ADIABATIC DYNAMICS

IN
 OPEN CRITICAL SYSTEMS

Rosario Fazio

NEST-INFM-CNR \& Scuola Normale Superiore, Pisa

NEST

IN COLLABORATION WITH

Dario Patanè

Luigi Amico
Alessandro Silva
Giuseppe Santoro

DMFCI - Catania

DMFCI - Catania
ICTP - Trieste
SISSA - Trieste

IN COLLABORATION WITH

Dario Patanè

Luigi Amico
Alessandro Silva

Giuseppe Santoro

DMFCI - Catania
DMFCI - Catania
ICTP - Trieste

SISSA - Trieste

IN COLLABORATION WITH

Dario Patanè

Luigi Amico
Alessandro Silva

Giuseppe Santoro

DMFCI - Catania

DMFCI - Catania

ICTP - Trieste
SISSA - Trieste

- Phys. Rev. Lett. 101, 175701 (2008)
- Phys. Rev. B 80, 024302 (2009)

Non-equilibrium quantum many-body systems

Artificial many-body systems (nanoscience, cold atoms)

Non-equilibrium quantum many-body systems

Artificial many-body systems (nanoscience, cold atoms)

Non-equilibrium quantum many-body systems

Artificial many-body systems (nanoscience, cold atoms)

Non-equilibrium quantum many-body systems

Artificial many-body systems (nanoscience, cold atoms)

Driven system

Non-equilibrium quantum many-body systems

Artificial many-body systems (nanoscience, cold atoms)

Driven system

Quantum quenches

Non-equilibrium quantum many-body systems

Artificial many-body systems (nanoscience, cold atoms)

Driven system

Quantum quenches

Fisher et al, Phys Rev B 40, 546 (1989). Jaksch et al, PRL 81, 3108 (1998). Greiner et al, Nature 419, 51 (2002)

$$
H=\frac{1}{2} \sum_{i j} n_{i} U_{i j} n_{j}-\mu \sum_{i} n_{i}-\frac{t}{2} \sum_{\langle i j\rangle} b_{i}^{\dagger} b_{j}+\text { h.c. }
$$

Fisher et al, Phys Rev B 40, 546 (1989). Jaksch et al, PRL 81, 3108 (1998). Greiner et al, Nature 419, 51 (2002)

QUANTUM QUENCHES

$$
\mathcal{H}=\mathcal{H}_{0}+\lambda(t) \mathcal{H}_{1}
$$

Early works by Baruch, McCoy, Dresden, Mazur, Girardeau (70)

QUANTUM QUENCHES

$$
\mathcal{H}=\mathcal{H}_{0}+\lambda(t) \mathcal{H}_{1}
$$

Early works by Baruch, McCoy, Dresden, Mazur, Girardeau (70)

ABRUPT

Sengupta, Powell, Sachdev ('04)
Calabrese and Cardy ('07)
Rigol et al, ('06)

QUANTUM QUENCHES

$$
\mathcal{H}=\mathcal{H}_{0}+\lambda(t) \mathcal{H}_{1}
$$

Early works by Baruch, McCoy, Dresden, Mazur, Girardeau ('70)

ABRUPT

ADIABATIC

Sengupta, Powell, Sachdev ('04)
Calabrese and Cardy ('07)
Rigol et al, ('06)

QUANTUM QUENCHES

$$
\mathcal{H}=\mathcal{H}_{0}+\lambda(t) \mathcal{H}_{1}
$$

Early works by Baruch, McCoy, Dresden, Mazur, Girardeau ('70)

ABRUPT

ADIABATIC

Sengupta, Powell, Sachdev ('04)
Calabrese and Cardy ('07)
Rigol et al, ('06)

