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MPS representations

Matrix Product State: approximate an exponential number of coefficients with
a product of D× D matrices

|Ψ〉 = Tr
∑

s1,s2,...

As1 As2 As3 As4 · · · |s1〉|s2〉|s3〉|s4〉 · · ·
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σ

A
σ

A
σ

A
σ

A
σ

A
σ

A
σ

A
σ

Λ
1 2 83 4 5 6 7

Λ is the wavefunction in the bipartite basis
|Ψ〉 =

∑
ij Λij|i〉L|j〉R

This is the variational form underlying the Density Matrix Renormalization
Group Algorithm (White, 1992)
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Orthonormality conditions

Without any attention to conditioning the matrices, an MPS calculation is
ill-conditioned

X X
−1

We make use of this gauge freedom to condition the matrices

This is necessary to construct an orthonormal basis
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Matrix representation of the Hamiltonian
I P McCulloch, J. Stat. Mech. P10014 (2007)

Convenient representation: the Hamiltonian operator as a 4-index MPO

DMRG cast as variational optimization of a tensor network for the energy

W W W W WW WW

Some examples:
Sum of local terms H =

∑
i

Xi

WH =
(

I 0
X I

)
Boundary vectors

(
0 I

)
and

(
I
0

)
Expand the product WN : X⊗ I⊗ I⊗I⊗I⊗I· · ·

+ I⊗X⊗ I⊗I⊗I⊗I· · ·
+ I⊗ I⊗X⊗I⊗I⊗I· · ·
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Matrix Product Operators

Sum of nearest-neighbor terms H =
∑

i

XiYi+1

WH =

 I 0 0
Y 0 0
0 X I


Ising model in a transverse field

H =
∑

i

σz
iσ

z
i+1 + λσx

i

WH =

 I 0 0
σz 0 0
λσx σz I


Also:

fermionic operators
string operators
operators at finite momenta, c†k , Nk, . . .

Ian McCulloch (UQ) Matrix Product States 19/12/2009 6 / 26



Operator arithmetic

The principal advantage of the MPO representation is that it allows arithmetic
operations on the operators

sum: X = Y + Z → WX = WY ⊕WZ

Dimension increases: dimX ≤ dimY + dimZ

product: X = YZ → WX = WY ⊗WZ

Dimension increases: dimX ≤ dimY × dimZ

Calculating observables of ‘complicated’ operators is often easy

example, variance of an observable

σ2
O = 〈(O− 〈O〉)2〉 = 〈O2〉 − 〈O〉2
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DMRG in the infinite size limit (arxiv:0804.2509)

Infinite-size translationally invariant MPS

The “infinite size” DMRG algorithm has existed since the start (1992)
It doesn’t produce a translationally invariant MPS fixed point
No prescription for constructing the initial wavefunction at next iteration
Rarely used in the literature, and often incorrectly
iTEBD produces a translationally invariant MPS, but for groundstates
imaginary time evolution is not so fast

’
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A recurrence relation for MPS

Suppose we can an initial state:
0

Λ

Suppose we also have the MPS enlarged with an extra unit cell:
R

Λ

Λ
L

Note: ΛL and ΛR are not necessarily diagonal

Now we can insert one more unit cell:
Λ1

Λ1 = ΛR Λ−1
0 ΛL
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Expectation Values

Correlation functions

The form of correlation functions are determined by the eigenvalues of the
transfer operator

All eigenvalues |λ| ≤ 1
One eigenvalue equal to 1,
corresponding to the identity
operator

Expansion in terms of eigenspectrum λi:

〈O(x)O(y)〉 =
∑

i

ai λ
|y−x|
i ξi = − 1

ln |λi|
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n=0, s=0: scalar
n=0, s=1: spin triplet
n=2, s=0: doublon
n=1, s=1/2: single-particle

Hubbard model transfer matrix spectrum
Half-filling, U/t=4
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CFT Parameters

For a gapless groundstate with critical fluctuations, the correlation length
increases with number of states D as a power law,

ξ ∼ Dκ

[T. Nishino, K. Okunishi, M. Kikuchi, Phys. Lett. A 213, 69 (1996)
M. Andersson, M. Boman, S. Östlund, Phys. Rev. B 59, 10493 (1999)
L. Tagliacozzo, Thiago. R. de Oliveira, S. Iblisdir, J. I. Latorre, Phys. Rev. B 78, 024410 (2008)]

This exponent is a function only of the central charge,

κ =' 6√
12c + c

[Pollmann et al, PRL 2009]

The spectrum already gives information about the critical scaling.
Can we go further and obtain scaling functions and exponents?
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Scaling exponents

Suppose we have a two-point correlator that has a power-law at large
distances

〈O(x)O(y)〉 = |y− x|−2∆

As we increase the number of states kept D the correlation length increases,
so the region of validity of the power law increases.

