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QUANTUM MANY-BODY SYSTEMS
EFFICIENT DESCRIPTIONS: LATTICES
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Questions:

Ground state:

Dynamics:

Physical properties:0 0 0| |Ψ 〉 = Ψ 〉H E

| ( ) | (0)−Ψ 〉 = Ψ 〉iHtt e

Thermal state: /ρ −∝ H Te
, ,...σ σ σ〈 〉 〈 〉n n m

Hamiltonian:

Spins, Fermions



QUANTUM MANY-BODY SYSTEMS
EFFICIENT DESCRIPTIONS: LATTICES

h

Spins, Fermions

2N

Hilbert space

Problem:

〉++〉+〉 1..11|..1..00|0..00| 221 Nccc

Exp. number of parameters.
Exp. number of operations.



2N

Hilbert space

h

0 0 1( ) ( ,..., )Ψ = Ψ NH p p

depends on few parameters.

1( ,..., )= NH H p p

⇓

We are only interested
in some special states

… but
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2N

Hilbert space

h

EFFICIENT DESCRIPTIONS:

physically
relevant
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Example: spin 1/2
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General 2-body interactions:
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Short-range, homogeneous
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Methods:

physically relevant

2N

Exact

Dynamical Mean Field Theory

1| ( ,..., )Ψ 〉Dp p

Variational

QUANTUM MANY-BODY SYSTEMS
EFFICIENT DESCRIPTIONS: LATTICES

Monte Carlo.

…

- Mean Field, Hartree-Fock, BCS, Laughlin, 

Perturbation expansions
Density Functional Theory

- Tensor network states



We are interested in a „small corner“ of Hilbert space

May be one can find an efficient description of those states:

physically relevant

2N

Few parameters (eg, scaling polynomically with N)
Expectation values can be efficientily calculated.

1| ( ,..., )Ψ 〉Dp p

Applications:

Variational family: Numerical algorithms.
Describe general properties.

But … what is such a description?

QUANTUM MANY-BODY SYSTEMS
EFFICIENT DESCRIPTIONS: LATTICES



QUANTUM INFORMATION
EFFICIENT DESCRIPTIONS: LATTICES

1i

2i

3i

TENSOR NETWORKS

Novel descriptions:

Efficient
Intuition: entanglement
No sign problem: frustrated spin and fermionic systems.

Extension of DMRG, NRG and other renormalization methods

Complementary to other methods (cf, Monte Carlo)

physically relevant

2N

1| ( ,..., )Ψ 〉Dp p



QUANTUM INFORMATION
EFFICIENT DESCRIPTIONS: LATTICES

PROJECTED ENTANGLED-PAIR STATES

Properties:

They contain the relevant states for short-range interactions

Build to fulfill the area law
Naturally arise in problems with short-range interactions.

Infinite homogeneous systems:
- Example: AKLT (in any dimension)

- In a 2D square lattice: Vertex-Type Matrix Product Ansatz 
(Sierra and Martin-Delgado, 1998)

(different than Interaction-Round the Face used by Nishino and col)
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(Verstraete, IC 04)

For 1D systems, they coincide with MPS (Zittart et al)
- Infinite homogeneous systems FCS (Fannes, Nachtergaele and Werner 91).

(TNS = TPS)
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PROJECTED ENTANGLED-PAIR STATES
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(Verstraete, IC 04)

See: Cirac and Verstraete (J. Phys. A, 2009)
Verstraete, Murg and Cirac (Adv. Phys, 2008)



OUTLINE

EFFICIENT DESCRIPTIONS: 
PROJECTED ENTANGLED-PAIR STATES.

AREA LAWS
THERMAL EQUILIBRIUM:

OTHER METHODS:
STRING-BOND AND PLAQUTTE STATES

SYMMETRIES

MPS and CONFORMAL FIELD THEORY MODELS



1. EFFICIENT DESCRIPTIONS:
PROJECTED ENTANGLED-PAIR STATES



Let us consider our particles as composite objects

The three levels are entangled states of many degrees of freedom

PEPS
DEFINITION

Verstraete and IC 04

Atom Spin 1 particle

Low energy

We obtain them by projecting out the state:

3: CHHHHP spinnucposnucspinelposeln →⊗⊗⊗ −−−−

Rb87

spinnucposnucspinelposelPs −−−− 〉Ψ⊗〉Ψ⊗〉Ψ⊗〉Ψ=〉 |||||



Let us consider our particles as composite objects

Auxiliary particles have different dimensions: D
We only „see“ the macroscopic objects:
We project onto a 2-dimensional subspace.