ADIABATIC QUANTUM COMPUTATION

E. Fahri, J. Goldstone and S. Gutmann ('00)

ADIABATIC QUANTUM COMPUTATION

E. Fahri, J. Goldstone and S. Gutmann ('00)
\mathcal{H}_{i}

THE GROUND STATE IS KNOWN

ADIABATIC QUANTUM COMPUTATION

E. Fahri, J. Goldstone and S. Gutmann ('00)

THE GROUND STATE IS KNOWN

\mathcal{H}_{f}

THE GROUND STATE IS THE SOLUTION TO OUR PROBLEM

ADIABATIC QUANTUM COMPUTATION

E. Fahri, J. Goldstone and S. Gutmann ('00)
\mathcal{H}_{i}

THE GROUND STATE IS KNOWN

M_{f}

THE GROUND STATE IS THE SOLUTION TO OUR PROBLEM

$$
\mathcal{H}(t)=\frac{T-t}{T} \mathcal{H}_{i}+\frac{t}{T} \mathcal{H}_{f}
$$

ADIABATIC QUANTUM COMPUTATION

ADIABATIC QUANTUM COMPUTATION

ADIABATIC QUANTUM COMPUTATION

$$
\Delta_{m} \sim \frac{1}{N^{\eta}} \quad \text { EASY PROBLEM }
$$

$$
\Delta_{m} \sim e^{-N^{\eta}} \quad \text { DIFFICULT }
$$

TOPOLOGICAL DEFECT FORMATION

Signatures of phase transitions which have occurred in the early universe by determining the density of defects left in the broken symmetry phase as a function of the rate of quench.

KIBBLE '76, ZUREK '85

TOPOLOGICAL DEFECT FORMATION

Signatures of phase transitions which have occurred in the early universe by determining the density of defects left in the broken symmetry phase as a function of the rate of quench.

KIBBLE '76, ZUREK '85

TOPOLOGICAL DEFECT FORMATION

Simulation of phase transitions in the early universe in condensed matter systems (superfluids and Josephson junctions)

TH: ZUREK ‘85-'88
Exps:BAUERLE ET AL '96,RUUTU ET AL'96\}

Extension to quantum phase transitions

AdIAbatic DYnamics Close to a Critical Point

ADIABATIC DYNAMICS CLOSE TO A CRITICAL POINT

(2) How effective is it to execute a given computational task by slowly varying in time the Hamiltonian of a quantum system?
(6) Is it possible to find the ground state of a classical system by slowly annealing away its quantum fluctuations?
(3) What is the density of defects left over after a passage through a continuous (quantum) phase transition?

ADIABATIC DYNAMICS CLOSE TO A CRITICAL POINT

. How effective is it to execute a given computational task by slowly varying in time the Hamiltonian of a quantum system?
. Is it possible to find the ground state of a classical system by slowly annealing away its quantum fluctuations?
(2) What is the density of defects left over after a passage through a continuous (quantum) phase transition?

ADIABATIC DYNAMICS CLOSE TO A CRITICAL POINT

. How effective is it to execute a given computational task by slowly varying in time the Hamiltonian of a quantum system?
. Is it possible to find the ground state of a classical system by slowly annealing away its quantum fluctuations?
(2) What is the density of defects left over after a passage through a continuous (quantum) phase transition?

DEFECT DENSITY

W. ZUREK, U. DORNER AND P. ZOLLER 'O5
A. POLKOVNIKOV 'O5

$$
\lambda-\lambda_{c}=v t
$$

DEFECT DENSITY

W. ZUREK, U. DORNER AND P. ZOLLER 'O5
A. POLKOVNIKOV 'O5

$$
\lambda-\lambda_{c}=v t
$$

THE ADIABATIC APPROXIMATION BREAKS DOWN WHEN

$$
\frac{\dot{\lambda}}{\lambda} \sim \tau
$$

W. ZUREK '85

DEFECT DENSITY

W. ZUREK, U. DORNER AND P. ZOLLER 'O5
A. POLKOVNIKOV 'O5

$$
\lambda-\lambda_{c}=v t
$$

THE ADIABATIC APPROXIMATION

BREAKS DOWN WHEN

$$
\frac{\dot{\lambda}}{\lambda} \sim \tau
$$

$$
\begin{aligned}
& \rho_{d e f} \sim \hat{\xi}^{-d} \sim v^{\frac{d \nu}{z \nu+1}} \\
& \mathcal{E}_{r e s} \sim \mathrm{~J} \rho_{d e f}
\end{aligned}
$$

1 D ISING MODEL

$$
H=-\frac{J}{2} \sum_{j}^{N}\left\{\sigma_{j}^{x} \sigma_{j+1}^{x}+h(t) \sigma_{j}^{z}\right\}
$$

ttittititit
0

$$
h_{c}=1
$$

1 D ISING MODEL

1 D ISING MODEL

1 D ISING MODEL

CONSIDER A QUANTUM SYSTEM COUPLED TO AN ENVIRONMENT AT A TEMPERATURE T

CONSIDER A QUANTUM SYSTEM COUPLED TO AN ENVIRONMENT AT

 A TEMPERATURE T

 A TEMPERATURE T}

Is it possible in the presence of dissipation and dephasing to describe universally the production of defects in an adiabatic quench ?

