\\
\quad X \otimes I \otimes I \otimes I \otimes I \otimes I \cdots \\
+\quad I \otimes X \otimes I \otimes I \otimes I \otimes I \cdots \\
+\quad I \otimes I \otimes X \otimes I \otimes I \otimes I \cdots
\end{array}
$$

Matrix Product Operators

Sum of nearest-neighbor terms $H=\sum_{i} X_{i} Y_{i+1}$

$$
W_{H}=\left(\begin{array}{ccc}
I & 0 & 0 \\
Y & 0 & 0 \\
0 & X & I
\end{array}\right)
$$

Ising model in a transverse field

$$
\begin{aligned}
H & =\sum_{i} \sigma_{i}^{z} \sigma_{i+1}^{z}+\lambda \sigma_{i}^{x} \\
W_{H} & =\left(\begin{array}{ccc}
I & 0 & 0 \\
\sigma^{z} & 0 & 0 \\
\lambda \sigma^{x} & \sigma^{z} & I
\end{array}\right)
\end{aligned}
$$

Also:

- fermionic operators
- string operators
- operators at finite momenta, $c_{k}^{\dagger}, N_{k}, \ldots$

Operator arithmetic

The principal advantage of the MPO representation is that it allows arithmetic operations on the operators

$$
\text { sum: } \quad X=Y+Z \quad \rightarrow \quad W_{X}=W_{Y} \oplus W_{Z}
$$

Dimension increases: $\operatorname{dim}_{X} \leq \operatorname{dim}_{Y}+\operatorname{dim}_{Z}$

Dimension increases: $\operatorname{dim}_{X} \leq \operatorname{dim}_{Y} \times \operatorname{dim}_{Z}$

Calculating observables of 'complicated' operators is often easy

- example, variance of an observable

Operator arithmetic

The principal advantage of the MPO representation is that it allows arithmetic operations on the operators

$$
\text { sum: } \quad X=Y+Z \quad \rightarrow \quad W_{X}=W_{Y} \oplus W_{Z}
$$

Dimension increases: $\operatorname{dim}_{X} \leq \operatorname{dim}_{Y}+\operatorname{dim}_{Z}$

$$
\text { product: } \quad X=Y Z \quad \rightarrow \quad W_{X}=W_{Y} \otimes W_{Z}
$$

Dimension increases: $\operatorname{dim}_{X} \leq \operatorname{dim}_{Y} \times \operatorname{dim}_{Z}$

Calculating observables of 'complicated' operators is often easy

- example, variance of an observable

$$
\sigma_{O}^{2}=\left\langle(O-\langle O\rangle)^{2}\right\rangle=\left\langle O^{2}\right\rangle-\langle O\rangle^{2}
$$

DMRG in the infinite size limit (arxiv:0804.2509)

Infinite-size translationally invariant MPS

- The "infinite size" DMRG algorithm has existed since the start (1992)
- It doesn't produce a translationally invariant MPS fixed point
- No prescription for constructing the initial wavefunction at next iteration
- Rarely used in the literature, and often incorrectly
- iTEBD produces a translationally invariant MPS, but for groundstates imaginary time evolution is not so fast

DMRG in the infinite size limit (arxiv:0804.2509)

Infinite-size translationally invariant MPS

- The "infinite size" DMRG algorithm has existed since the start (1992)
- It doesn't produce a translationally invariant MPS fixed point
- No prescription for constructing the initial wavefunction at next iteration
- Rarely used in the literature, and often incorrectly
- iTEBD produces a translationally invariant MPS, but for groundstates imaginary time evolution is not so fast

A recurrence relation for MPS

Suppose we can an initial state:

Suppose we also have the MPS enlarged with an extra unit cell:

Note: Λ_{L} and Λ_{R} are not necessarily diagonal
Now we can insert one more unit cell:

Expectation Values

Correlation functions

The form of correlation functions are determined by the eigenvalues of the transfer operator

- All eigenvalues $|\lambda| \leq 1$
- One eigenvalue equal to 1 , corresponding to the identity operator
Expansion in terms of eigenspectrum λ_{i} :

$$
\langle O(x) O(y)\rangle=\sum_{i} a_{i} \lambda_{i}^{|y-x|} \quad \xi_{i}=-\frac{1}{\ln \left|\lambda_{i}\right|}
$$

Hubbard model transfer matrix spectrum
Half-filling, U/t=4

CFT Parameters

For a gapless groundstate with critical fluctuations, the correlation length increases with number of states D as a power law,

$$
\xi \sim D^{\kappa}
$$

[T. Nishino, K. Okunishi, M. Kikuchi, Phys. Lett. A 213, 69 (1996)
M. Andersson, M. Boman, S. Östlund, Phys. Rev. B 59, 10493 (1999)
L. Tagliacozzo, Thiago. R. de Oliveira, S. Iblisdir, J. I. Latorre, Phys. Rev. B 78, 024410 (2008)]

This exponent is a function only of the central charge,

$$
\kappa=\simeq \frac{6}{\sqrt{12 c}+c}
$$

[Pollmann et al, PRL 2009]

The spectrum already gives information about the critical scaling. Can we go further and obtain scaling functions and exponents?