The auxiliary particles are in a very simple state: maximally entangled.

Spin ½ atoms is composed of electrons, protons, etc

The state is completely characterized by N projectors.

The state is determined by the way we project onto the spin 1/2 space.

PEPS
DEFINITION

Verstraete and IC 04



| |1,1,1 | 2, 2,2Ψ〉 = 〉+ 〉

Auxiliary construction:

|1,1 | 2, 2〉+ 〉|1,1 | 2, 2〉+ 〉

|1 1,1| | 2 2, 2 |= 〉〈 + 〉〈P

|1,1 |1,1 |1,1 | 2, 2 | 2, 2 |1,1 | 2, 2 | 2, 2〉 〉+ 〉 〉+ 〉 〉+ 〉 〉

|1,1,1〉 | 2, 2, 2〉

We can specify the state by just giving |1 1,1| | 2 2, 2 |= 〉〈 + 〉〈P

PEPS
EXAMPLE

Example: GHZ state



Verstraete and IC 04

|Φ〉

PEPS
EXAMPLE

Example: 2D lattice
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2: CCCCCP DDDD

n →⊗⊗⊗

Verstraete and IC 04

|Φ〉

PEPS
EXAMPLE

Example: 2D lattice



,i jP
2: CCCCCP DDDD

n →⊗⊗⊗

Verstraete and IC 04

|Φ〉

All the information is contained in the P‘s

There are            parameters 42D N

PEPS
EXAMPLE

Example: 2D lattice



Verstraete and IC 04
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written in a basis:

∑ 〉=〉Ψ
i

N
ii iic N ,...,|| 1

,...,1

One can define them in any lattice in any dimension

One can define them for Fermions too (Kraus, Schuch, Verstraete, IC, 09)

|| αβγδαβγδ 〉〈=∑ iAP i

PEPS
EXAMPLE

Example: 2D lattice



2.    AREA LAWS:
PROJECTED ENTANGLED-PAIR STATES



Guiding principle: Area law (Sredniky 93)

| |ρ = Ψ〉〈ΨA Btr

AA
BB

Area law:

Conjecture:
All physically relevant states at T=0
fulfill this law (up to log corrections).

AREA LAWS
EFFICIENT DESCRIPTIONS

)()( 1−< d
A LOS ρ

- Hamiltonian has short-range interactions, etc 
- Low temperatures

- There is a spatial structure.
general properties:

2N
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BB

ξ

Idea: at long distances, particles are uncorrelated.

AREA LAWS
CORRELATIONS



AA
BB

Idea: at long distances, particles are uncorrelated.

ξ

( , ) ξ ∂≤�AS E A B N

In some way, the existence of a correlation length should give
rise to the area law.

AREA LAWS
CORRELATIONS
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BB

Finite T: quantum mutual informationFinite T: quantum mutual information

21
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The mutual information does not „overlook“ correlations
(cf data-hidding states)

It measures correlations, but is „stronger“:

It fulfills area laws for Gibbs states.
Area law is a consequence of the decay of correlations.

it coincides with the entanglement entropy for T=0.

( : ) : ( ) ( ) ( )ρ ρ ρ= + −A B ABI A B S S S

AREA LAWS
MUTUAL INFORMATION

(Wolf, Hastings, Verstraete, Cirac 08)



/1ρ −= BH k T
T e

Z
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h
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i) Hamiltonian with short-range interactions:

ii) Finite temperature.

,
,〈 〉

= ∑ i j
i j

H h

where           # particles at the border A-B∂ =N

∂

AREA LAWS
THERMAL EQUILIBRIUM

(Wolf, Hastings, Verstraete, Cirac 08)



AA
BBPROOF:

Main tool: FREE ENERGY: ( ) : ( )ρρ ρ= 〈 〉 − BF H k TS

Free energy is minimized by the Gibbs state:

/1ρ −= BH k T
T e

Z
min ( ) ( )ρ ρ= TF F where
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AREA LAWS
THERMAL EQUILIBRIUM



For fixed B,                               decreases with L.