MOTIVATIONS

MOTIVATIONS

\square Coherent vs incoherent defect production

MOTIVATIONS

\square Coherent vs incoherent defect production
\square Adiabatic approximation for open systems

MOTIVATIONS

\square Coherent vs incoherent defect production
\square Adiabatic approximation for open systems
Adiabatic quantum computation
\square Coherent vs incoherent defect production
Adiabatic approximation for open systems
Adiabatic quantum computation
Classical vs quantum annealing

MOTIVATIONS

Coherent vs incoherent defect production

Adiabatic approximation for open systems
Adiabatic quantum computation

Classical vs quantum annealing
Experimental comparison

QUANTUM CRITICAL REGION

QUANTUM CRITICAL REGION

"INCOHERENT" DEFECTS

"INCOHERENT" DEFECTS

"INCOHERENT" DEFECTS

Density of defects $\mathcal{E} \simeq \mathcal{E}_{K Z}+\mathcal{E}_{i n c}$
The bath does not influence the system for $T \ll \Delta$ Relaxation in the critical region $\tau_{r}^{-1} \propto \alpha T^{\theta}$

"INCOHERENT" DEFECTS

\checkmark Density of defects $\mathcal{E} \simeq \mathcal{E}_{K Z}+\mathcal{E}_{i n c}$
The bath does not influence the system for $T \ll \Delta$ Relaxation in the critical region $\tau_{r}^{-1} \propto \alpha T^{\theta}$

$$
\begin{aligned}
& \mathcal{E}=\int \frac{d^{d} k}{(2 \pi)^{d}} \mathcal{P}_{k} \\
& \frac{d}{d t} \mathcal{P}_{k}=-\frac{1}{\tau}\left[\mathcal{P}_{k}-\mathcal{P}_{k}^{t h}\left(h_{c}\right)\right]
\end{aligned}
$$

"INCOHERENT" DEFECTS

\checkmark Density of defects $\mathcal{E} \simeq \mathcal{E}_{K Z}+\mathcal{E}_{i n c}$
The bath does not influence the system for $T \ll \Delta$ Relaxation in the critical region $\tau_{r}^{-1} \propto \alpha T^{\theta}$

$$
\mathcal{E}=\int \frac{d^{d} k}{(2 \pi)^{d}} \mathcal{P}_{k}
$$

$$
\frac{d}{d t} \mathcal{P}_{k}=-\frac{1}{\tau}\left[\mathcal{P}_{k}-\mathcal{P}_{k}^{t h}\left(h_{c}\right)\right]
$$

"INCOHERENT" DEFECTS

"'INCOHERENT" DEFECTS

$$
\mathcal{E}_{i n c} \propto \alpha v^{-1} T^{\theta+\frac{d \nu+1}{\nu z}}
$$

"INCOHERENT" DEFECTS

$\mathcal{E}_{i n c} \propto \alpha v^{-1} T^{\theta+\frac{d \nu+1}{\nu z}}$

$$
v_{\text {cross }} \propto \alpha^{\frac{\nu z+1}{\nu(z+d)+1}} T^{\left(1+\frac{(\theta-1) \nu z}{\nu(z+d)+1}\right)\left(1+\frac{1}{\nu z}\right)}
$$

1 D ISING MODEL COUPLED TO A BATH

1 D ISING MODEL COUPLED TO A BATH

$$
\begin{aligned}
& H=-\frac{J}{2} \sum_{j}^{N}\left\{\sigma_{j}^{x} \sigma_{j+1}^{x}+\left[h(t)+X_{j}\right] \sigma_{j}^{z}\right\}+H_{B} \\
& H_{B}=\sum_{j, \beta} \omega_{\beta} b_{\beta j}^{\dagger} b_{\beta j} \quad X_{j}=\sum_{\beta} \lambda_{\beta}\left(b_{\beta, j}^{\dagger}+b_{\beta, j}\right)
\end{aligned}
$$

1 D ISING MODEL

COUPLED TO A BATH

$$
\begin{aligned}
H & =-\frac{J}{2} \sum_{j}^{N}\left\{\sigma_{j}^{x} \sigma_{j+1}^{x}+\left[h(t)+X_{j}\right] \sigma_{j}^{z}\right\}+H_{B} \\
H_{B} & =\sum_{j, \beta} \omega_{\beta} b_{\beta j}^{\dagger} b_{\beta j} \quad X_{j}=\sum_{\beta} \lambda_{\beta}\left(b_{\beta, j}^{\dagger}+b_{\beta, j}\right)
\end{aligned}
$$

