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Numerical propagator method for driven systems

• Example:
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• Transport of Cooper pair through entire device only changes state of

voltage source behind the scenes ⇒
• Symmetry which does not conserve energy, but changes it by ±2eV

• Numerical diagonalization of H produces corresponding multiplets

E
(n)
k = Ek + 2eV n: huge redundancy is drain on resources

• Equivalent: eliminate one d.o.f. at price of driving term with

period T ≡ 2π~/2eV . Makes connection to wide class of systems with

AC-driving or more generally time-periodic Hamiltonian:

i~Ψ̇(t) = H(t)Ψ(t) , H(t+T ) = H(t)



• Almost universal: Floquet method—Fourier expansion of H(t), Ψ(t).

Determination of quasi-energies εk in Ψk(t) = uk(t) exp(−iεkt/~),
u(t+T ) = u(t) becomes eigenproblem in extended Hilbert space

• Fourier index is as extra d.o.f. Merely reversed previous elimination,

so still problems with non-uniqueness and resource use

• Finally cracked with numerical propagator method: integrate matrix

Schrödinger eqn

i~ ∂tU(t) = H(t)U(t) , U(0) = 1

and diagonalize U(T )

• All energies in one multiplet get mapped to single phase eigenvalue

αk = exp(−iε
(n)
k T/~) of unitary operator!

• Fully tested and confirmed on 1-qubit NMR problem (Rabi oscilla-

tions), where one can compare with analytic soln. N.B.: need to

integrate only over short driving period, and still find oscillations on

much longer Rabi period!



Duffing model

• Apply these ideas to Duffing model: oscillator with weak nonlinearity,

damping, and near-resonant driving,

ẍ + ω2
0x = −ε[γẋ + αx3 + f cos(ωt)]

Classical bistability makes it interesting qubit detector

• Already relevant in experiments: superconducting implementation is

called Josephson bifurcation amplifier. Since both final states are

superconducting, one can e.g. try to perform repeated quantum non-

demolition (QND) measurements on a qubit system [A. Lupaşcu et

al., Nature Physics 3, 119 (2007)]

• In quantum domain, bistability should be imperfect due to tunneling

between the two limit cycles (limiting detector performance)

• Instead of Hamiltonian acting on wave function: Liouville

superoperator acting on density matrix (quantum master equation)



i~ρ̇ = [HS(t), ρ] + i~εγ

2
(n̄+1)(2aρa† − a†aρ− ρa†a)

+ i~εγ

2
n̄(2a†ρa− aa†ρ− ρaa†)

≡ L(t){ρ} ,

HS(t) = ~ω0a†a + εm

[
α

4
x4 + fx cos(ωt)

]
,

x =

√
~

2mω0
(a + a†) , n̄ =

1

e~ω0/kBT − 1

• For analogy with undamped time-periodic systems, can now study

evolution superoperator S(t=2π/ω)

• But Markov treatment of damping suspect on short time scale ω−1;

only need dynamics on long scale (εγ)−1



• Extract slow dynamics through rotating-wave approximation (RWA),

ρ̃(t) ≡ U(t)ρ(t)U†(t) , U(t) = e−iωNt , N = a†a

i
dρ̃

dτ
= [H̃S, ρ̃] +

i

2
(n̄+1)(2aρ̃a† − a†aρ̃− ρ̃a†a) +

i

2
n̄(2a†ρ̃a− aa†ρ̃− ρ̃aa†)

≡ L̃{ρ̃} ,

H̃S = −Ω′

2
N +

f ′

2
√

2
(a + a†) +

3α′

8f ′2
(N2 + N)

• Rescaled variables:

Ω′ = Ω

ω0γ
, Ω = (ω2 − ω2

0)/ε , α′ = αf2

ω3
0γ3

,

τ = εγt , f ′ = f

γ

√
m

~ω0

• Parallels canonical transform to “Van der Pol coordinates” in classical

case; f ′ only “quantum” parameter

• Fast scale ∼ ω−1 eliminated from problem
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Spectral analysis

• In coarse-grained RWA approach, revisit idea from time-periodic case:

diagonalize L̃!

• Unique eigenvalue λ̃1 = 0, with hermitian, normalizable eigen-ρ̃1:

stationary state

• Unique 2nd-smallest λ̃2, with hermitian, traceless ρ̃2

• ρ̃2 has same population peaks as ρ̃1, but with opposite signs causing

equilibration

• Re λ̃2 = 0 ⇒ incoherent tunneling

• Im λ̃2 < 0 ⇒ stability

• |λ̃2| ¿ | Im λ̃k≥3| ⇒ separation of time scales: ρ̃1,2 suffice for late

times, many ρ̃’s needed for initial state



Conclusions

• For same parameters as the classical problem, bistability disappears

in quantum case due to tunneling . . .

• . . . opening up third, ultra-long, time scale (εγ|λ̃2|)−1 with no

classical counterpart

• Error process for qubit readout: if final state independent of initial

conditions, no detection took place

• Thus, to observe counterpart to classical bistability, must go beyond

stationary averages—either full distributions or dynamic evolution

• Spectral approach cleanly isolates tunneling from intermediate-time

dynamics; enables study of classical limit f ′ ↑
• Try to make analytical sense, e.g. in coherent-state representation