We denote by    , the length L such that for all B (sufficiently large)
1

02( ) ( )ξ= =≤L LI B I B

ξ

( ) : ( : )=LI B I A B

(i.e,      is the correlation length)ξ

If      is finite then ξ 0 ( ) 4ξ= ∂≤LI B N

L

AA
BB

L

0 1( )=LI B
0 2( )=LI B

ξ

AREA LAWS
CORRELATIONS

(Wolf, Hastings, Verstraete, Cirac 08)



1
0 02( ) ( ) 2 ( ) 2ξ= = ∂ = ∂≤ + ≤ +L L LI B I B LN I B LN

0 ( ) 4ξ= ∂≤LI B N

PROOF:

The mutual information decreases with L.

( : ) ( : )≤I A B I Aa B

( : ) ( : ) 2≤ + aI Aa B I A B S

We choose ξ=L

But cannot decrease too much:

L

AA
BB

aa

AREA LAWS
CORRELATIONS
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1D systems:

2
1( ) log [tr( )]

1
α

α ρ ρ
α−

�LS Renyi entropies:

Critical systems: CFT: 2
1( ) 1 log

12α ρ
α

+ ⎡ ⎤= +⎢ ⎥⎣ ⎦
L

c cS L

Non-critical: ( )α αρ <LS C

Higher dimensions:
Gaussian theories (Eisert et al)
Spin/Fermionic systems (Wolf, Perez-Garcia et al, …)

AREA LAWS
T=0

(Vidal, Rico, Kitaev, Latorre)
(Calbrese, Cardy, Korepin,..)



PEPS is the natural family fulfilling the area law:

|Φ〉

The mixed state version, also fulfills the area law.

They provide the natural way of expressing the area law

AREA LAWS
PEPS



3.    THERMAL EQUILIBRIUM:
PROJECTED ENTANGLED-PAIR STATES



THERMAL EQUILIBRIUM
PEPS

Any action between two systems can be described in terms of ancillas:

2112 0|0| 〉〉O abPP 〉Φ|21

1P 2P NP

Thermal states can be written in terms of a purification:

He β−

12O 23O NNO ,1−

|)(|tr Ψ〉〈Ψ=− He β with [ ] NHe ⊗− 〉Φ⊗=〉Ψ |1| 2/β

(Kraus, Dur, Lewenstein, and IC 01, Verstraete and IC 04)



Consider local Hamiltonians:

1P 2P NP

He β−

∑ +=
n

nnhH 1,

Let us assume that the h‘s commute:

12he β− 23he β− NNhe ,1−−β

NNhhhH eeee ,12312 ... −−−−− = ββββ

If the h‘s do not commute: [ ]MMhMhMhH NNeeee /// ,12312 ... −−−−− = ββββ

There are M bonds between neighbors, but they are weakly entangled
It can be approximated with a single bond of dimension D.

This argument has been made rigorous by Hasting (Hastings 06).
It also works for Fermions (Kraus, Schuch, Verstraete, and IC 09).

THERMAL EQUILIBRIUM
PEPS



4.    SYMMETRIES:
PROJECTED ENTANGLED-PAIR STATES



Translational:

|Φ〉,i jP

2: CCCCCP DDDD →⊗⊗⊗

We choose all the P equal:

A single operator P describes the whole system.

All physical properties, including symmeries, are encapsultated in P.

〉Ψ=〉Ψ ||T

SYMMETRIES
TRANSLATIONS



Local symmetries:

2: CCCCCP DDDD →⊗⊗⊗

For the PEPS:

If reducible, then for any H for which       is the ground state,
it must be degenerate.

String order, topological order, etc.

〉Ψ=〉Ψ⊗ || giN
g eu θ

PePVu gi
gg

Φ⊗ =4

where Gg∈

where        is a D-dim representation.gV

Applications:

Lieb-Schultz-Mattis theorem: )2(suG =

For a 1D systems and semi-integer spin,       must be reducible.gV
Ψ

Extensions to other grups: etcZu d ,),1(

SYMMETRIES
LOCAL

(Sanz, Perez-Garcia, Wolf, IC 08)

It also applies to higher dimensions.

(Perez-Garcia, Sanz, Wolf, Verstraete, IC 08)



2N

Since PEPS represent the states that appear in Nature, we should
develop  the theory of those states.

Whatever we can show to hold for PEPS, it should be true in general (?).

SYMMETRIES
LOCAL



5.    CONFORMAL FIELD THEORIES:
MATRIX PRODUCT STATES
(In collaboration with German Sierra, Madrid)



1D systems:

1P nP

2: CCCP DD
n →⊗

For finite D, all correlation functions decay exponentially.