Scaling exponents

Suppose we have a two-point correlator that has a power-law at large distances

$$
\langle O(x) O(y)\rangle=|y-x|^{-2 \Delta}
$$

As we increase the number of states kept D the correlation length increases, so the region of validity of the power law increases.

- Prefactor a is overlap of operator O with next-leading eigenvector of transfer operator

- For power law behaviour, a must scale inversely with the corresponding correlation length ξ

This gives directly the operator scaling dimensions by direct fit

Scaling exponents

Suppose we have a two-point correlator that has a power-law at large distances

$$
\langle O(x) O(y)\rangle=|y-x|^{-2 \Delta}
$$

As we increase the number of states kept D the correlation length increases, so the region of validity of the power law increases.

- Prefactor a is overlap of operator O with next-leading eigenvector of transfer operator

- For power law behaviour, a must scale inversely with the corresponding correlation length ξ

$$
a \propto \xi^{-\Delta}
$$

This gives directly the operator scaling dimensions by direct fit

Heisenberg model fit for the scaling dimension

Time-reversal symmetry breaking

Several materials exhibit unusual phase transitions with quasi-1D magnetic ordering.
Bulk 3D material: broken rotational symmetry allows a helical state

Helical order: $\langle\vec{S}(0) \times \vec{S}(x)\rangle \sim \vec{a} \sin x$
This kind of symmetry breaking cannot occur in 1D

- No spontaneously broken continuous symmetries in exact 1D
- the corresponding Goldstone modes would destroy the long range order completely
- But can break a discrete subgroup

Chiral symmetry breaking

In 1D, the helical order is absent because we cannot spontaneously break $S U(2)$.
In a magnetic field or with finite anisotropy, the $S U(2)$ is broken down to $U(1) \times$ discrete symmetries, including spin reflection.
This allows a rementant of helical order to survive: chiral order.

$$
\langle\vec{S}(0) \times \vec{S}(1) \cdot \vec{S}(n) \times \vec{S}(n+1)\rangle=\kappa^{2}
$$

Define

$$
\begin{aligned}
\vec{\kappa}(x) & =\vec{S}(n) \times \vec{S}(n+1) \\
\kappa^{z}(x) & =\frac{S^{-}(n) S^{+}(n+1)-S^{+}(n) S^{-}(n+1)}{2 i}
\end{aligned}
$$

In the usual computational basis, the matrix elements of this operator are pure imaginary.
Sign of κ determines choice of left/right chiral degenerate groundstates

CPT symmetry in lattice models

Most lattice models are CPT symmetric:
Charge symmetry: interchange particle \leftrightarrow hole (up \leftrightarrow down spins)
Parity symmetry: exchange $x \leftrightarrow-x, p \leftrightarrow-p$
Time-reversal symmetry: anti-unitary. complex conjugation plus spin inversion. $x \leftrightarrow x, p \leftrightarrow-p$
Combining time reversal with a spin rotation, we can construct an operator that (in our computational basis) is a pure complex conjugation $=C T$
CPT invariance implies that if P transforms one groundstate into another, then $C T$ will have the same effect.

$$
C T=P
$$

This implies that the chiral groundstate wavefunctions must have complex coefficients.

Chiral symmetry breaking in zig-zag chains

F. Heidrich-Meisner, I. P. McCulloch, A. K. Kolezhuk, Phys. Rev. B 80, 144417 (2009)

- $J_{1}-J_{2}$ zig-zag chain, $J_{1}<0, J_{2}>0$
- Anisotropic spin-spin interaction $\left(\vec{S}_{i} \cdot \vec{S}_{i}\right)_{\Delta}=S_{i}^{x} S_{j}^{x}+S_{i}^{y} S_{j}^{y}+\Delta S_{i}^{z} S_{j}^{z}$

$$
H=\sum_{i}\left\{J_{1}\left(\vec{S}_{i} \cdot \vec{S}_{i+1}\right)_{\Delta}+J_{2}\left(\vec{S}_{i} \cdot \vec{S}_{i+2}\right)_{\Delta}-h S_{i}^{z}\right\}
$$

Extrapolation of κ in $1 / \xi$

$$
\beta=-0.3, M=0.25
$$

Continuous symmetries

If you take no action to preserve exactly a symmetry, an infinite MPS can break it
even continuous symmetries in one dimension

How to understand this?