·Prefactor a is overlap of operator O with
next-leading eigenvector of transfer operator =a O λ2

For power law behaviour, a must scale inversely with the corresponding
correlation length ξ

a ∝ ξ−∆

This gives directly the operator scaling dimensions by direct fit
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iDMRG data for dimension 15,20,25,30,35
fitted a ~ ξ-0.480

Heisenberg model fit for the scaling dimension
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Time-reversal symmetry breaking

Several materials exhibit unusual phase transitions with quasi-1D magnetic
ordering.
Bulk 3D material: broken rotational symmetry allows a helical state

Helical order: 〈~S(0)×~S(x)〉 ∼ ~a sin x
This kind of symmetry breaking cannot occur in 1D

No spontaneously broken continuous symmetries in exact 1D
the corresponding Goldstone modes would destroy the long range order
completely
But can break a discrete subgroup
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Chiral symmetry breaking

In 1D, the helical order is absent because we cannot spontaneously break
SU(2).
In a magnetic field or with finite anisotropy, the SU(2) is broken down to
U(1)× discrete symmetries, including spin reflection.
This allows a rementant of helical order to survive: chiral order.

〈 ~S(0)×~S(1) · ~S(n)×~S(n + 1) 〉 = κ2

Define

~κ(x) = ~S(n)×~S(n + 1)

κz(x) =
S−(n) S+(n + 1)− S+(n) S−(n + 1)

2i
In the usual computational basis, the matrix elements of this operator are pure
imaginary.
Sign of κ determines choice of left/right chiral degenerate groundstates
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CPT symmetry in lattice models

Most lattice models are CPT symmetric:

Charge symmetry: interchange particle↔ hole (up↔ down spins)

Parity symmetry: exchange x↔ −x, p↔ −p

Time-reversal symmetry: anti-unitary. complex conjugation plus spin
inversion. x↔ x, p↔ −p

Combining time reversal with a spin rotation, we can construct an operator
that (in our computational basis) is a pure complex conjugation = CT

CPT invariance implies that if P transforms one groundstate into another, then
CT will have the same effect.

CT = P

This implies that the chiral groundstate wavefunctions must have complex
coefficients.
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Chiral symmetry breaking in zig-zag chains
F. Heidrich-Meisner, I. P. McCulloch, A. K. Kolezhuk, Phys. Rev. B 80, 144417 (2009)

J1 - J2 zig-zag chain, J1 < 0, J2 > 0
Anisotropic spin-spin interaction (~Si ·~Si)∆ = Sx

i Sx
j + Sy

i Sy
j + ∆Sz

i S
z
j

H =
∑

i

{
J1(~Si ·~Si+1)∆ + J2(~Si ·~Si+2)∆ − hSz

i

}
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∆=0.4: κ = 0.0099311 + 0.75902 / ξ
∆=0.5: κ = 0.0056493 + 1.002 / ξ

Extrapolation of κ in 1/ξ
β=-0.3, M=0.25
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Continuous symmetries

If you take no action to preserve exactly a symmetry, an infinite MPS can
break it

even continuous symmetries in one dimension

How to understand this?

Matrix elements connecting symmetry sectors vanish as
∼ exp(−N) → 0
Continuous symmetries cannot break in exact 1D because the
associated goldstone modes would destroy the order parameter
completely (percolation threshold!)
But if the goldstone modes are gapped due to finite basis size, the
symmetry can break
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Prototypical example: Mean field

H =
U
2

∑
i

Ni(Ni − 1)− J
∑
<i,j>

b†i bj + b†j bi − µN

Bose-Hubbard model

HMF =
∑

i

Ni(Ni − 1)
2

− Jα(b†i + bi)− µNi

Mean field Hamiltonian breaks U(1) particle number conservation
Groundstate is an D = 1 infinite MPS (product state!)

|ψ〉 = (|0〉+ a1|1〉+ a2|2〉 . . .)⊗L

An iMPS with no symmetries reduces to mean-field like
Imposing quantum number symmetries reduces the quality of the
variational state (for fixed D)
But usually worth the cost in computational efficiency
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Bose-Hubbard Superfluid Density
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Bose-Hubbard Superfluid Density
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Conclusions & Outlook

Matrix product states - more powerful than just DMRG algorithm
iDMRG is a very efficient method to construct translationally invariant
thermodynamic states
All expectation values can be expressed in terms of the eigenmodes of
the transfer matrix
Scaling with respect to D can give power laws
Transfer matrix gives detailed information about scaling and order
parameters
Other talks will show that entropy, fidelity, etc can determine phase
boundaries without knowledge of the order parameter
if the order parameter is known, then it is better to calculate the order
parameter scaling
generic way to determine order parameter: correlation density matrices
(Henley, Münder, Läuchli, . . .)
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