In order to describe exactly a critical system, we have to take ∞→D

We have taken a QFT for the auxiliary particles.

MATRIX PRODUCT STATES 
1 DIMENSION

[ ]∑∑
= −=

〉〈=
D

yx s

s
yxnn yxsAP

1,

1

1
, |,|In a basis:

Matrix Product States:

〉=〉Ψ ∑
±=

N
ss

s
N

s ssAA
N

N ,...,|)...(tr| 1
1...

1
1

1

(Fannes, Narchtengaele, Werner 08)



1D systems:

1P nP
2: CCCP DD

n →⊗ [ ]∑∑
= −=

〉〈=
D

yx s

s
yxnn yxsAP

1,

1

1
, |,|

State:

::),( )( nzsi
ns ezV φαα =

vertex operator
)(zφ chiral free boson field

z: complex number

∑
±=

〉=〉Ψ
1...

11..
1

1
...|),...,,(|

N

N
ss

NNss sszzc α

Variational parameters

vac11.. ),()...,(),...,,(
11

〉〈= NssNss zVzVzzc
NN
ααα

The auxiliary particles correspond to a critical theory (CFT c=1).

The spin theory, for some values of α, corresponds to a critical theory (c=1)

We can use the „technology“ of CFT.

MATRIX PRODUCT STATES 
CFT



Translationally invariant: z equidistant in the unit circle.

Correlation functionsCorrelation functions Area law (Renyi entropy)Area law (Renyi entropy)

critical with c=1],0( 2
1∈α

Non-critical otherwise.

MATRIX PRODUCT STATES 
CRITICALITY



Anisotropic Heisenberg Model: z equidistant in the unit circle.

Remarkable overlap with exact solution.

For Δ=-1 and Δ=0 it is exact.

H = Si
x Si+1

x +
1=1

N

∑ Si
y Si+1

y +Δ Si
z Si+1

z

Gapped
(Neel)

FM Critical (c=1)

MATRIX PRODUCT STATES 
VARIATIONAL CALCULATIONS



Dimerized Heisenberg Model: z free, α=1/2

Remarkable overlap with exact solution.

For J2=J1/2 it is exact (Majumdar-Gosh)

 
H = J1

r 
S i ⋅

1=1

N

∑
r 
S i+1+ J2

r 
S i ⋅

r 
S i+2 (J1 =1)

Critical
(c=1)

Dim Dimerized
(spiral phase)

MATRIX PRODUCT STATES 
VARIATIONAL CALCULATIONS



φ1/ 2 × φ1/ 2 =φ0

Su(2) invariance: z free, α=1/2

The vertex operators are primary fields of the SU(2) WZW model with
spin ½
conformal weight h=1/4

With fusion rule:
Level k=1

form a conformal block satisfying the Knizhnik-Zamolodchikov Equation:
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2
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≠ −

⋅
=

+
∂
∂

Using this equation it is easy to show that: 

vac11.. )()...(),...,,2/1(
11

〉〈== NssNss zVzVzzc
NN

α

mn
mn

mnmn
mn

mn SSccw
zz
zzH

rr
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⎠

⎞
⎜⎜
⎝

⎛
−+

−
−= ∑

≠

)(
12
1

)( ,2

The coefficients

〉Ψ=〉Ψ || EH

For the uniform case, we obtain the Haldane-Shastry Hamiltonian.

MATRIX PRODUCT STATES 
EXACTLY SOLVABLE MODELS



Su(2) invariance: z free, α=1/2

Taking random z‘s: (Monte Carlo, N=1000)

MATRIX PRODUCT STATES 
EXACTLY SOLVABLE MODELS

Scales like a critical theory (compare with Moore and Refael 05)



6.       OTHER METHODS:
STRING BOND AND PLAQUETTES



OTHER METHODS

MERA (Vidal 07)

PEPS + MONTECARLO (Schuch, Wolf, Verstraete, IC, 08)

EPS + MONTECARLO (Mezzacapo, Bonisegni, Schuch, IC, 09)

TNS + MONTECARLO (Sandvik and Vidal, 08)

fPEPS (Kraus, Schuch, Verstraete, IC, 09, Corboz, Orus, Bauer, Vidal, 09)

fMERA (Corboz, Evently, Vidal, 09, Eisert et al 09)

FERMIONS:

SPINS:

iMPS + MONTECARLO (Sierra, IC, 09)



OTHER METHODS
STRING-BOND STATES

(Schuch, Wolf, Verstraete, IC, 2008)

We first restrict ourselves to certain kind of PEPS:

They can be efficiently contracted using MC
This family can be easily extended.