- Matrix elements connecting symmetry sectors vanish as $\sim \exp (-N) \quad \rightarrow 0$
- Continuous symmetries cannot break in exact 1D because the associated goldstone modes would destroy the order parameter completely (percolation threshold!)
- But if the goldstone modes are gapped due to finite basis size, the symmetry can break

Continuous symmetries

If you take no action to preserve exactly a symmetry, an infinite MPS can break it
even continuous symmetries in one dimension
How to understand this?

- Matrix elements connecting symmetry sectors vanish as $\sim \exp (-N) \rightarrow 0$
- Continuous symmetries cannot break in exact 1D because the associated goldstone modes would destroy the order parameter completely (percolation threshold!)
- But if the goldstone modes are gapped due to finite basis size, the symmetry can break

Continuous symmetries

If you take no action to preserve exactly a symmetry, an infinite MPS can break it

even continuous symmetries in one dimension

How to understand this?

- Matrix elements connecting symmetry sectors vanish as $\sim \exp (-N) \quad \rightarrow 0$
- Continuous symmetries cannot break in exact 1D because the associated goldstone modes would destroy the order parameter completely (percolation threshold!)
- But if the goldstone modes are gapped due to finite basis size, the symmetry can break

Prototypical example: Mean field

$$
H=\frac{U}{2} \sum_{i} N_{i}\left(N_{i}-1\right)-J \sum_{\langle i, j\rangle} b_{i}^{\dagger} b_{j}+b_{j}^{\dagger} b_{i}-\mu N
$$

Bose-Hubbard model

$$
H_{\mathrm{MF}}=\sum_{i} \frac{N_{i}\left(N_{i}-1\right)}{2}-J \alpha\left(b_{i}^{\dagger}+b_{i}\right)-\mu N_{i}
$$

Mean field Hamiltonian breaks $U(1)$ particle number conservation Groundstate is an $D=1$ infinite MPS (product state!)

$$
|\psi\rangle=\left(|0\rangle+a_{1}|1\rangle+a_{2}|2\rangle \ldots\right)^{\otimes L}
$$

- An iMPS with no symmetries reduces to mean-field like
- Imposing quantum number symmetries reduces the quality of the variational state (for fixed D)
- But usually worth the cost in computational efficiency

Prototypical example: Mean field

$$
H=\frac{U}{2} \sum_{i} N_{i}\left(N_{i}-1\right)-J \sum_{\langle i, j\rangle} b_{i}^{\dagger} b_{j}+b_{j}^{\dagger} b_{i}-\mu N
$$

Bose-Hubbard model

$$
H_{\mathrm{MF}}=\sum_{i} \frac{N_{i}\left(N_{i}-1\right)}{2}-J \alpha\left(b_{i}^{\dagger}+b_{i}\right)-\mu N_{i}
$$

Mean field Hamiltonian breaks $U(1)$ particle number conservation Groundstate is an $D=1$ infinite MPS (product state!)

$$
|\psi\rangle=\left(|0\rangle+a_{1}|1\rangle+a_{2}|2\rangle \ldots\right)^{\otimes L}
$$

- An iMPS with no symmetries reduces to mean-field like
- Imposing quantum number symmetries reduces the quality of the variational state (for fixed D)
- But usually worth the cost in computational efficiency

Bose-Hubbard Superfluid Density

Bose-Hubbard Model Mott-Superfluid Transition
$\mu=0.25$

Bose-Hubbard Superfluid Density

Conclusions \& Outlook

Matrix product states - more powerful than just DMRG algorithm

- iDMRG is a very efficient method to construct translationally invariant thermodynamic states
- All expectation values can be expressed in terms of the eigenmodes of the transfer matrix
- Scaling with respect to D can give power laws
- Transfer matrix gives detailed information about scaling and order parameters
- Other talks will show that entropy, fidelity, etc can determine phase boundaries without knowledge of the order parameter
- if the order parameter is known, then it is better to calculate the order parameter scaling
- generic way to determine order parameter: correlation density matrices (Henley, Münder, Läuchli, . . .)

