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MPS representations

Matrix Product State: approximate an exponential number of coefficients with
a product of D x D matrices

W) =T 37 ATARATAS sy o) s i)

S155250-0
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A AR AAATATAT A
A is the wavefunction in the bipartite basis

(W) =225 Aglideliw

This is the variational form underlying the Density Matrix Renormalization
Group Algorithm (White, 1992)
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Orthonormality conditions

@ Without any attention to conditioning the matrices, an MPS calculation is
ill-conditioned

%)—@—@—é%

We make use of this gauge freedom to condition the matrices
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Orthonormality conditions

@ Without any attention to conditioning the matrices, an MPS calculation is
ill-conditioned

0000

We make use of this gauge freedom to condition the matrices

1 -C -7

@ This is necessary to construct an orthonormal basis

=[] -z a1
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Matrix representation of the Hamiltonian

| P McCulloch, J. Stat. Mech. P10014 (2007)

Convenient representation: the Hamiltonian operator as a 4-index MPO

N iiits

DMRG cast as variational optimization of a tensor network for the energy
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Matrix representation of the Hamiltonian

| P McCulloch, J. Stat. Mech. P10014 (2007)

Convenient representation: the Hamiltonian operator as a 4-index MPO

N iiits

DMRG cast as variational optimization of a tensor network for the energy

Some examples:
Sum of local terms H = ZX,-

1

Wy = < )I( (I) > Boundary vectors ( 0 1 ) and ( (I) >
Expand the product WV: XRIQIRQIRIRI- - -

+ TRXQIRQIRIRI- - -
+ TRIQXRIRXIRI- - -
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Matrix Product Operators

Sum of nearest-neighbor terms H = Y " XY,

I
Wy=| Y
0

Mo o

0
0
1
Ising model in a transverse field

— Z 42 X
H = g 0707, + A}
i

I 0 0
Wy = ot 0 0
Aot ot 1

Also:
@ fermionic operators
@ string operators
@ operators at finite momenta, ¢, N,
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Operator arithmetic

The principal advantage of the MPO representation is that it allows arithmetic
operations on the operators

sum: X=Y+7Z — Wy =Wy d Wy,
Dimension increases: dimy < dimy + dimg
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Operator arithmetic

The principal advantage of the MPO representation is that it allows arithmetic
operations on the operators

sum: X=Y+7Z — Wy =Wy d Wy,

Dimension increases: dimy < dimy + dimg

product: X=YZ — Wy=WyeW;

Dimension increases: dimy < dimy x dimg

Calculating observables of ‘complicated’ operators is often easy

@ example, variance of an observable
75 = ((0-(0))*) = (0%) - (0)*
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DMRG in the infinite size limit (arxiv:0804.2509)

Infinite-size translationally invariant MPS
@ The “infinite size” DMRG algorithm has existed since the start (1992)
@ It doesn'’t produce a translationally invariant MPS fixed point
@ No prescription for constructing the initial wavefunction at next iteration
@ Rarely used in the literature, and often incorrectly

@ iTEBD produces a translationally invariant MPS, but for groundstates
imaginary time evolution is not so fast
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Infinite-size translationally invariant MPS
@ The “infinite size” DMRG algorithm has existed since the start (1992)
@ It doesn'’t produce a translationally invariant MPS fixed point
@ No prescription for constructing the initial wavefunction at next iteration
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@ iTEBD produces a translationally invariant MPS, but for groundstates
imaginary time evolution is not so fast
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A recurrence relation for MPS

Suppose we can an initial state:
564630864
Suppose we also have the MPS enlarged with an extra unit cell:
bbbb 64646588488
SO0 b édébbdd
Note: A, and Ay are not necessarily diagonal
Now we can insert one more unit cell:
584806840666 0058
Ay =Ag Ayt AL
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Expectation Values

Correlation functions

The form of correlation functions are determined by the eigenvalues of the
transfer operator

@ All eigenvalues |A| < 1

@ One eigenvalue equal to 1,
corresponding to the identity
operator

Expansion in terms of eigenspectrum \;:

(00)00) =7 ai A &=~

i
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Correlation length

Hubbard model transfer matrix spectrum

Half-filling, U/t=4

— n=0, s=0: scalar

— n=0, s=1: spintriplet
— n=2, s=0: doublon
100 n=1, s=1/2: single-particle
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CFT Parameters

For a gapless groundstate with critical fluctuations, the correlation length
increases with number of states D as a power law,

£~ D"
[T. Nishino, K. Okunishi, M. Kikuchi, Phys. Lett. A 213, 69 (1996)

M. Andersson, M. Boman, S. Ostlund, Phys. Rev. B 59, 10493 (1999)
L. Tagliacozzo, Thiago. R. de Oliveira, S. Iblisdir, J. I. Latorre, Phys. Rev. B 78, 024410 (2008)]

This exponent is a function only of the central charge,

6
K= ——
V12c+ ¢

[Pollmann et al, PRL 2009]

The spectrum already gives information about the critical scaling.
Can we go further and obtain scaling functions and exponents?

lan McCulloch (UQ) Matrix Product States 19/12/2009 12/26



Scaling exponents

Suppose we have a two-point correlator that has a power-law at large
distances

(0(x)0() = Iy — x4

As we increase the number of states kept D the correlation length increases,
so the region of validity of the power law increases.

O
@ Prefactor a is overlap of operator O with a0 @
next-leading eigenvector of transfer operator = |
O

@ For power law behaviour, a must scale inversely with the corresponding
correlation length ¢
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Scaling exponents

Suppose we have a two-point correlator that has a power-law at large
distances

(0(x)0() = Iy — x4

As we increase the number of states kept D the correlation length increases,
so the region of validity of the power law increases.