OHMIC BATH

$$
\sum_{\beta} \lambda_{\beta}^{2} \delta\left(\omega-\omega_{\beta}\right)=2 \alpha \omega \exp \left(-\omega / \omega_{c}\right)
$$

KINETIC EQUATIONS

$$
H=\sum_{k>0} \Psi_{k}^{\dagger} \hat{\mathcal{H}}_{k} \Psi_{k}+\frac{1}{\sqrt{N}} \sum_{k, q} \Psi_{k}^{\dagger} \hat{\tau}^{z} \Psi_{k+q} X_{q}+H_{B}
$$

KINETIC EQUATIONS

$$
H=\sum_{k>0} \Psi_{k}^{\dagger} \hat{\mathcal{H}}_{k} \Psi_{k}+\frac{1}{\sqrt{N}} \sum_{k, q} \Psi_{k}^{\dagger} \hat{\tau}^{z} \Psi_{k+q} X_{q}+H_{B}
$$

$$
-i\left[G_{k}^{<}(t, t)\right]_{i, j} \equiv\left\langle\Psi_{k, j}^{\dagger}(t) \Psi_{k, i}(t)\right\rangle
$$

KINETIC EQUATIONS

SELF-CONSISTENT BORN + MARKOV APPROXIMATION

$$
\begin{aligned}
& \partial_{t} \hat{G}_{k}^{<}+i\left[\hat{\mathcal{H}}_{k}, \hat{G}_{k}^{<}\right]= \\
& \frac{1}{N} \sum_{q} \hat{\tau}^{z}\left(\hat{1}+i \hat{G}_{q}^{<}\right) \hat{D}_{q k} \hat{G}_{k}^{<}+\hat{\tau}^{z} \hat{G}_{q}^{<} \hat{D}_{k q}^{\dagger}\left(\hat{1}+i \hat{G}_{k}^{<}\right)
\end{aligned}
$$

$$
\hat{D}_{q k}=i \int_{0}^{\infty} d s g^{>}(s) \hat{U}_{q}^{\dagger}(t, t-s) \hat{\tau}^{z} \hat{\mathcal{U}}_{k}(t, t-s)
$$

KINETIC EQUATIONS

SELF-CONSISTENT BORN + MARKOV APPROXIMATION

$$
\begin{aligned}
& \partial_{t} \hat{G}_{k}^{<}+i\left[\hat{\mathcal{H}}_{k}, \hat{G}_{k}^{<}\right]= \\
& \frac{1}{N} \sum_{q} \hat{\tau}^{z}\left(\hat{1}+i \hat{G}_{q}^{<}\right) \hat{D}_{q k} \hat{G}_{k}^{<}+\hat{\tau}^{z} \hat{G}_{q}^{<} \hat{D}_{k q}^{\dagger}\left(\hat{1}+i \hat{G}_{k}^{<}\right)
\end{aligned}
$$

$$
\hat{D}_{q k}=i \int_{0}^{\infty} d s g^{>}(s) \hat{U}_{q}^{\dagger}(t, t-s) \hat{\tau}^{z} \hat{\mathcal{U}}_{k}(t, t-s)
$$

KINETIC EQUATIONS

SELF-CONSISTENT BORN + MARKOV APPROXIMATION

$$
\begin{aligned}
& \partial_{t} \hat{G}_{k}^{<}+i\left[\hat{\mathcal{H}}_{k}, \hat{G}_{k}^{<}\right]= \\
& \frac{1}{N} \sum_{q} \hat{\tau}^{z}\left(\hat{1}+i \hat{G}_{q}^{<}\right) \hat{D}_{q k} \hat{G}_{k}^{<}+\hat{\tau}^{z} \hat{G}_{q}^{<} \hat{D}_{k q}^{\dagger}\left(\hat{1}+i \hat{G}_{k}^{<}\right)
\end{aligned}
$$

$$
\hat{D}_{q k}=i \int_{0}^{\infty} d s g^{>}(s) \hat{\mathcal{U}}_{q}^{\dagger}(t, t-s) \hat{\tau}^{z} \hat{\mathcal{U}}_{k}(t, t-s)
$$