322 DdN≈
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LL

klij
nn

LLnn nnCC
...

11}{}{
11

,...,|...|
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OTHER METHODS
STRING-BOND STATES

2D results (10x10 lattices):
Ising model

model21 JJ −

XX frustrated model

12 / JJ

E

(Schuch, Verstraete, Wolf, and IC, 2008)
(Sfondrini, Cerrillo, Schuch, IC, submitted)



OTHER METHODS
STRING-BOND STATES

XX frustrated model (6x6x6)
3D results:

Ising model (8x8x8)

m
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transv. field

(Sfondrini, Cerrillo, Schuch, IC, submitted)

transv. field

m
ag

ne
tiz

at
io

n



ENTANGLED PLAQUETTE STATES
SPIN MODELS

(Mezzacapo, Schuch, Bonisegni, IC, 2009)

We cover the spins with small overlapping plaquettes

∑ 〉=〉Ψ
LL

klij
nn

LLnn nnCC
...

11}{}{
11

,...,|...|



model21 JJ −Ising model

(Mezzacapo, Schuch, Bonisegni, IC, 2009)

2x2 2x3 3x3 3x4
4x4

Heisenberg model:

10x10 lattice

XX model

10x10 lattice

EE
E E

E=0.6683 (MC)
E=0.6695 (EPS) M=0.307 (EPS)

M=0.324 (MC)

Other models:

ENTANGLED PLAQUETTE STATES
SQUARE LATTICE 



(Mezzacapo, et al, in preparation)

AF XX model:

Heisenberg

E

ΔE=0.5% (N=36)

E ΔE=1% (N=36)

ENTANGLED PLAQUETTE STATES
TRIANGULAR LATTICE (preliminary)



OUTLOOK

„Quantum Mechanics“ of PEPS:

1 2, ,... 1 2| | , ,...Ψ〉 = 〉∑ i ic i i | ( )μΨ 〉A

μA

Symmetries
Topological order
Excitations
Gaps
Criticality

Efficient descripitons:

2N

Proofs
New families
Different problems

New computational methods:
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Let us consider our particles as composite objects

Auxiliary particles have different dimensions: D
We only „see“ the macroscopic objects:
We project onto a 2-dimensional subspace.

The auxiliary particles are in a very simple state: maximally entangled.

Spin ½ neutron is composed of quarks.

The state is completely characterized by N projectors.

The state is determined by the way we project onto the 2d space.

LATTICE PROBLEMS
PEPS

Verstraete and IC 04



PEPS
DEFINITION

Verstraete and IC 04

Example: 2-dimensional system

|Φ〉

,i jP |Φ〉

|| αβγδαβγδ 〉〈=∑ iAP i

All the information is contained in the P‘s

There are            parameters 42D N



2N

Hilbert space

h
physically
relevant

3
,
,

, 1 , 0
α β α β

α β

λ σ σ
= =

= ⊗∑ ∑
N

n m n m

n m
H

Example: spin 1/2

0 1 0
0 1

σ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

1 0 1
1 0

σ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

2 0
0

σ
⎛ ⎞

= ⎜ ⎟−⎝ ⎠

i
i

3 1 0
0 1

σ
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

there are           coefficients216N

General 2-body interactions:

,
0 ,( )α βλΨ n m

Short-range, homogeneous
3

,
|| || 1 , 0

α β α β
α β

λ σ σ−

− < =

= ⊗∑ ∑ n m n m

n m
H there are           coefficients16 dR

QUANTUM MANY-BODY SYSTEMS
EFFICIENT DESCRIPTIONS: LATTICES



OTHER METHODS:
STRING-BOND STATES



OTHER METHODS
STRING-BOND STATES

(Schuch, Wolf, Verstraete, IC, 2008)

We first restrict ourselves to certain kind of PEPS:

P:

0 1| 0 | |1 |= 〉〈Ψ + 〉〈ΨP 0,1 0,1 0,1| | |ϕ ϕΨ 〉 = 〉 〉with

They can be efficiently contracted using MC
This family can be easily extended.
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OTHER METHODS
STRING-BOND STATES

