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Fisher et al, Phys Rev B 40, 546 (1989). 
Jaksch et al,  PRL 81, 3108 (1998).
Greiner et al, Nature 419, 51 (2002)
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Early works by Baruch, McCoy, Dresden, Mazur, Girardeau (’70)

H = H0 + λ(t)H1

Quantum Quenches
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Signatures of phase transitions which 
have occurred in the early universe by 
determining the density of defects left 
in the broken symmetry phase as a 
function of the rate of quench.

Kibble ’76, Zurek  ‘85

Topological Defect Formation

Saturday, December 19, 2009



Signatures of phase transitions which 
have occurred in the early universe by 
determining the density of defects left 
in the broken symmetry phase as a 
function of the rate of quench.

Kibble ’76, Zurek  ‘85

Topological Defect Formation

Saturday, December 19, 2009



Simulation of phase transitions in the early universe in condensed matter 
systems (superfluids and Josephson junctions)

Th: Zurek ‘85-’88
 Exps:Bauerle et al ‘96,Ruutu et al’96}

Extension to quantum phase transitions

Zurek, Dorner, Zoller ’05
Polkovnikov ’05

...

Topological Defect Formation
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How effective is it to execute a given computational task by slowly varying 
in time the Hamiltonian of a quantum system? 

Is it possible to find the ground state of a classical system by slowly 
annealing away its quantum fluctuations? 

What is the density of defects left over after a passage through a 
continuous (quantum) phase transition?
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Figure 1: Characteristic behavior of the relaxation time (a) and the correla-
tion length (b) during a quench. Dashed lines in (a) represent the symmetry
breaking timescale |ε/ε̇| = |t|. Dashed line in (b) represents the freeze-out
correlation length during the time interval [−t̂, t̂].
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λ − λc = vt

Defect density
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Consider a quantum system 
coupled to an environment at 
a temperature T
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Is it possible in the presence of dissipation and 
dephasing to describe universally the production 
of defects in an adiabatic quench ?

Consider a quantum system 
coupled to an environment at 
a temperature T
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Motivations

Coherent vs incoherent defect production

Adiabatic approximation for open systems  

Adiabatic quantum computation

Classical vs quantum annealing

Experimental comparison
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Quantum Critical Region
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Incoherent 
production

Quantum Critical Region
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   Density of defects

   The bath does not influence the system for

    Relaxation in the critical region

E ! EKZ + Einc

T ! ∆

τ
−1

r ∝ αT
θ
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1D Ising Model 
coupled to a Bath
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kĤkΨk +

1
√

N

∑

k,q

Ψ
†
k τ̂

zΨk+qXq + HB

Jordan-Wigner 
transformation

−i[G<
k (t, t)]i,j ≡ 〈Ψ†

k,j(t)Ψk,i(t)〉

Kinetic Equations

Saturday, December 19, 2009



∂tĜ
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q (t, t − s)τ̂z
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E =
−i

2N

∑

k>0

Tr
[

(1̂ + τ̂
z)Ĝ<

k

]

The density of defects (or the residual energy) is obtained by 
evaluating the average number of excitations after the quench

Density of Defects
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Three 
regimes

In the crossover region both thermal and non-adiabatic excitations 
contribute.

For fast quenches the bath is unable to affect the system and the KZ 
scaling is preserved.

For very slow quenches only thermal excitations contribute to defect 
formation is dominated by the coupling to the environment. 

 The bath has two effects: 
- It creates excitations near 
the critical point  
-  It relaxes the system to its 
ground state after leaving 
the quantum critical region

Density of Defects
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δ =
√

T 2 + (h − hc)2

Close to the critical 
point  curves collapse 
into a unique scaling 
function

f(∆/T ) = a(1 + b∆/T ) exp {−∆/T}

Relaxation Time
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Comparison of The 
Kinetic Equations with 
The Scaling analysis
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Scaling of defects in the quantum critical region

1D Ising model by means of kinetic equations

Perspective: study of bosonic systems

Conclusions
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