KINETIC EQUATIONS

SELF-CONSISTENT BORN + MARKOV APPROXIMATION

$$
\begin{aligned}
& \partial_{t} \hat{G}_{k}^{<}+i\left[\hat{\mathcal{H}}_{k}, \hat{G}_{k}^{<}\right]= \\
& \frac{1}{N} \sum_{q} \hat{\tau}^{z}\left(\hat{1}+i \hat{G}_{q}^{<}\right) \hat{D}_{q k} \hat{G}_{k}^{<}+\hat{\tau}^{z} \hat{G}_{q}^{<} \hat{D}_{k q}^{\dagger}\left(\hat{1}+i \hat{G}_{k}^{<}\right)
\end{aligned}
$$

$$
\hat{D}_{q k}=i \int_{0}^{\infty} d s g^{>}(s) \hat{U}_{q}^{\dagger}(t, t-s) \hat{\tau}^{z} \hat{\mathcal{U}}_{k}(t, t-s)
$$

KINETIC EQUATIONS

SELF-CONSISTENT BORN + MARKOV APPROXIMATION

$$
\begin{aligned}
& \partial_{t} \hat{G}_{k}^{<}+i\left[\hat{\mathcal{H}}_{k}, \hat{G}_{k}^{<}\right]= \\
& \frac{1}{N} \sum_{q} \hat{\tau}^{z}\left(\hat{1}+i \hat{G}_{q}^{<}\right) \hat{D}_{q k} \hat{G}_{k}^{<}+\hat{\tau}^{z} \hat{G}_{q}^{<} \hat{D}_{k q}^{\dagger}\left(\hat{1}+i \hat{G}_{k}^{<}\right)
\end{aligned}
$$

$$
\hat{D}_{q k}=i \int_{0}^{\infty} d s g^{>}(s) \hat{U}_{q}^{\dagger}(t, t-s) \hat{\tau}^{z} \hat{\mathcal{U}}_{k}(t, t-s)
$$

DENSITY OF DEFECTS

The density of defects (or the residual energy) is obtained by evaluating the average number of excitations after the quench

$$
\mathcal{E}=\frac{-i}{2 N} \sum_{k>0} \operatorname{Tr}\left[\left(\hat{1}+\hat{\tau}^{z}\right) \hat{G}_{k}^{<}\right]
$$

DENSITY OF DEFECTS

DENSITY OF DEFECTS

THREE
 REGIMES

DENSITY OF DEFECTS

THREE REGIMES

6. For fast quenches the bath is unable to affect the system and the KZ scaling is preserved.

DENSITY OF DEFECTS

THREE REGIMES

For fast quenches the bath is unable to affect the system and the KZ scaling is preserved.

For very slow quenches only thermal excitations contribute to defect formation is dominated by the coupling to the environment.

DENSITY OF DEFECTS

THREE REGIMES

For fast quenches the bath is unable to affect the system and the KZ scaling is preserved.

* For very slow quenches only thermal excitations contribute to defect formation is dominated by the coupling to the environment.
\$ In the crossover region both thermal and non-adiabatic excitations contribute.

DENSITY OF DEFECTS

THE BATH HAS TWO EFFECTS:

- IT CREATES EXCITATIONS NEAR THE CRITICAL POINT
- IT RELAXES THE SYSTEM TO ITS GROUND STATE AFTER LEAVING THE QUANTUM CRITICAL REGION

*) For fast quenches the bath is unable to affect the system and the KZ scaling is preserved.
* For very slow quenches only thermal excitations contribute to defect formation is dominated by the coupling to the environment.
\% In the crossover region both thermal and non-adiabatic excitations contribute.

RELAXATION TIME

$\delta=\sqrt{T^{2}+\left(h-h_{c}\right)^{2}}$

Close to the critical point curves collapse into a unique scaling function

$$
f(\Delta / T)=a(1+b \Delta / T) \exp \{-\Delta / T\}
$$

COMPARISON OF THE

KINETIC EQUATIONS WITH

THE SCALING ANALYSIS

CONCLUSIONS

CONCLUSIONS

\checkmark Scaling of defects in the quantum critical region

CONCLUSIONS

\checkmark Scaling of defects in the quantum critical region
$\checkmark 1$ Ising model by means of kinetic equations

CONCLUSIONS

\checkmark Scaling of defects in the quantum critical region
$\sqrt{ }$ 1D Ising model by means of kinetic equations
$\sqrt{ }$ Perspective: study of bosonic systems