2D results (10x10 lattices):
Ising model

model21 JJ −

XX frustrated model

12 / JJ

E

(Schuch, Verstraete, Wolf, and IC, 2008)
(Sfondrini, Cerrillo, Schuch, IC, submitted)



OTHER METHODS
STRING-BOND STATES

XX frustrated model (6x6x6)
3D results:

Ising model (8x8x8)
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OTHER METHODS:
ENTANGLED PLAQUETTE STATES



ENTANGLED PLAQUETTE STATES
SPIN MODELS

(Mezzacapo, Schuch, Bonisegni, IC, 2009)

We cover the spins with small overlapping plaquettes
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model21 JJ −Ising model

(Mezzacapo, Schuch, Bonisegni, IC, 2009)

2x2 2x3 3x3 3x4
4x4

Heisenberg model:

10x10 lattice

XX model

10x10 lattice

EE
E E

E=0.6683 (MC)
E=0.6695 (EPS) M=0.307 (EPS)

M=0.324 (MC)

Other models:

ENTANGLED PLAQUETTE STATES
SQUARE LATTICE 



(Mezzacapo, et al, in preparation)

AF XX model:

Heisenberg

E

ΔE=0.5% (N=36)

E ΔE=1% (N=36)

ENTANGLED PLAQUETTE STATES
TRIANGULAR LATTICE (preliminary)



1D systems:

1P nP

2: CCCP DD
n →⊗

For finite D, all correlation functions decay exponentially.

In order to describe exactly a critical system, we have to take ∞→D

We have taken a QFT for the auxiliary particles.

MATRIX PRODUCT STATES 
1 DIMENSION
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(Fannes, Narchtengaele, Werner 08)



1D systems:

1P nP
2: CCCP DD

n →⊗ [ ]∑∑
= −=

〉〈=
D

yx s

s
yxnn yxsAP
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1

1
, |,|

State:

::),( )( nzsi
ns ezV φαα =

vertex operator
)(zφ chiral free boson field

z: complex number

∑
±=

〉=〉Ψ
1...

11..
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N

N
ss

NNss sszzc α

Variational parameters

vac11.. ),()...,(),...,,(
11

〉〈= NssNss zVzVzzc
NN
ααα

The auxiliary particles correspond to a critical theory (CFT c=1).

The spin theory, for some values of α, corresponds to a critical theory (c=1)

We can use the „technology“ of CFT.

MATRIX PRODUCT STATES 
CFT



Translationally invariant: z equidistant in the unit circle.

Correlation functionsCorrelation functions Area law (Renyi entropy)Area law (Renyi entropy)

critical with c=1],0( 2
1∈α

Non-critical otherwise.

MATRIX PRODUCT STATES 
CRITICALITY



Anisotropic Heisenberg Model: z equidistant in the unit circle.

Remarkable overlap with exact solution.

For Δ=-1 and Δ=0 it is exact.

H = Si
x Si+1

x +
1=1

N

∑ Si
y Si+1

y +Δ Si
z Si+1

z

Gapped
(Neel)

FM Critical (c=1)

MATRIX PRODUCT STATES 
VARIATIONAL CALCULATIONS



Dimerized Heisenberg Model: z free, α=1/2

Remarkable overlap with exact solution.

For J2=J1/2 it is exact (Majumdar-Gosh)

 
H = J1

r 
S i ⋅

1=1

N

∑
r 
S i+1+ J2

r 
S i ⋅

r 
S i+2 (J1 =1)

Critical
(c=1)

Dim Dimerized
(spiral phase)

MATRIX PRODUCT STATES 
VARIATIONAL CALCULATIONS



φ1/ 2 × φ1/ 2 =φ0

Su(2) invariance: z free, α=1/2

The vertex operators are primary fields of the SU(2) WZW model with
spin ½
conformal weight h=1/4

With fusion rule:
Level k=1

form a conformal block satisfying the Knizhnik-Zamolodchikov Equation:
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Using this equation it is easy to show that: 
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The coefficients

〉Ψ=〉Ψ || EH

For the uniform case, we obtain the Haldane-Shastry Hamiltonian.

MATRIX PRODUCT STATES 
EXACTLY SOLVABLE MODELS



Su(2) invariance: z free, α=1/2

Taking random z‘s:

MATRIX PRODUCT STATES 
EXACTLY SOLVABLE MODELS

Scales like a critical theory (compare with Moore and Refael 05)



7.     Numerical methods7.     Numerical methods