O
@ Prefactor a is overlap of operator O with a0 @
next-leading eigenvector of transfer operator = |
O

@ For power law behaviour, a must scale inversely with the corresponding
correlation length ¢

ax A

This gives directly the operator scaling dimensions by direct fit
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prefactor of leading mode a

Heisenberg model fit for the scaling dimension

[ T T T ]
0.0625 — —
X iIDMRG datafor dimension 15,20,25,30,35
— fitteda~ &%
0.03125— | | . —
0.0078125 0.015625

leading inverse corelation length 1/ &
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Time-reversal symmetry breaking

Several materials exhibit unusual phase transitions with quasi-1D magnetic
ordering.

Bulk 3D material: broken rotational symmetry allows a helical state

Sete fu??/

wﬁ/@;wrn N
EEEERE

Helical order: (5(0) x S(x)> ~ dsinx
This kind of symmetry breaking cannot occur in 1D

@ No spontaneously broken continuous symmetries in exact 1D

@ the corresponding Goldstone modes would destroy the long range order
completely

@ But can break a discrete subgroup
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Chiral symmetry breaking

In 1D, the helical order is absent because we cannot spontaneously break
SU(2).

In a magnetic field or with finite anisotropy, the SU(2) is broken down to
U(1) x discrete symmetries, including spin reflection.

This allows a rementant of helical order to survive: chiral order.

—

(5(0) x §(1) - S(n) x S(n+1) ) = K2

Define
Rx) = S(n) xS(n+1)
W) = §S™(n) ST(n+1) - S§T(n) S~ (n+1)
2i
In the usual computational basis, the matrix elements of this operator are pure
imaginary.

Sign of k determines choice of left/right chiral degenerate groundstates
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CPT symmetry in lattice models

Most lattice models are CPT symmetric:
Charge symmetry: interchange particle < hole (up < down spins)
Parity symmetry: exchange x < —x, p < —p

Time-reversal symmetry: anti-unitary. complex conjugation plus spin
inversion. x <+ x, p < —p

Combining time reversal with a spin rotation, we can construct an operator
that (in our computational basis) is a pure complex conjugation = CT

CPT invariance implies that if P transforms one groundstate into another, then
CT will have the same effect.
CT=P

This implies that the chiral groundstate wavefunctions must have complex
coefficients.
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Chiral symmetry breaking in zig-zag chains

F. Heidrich-Meisner, I. P. McCulloch, A. K. Kolezhuk, Phys. Rev. B 80, 144417 (2009)

@ J; - J, zig-zag chain, J; < 0,J, >0
@ Anisotropic spin-spin interaction (S; - §;)a = SiS¥ + S}S) + AS:S;

H= Z {J1 (Si - Siy)a +2(S; - Sipa)a — hS,Z}

1 i i i %
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Extrapolation of K in 1/¢

B=-0.3, M=0.25

%x A=0.4: Kk = 0.0099311 + 0.75902 / &
% A=0.5; K = 0.0056493 + 1.002/ &

1 T ] T LT
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Continuous symmetries

If you take no action to preserve exactly a symmetry, an infinite MPS can
break it

even continuous symmetries in one dimension
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Continuous symmetries

If you take no action to preserve exactly a symmetry, an infinite MPS can
break it

even continuous symmetries in one dimension

How to understand this?
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Continuous symmetries

If you take no action to preserve exactly a symmetry, an infinite MPS can
break it

even continuous symmetries in one dimension

How to understand this?

@ Matrix elements connecting symmetry sectors vanish as
~exp(—-N) —0

@ Continuous symmetries cannot break in exact 1D because the
associated goldstone modes would destroy the order parameter
completely (percolation threshold!)

@ But if the goldstone modes are gapped due to finite basis size, the
symmetry can break
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Prototypical example: Mean field

U
H= EZN[(N[ —1)=J Y blb;+bb;— N
i <ij>
Bose-Hubbard model
N;(N; — 1
Hye = Z % — Ja(b] + b;) — uN;

Mean field Hamiltonian breaks U(1) particle number conservation
Groundstate is an D = 1 infinite MPS (product state!)

[¥) = (10) + ail1) + aaf2) .. )®*
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Prototypical example: Mean field

U
H= EZN;(N;— 1) =7 bfb+blb; — uN
i <ij>

Bose-Hubbard model

NN, — 1
HMF:Z% —Ja(bj—‘—b,) —,UN,‘

Mean field Hamiltonian breaks U(1) particle number conservation
Groundstate is an D = 1 infinite MPS (product state!)

[¥) = (10) + ail1) + aaf2) .. )®*

@ An iMPS with no symmetries reduces to mean-field like

@ Imposing quantum number symmetries reduces the quality of the
variational state (for fixed D)

@ But usually worth the cost in computational efficiency
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Bose-Hubbard Superfluid Density

Bose-Hubbard Model Mott-Superfluid Transition
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Bose-Hubbard Superfluid Density
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Conclusions & Outlook

Matrix product states - more powerful than just DMRG algorithm
@ iIDMRG is a very efficient method to construct translationally invariant
thermodynamic states

@ All expectation values can be expressed in terms of the eigenmodes of
the transfer matrix

@ Scaling with respect to D can give power laws

@ Transfer matrix gives detailed information about scaling and order
parameters

@ Other talks will show that entropy, fidelity, etc can determine phase
boundaries without knowledge of the order parameter

@ if the order parameter is known, then it is better to calculate the order
parameter scaling

@ generic way to determine order parameter: correlation density matrices
(Henley, Mlnder, Lauchli, .. .)
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