Entanglement Creation
 Outside Light Cone

Shih－Yuin Lin 林 世 昀
Department of Physics
National Cheng Kung University
in collaboration with Bei－Lok Hu

Outline

I. Motivation
II. The Model
III. Concluding Remarks

I. Motivation

I. Motivation

Two HO separated in distance d in vacuum state of a massless scalar field [S-Y Lin and BL Hu, PRD79, 085020 (2009)]

I. Motivation

Two double-quantum-dots separated in distance R in thermal EM field [D. Braun, PRA72, 062324 (2005)]

Interaction is switched on at $t=0$.

FIG. 1. Entanglement of formation E for two initially not entangled DQDs with $d=10 \mathrm{~nm}$ coupled to the CMB at $T=2.73 \mathrm{~K}$ as a function of $\log _{10}\left(t_{0} / \tau\right)$ and $\log _{10}(t / \tau), \tau=\beta \hbar$. Black means perfect entanglement, $E=1$, white no entanglement $E=0$. Entanglement is created only for $t / \tau \gtrsim 10^{12}\left(t_{0} / \tau\right)^{3}$.

$$
t_{0}=R / c_{0}
$$

Entanglement is created
$\boldsymbol{c}_{\mathbf{0}} \boldsymbol{t}=\boldsymbol{R}$, the "light cone" deeply in the light cone, too.

I. Motivation

Two initially separated two-level atoms are back-to-back, uniformly accelerated [B. Reznik, Found. Phys.33, 167 (2003)]

$$
\begin{aligned}
& \qquad\left|\left\langle 0 \mid X_{A B}\right\rangle\right|^{2}>\left|E_{A}\right|^{2}\left|E_{B}\right|^{2} \quad \text { : Entangled } \\
& \text { Now } \frac{\left|\left\langle 0 \mid X_{A B}\right\rangle\right|}{\left|E_{A}\right|^{2}}=\frac{e^{-\pi \Omega L / 2} \sum_{n=0}^{\infty} e^{-\pi n \Omega L}}{\sum_{n=1}^{\infty} e^{-\pi n \Omega L}}=e^{\pi \Omega L / 2} \\
& >1 \text { for all } L>0!!
\end{aligned}
$$

$$
\begin{array}{ll}
x_{A}=-L / 2 \cosh (2 \tau / L), & t_{A}=L / 2 \sinh (2 \tau / l) \\
x_{B}=L / 2 \cosh \left(2 \tau^{\prime} / L\right), & t_{B}=L / 2 \sinh \left(2 \tau^{\prime} / L\right)
\end{array}
$$

Entanglement can be created outside light cone!

I. Motivation

$$
\begin{array}{ll}
x_{A}=-L / 2 \cosh (2 \tau / L), & t_{A}=L / 2 \sinh (2 \tau / l) \\
x_{B}=L / 2 \cosh \left(2 \tau^{\prime} / L\right), & t_{B}=L / 2 \sinh \left(2 \tau^{\prime} / L\right)
\end{array}
$$

Two initially separated two-level atoms are back-to-back, uniformly accelerated [B. Reznik, Found. Phys.33, 167 (2003)]

$$
\rho=\left(\begin{array}{cccc}
1-C & -\left\langle X_{A B} \mid 0\right\rangle & 0 & 0 \\
-\left\langle 0 \mid X_{A B}\right\rangle & \left|X_{A B}\right|^{2} & 0 & 0 \\
0 & 0 & \left|E_{A}\right|^{2} & \left\langle E_{B} \mid E_{A}\right\rangle \\
0 & 0 & \left\langle E_{A} \mid E_{B}\right\rangle & \left|E_{B}\right|^{2}
\end{array}\right)
$$

the basis $\{|i\rangle,|j\rangle\}=\{\downarrow \downarrow, \uparrow \uparrow, \downarrow \uparrow, \uparrow \downarrow\}$

$$
\left|\left\langle 0 \mid X_{A B}\right\rangle\right|^{2}>\left|E_{A}\right|^{2}\left|E_{B}\right|^{2} \quad: \text { Entangled }
$$

$$
\begin{array}{r}
\left\langle 0 \mid X_{A B}\right\rangle=\int d \tau_{A} \int d \tau_{B} e^{i \Omega\left(\tau_{A}+\tau_{B}\right)} D^{+}(A, B) \\
\left|E_{A}\right|^{2}=\int d \tau_{A} \int d \tau_{A}^{\prime} e^{-i \Omega\left(\tau_{A}^{\prime}-\tau_{A}\right)} D^{+}\left(A^{\prime}, A\right)
\end{array}
$$

$$
\begin{aligned}
D^{+}\left(x^{\prime}, x\right) & \left.=\langle 0| \phi\left(x^{\prime}, t^{\prime}\right) \phi(x, t)\right)|0\rangle \\
= & \frac{\hbar / 4 \pi^{2}}{\left|\mathrm{x}-\mathrm{x}^{\prime}\right|^{2}-\left(t-t^{\prime}-i \epsilon\right)^{2}}
\end{aligned}
$$

$$
\text { Now } \frac{\left|\left\langle 0 \mid X_{A B}\right\rangle\right|}{\left|E_{A}\right|^{2}}=\frac{e^{-\pi \Omega L / 2} \sum_{n=0}^{\infty} e^{-\pi n \Omega L}}{\sum_{n=1}^{\infty} e^{-\pi n \Omega L}}=e^{\pi \Omega L / 2} \quad>1 \text { for all } L>0 \text { !! }
$$

I. Motivation

Two initially separated two-level atoms are back-to-back, uniformly accelerated
[B. Reznik, Found. Phys.33, 167 (2003)]

$$
\left|\left\langle 0 \mid X_{A B}\right\rangle\right|^{2}>\left|E_{A}\right|^{2}\left|E_{B}\right|^{2} \quad: \text { Entangled }
$$

$$
\text { Now } \begin{aligned}
& \frac{\left|\left\langle 0 \mid X_{A B}\right\rangle\right|}{\left|E_{A}\right|^{2}}=\frac{e^{-\pi \Omega L / 2} \sum_{n=0}^{\infty} e^{-\pi n \Omega L}}{\sum_{n=1}^{\infty} e^{-\pi n \Omega L}}=e^{\pi \Omega L / 2} \\
& >1 \text { for all } \mathrm{L}>0 \text { !! }
\end{aligned}
$$

\longrightarrow Entanglement can be created outside light cone.
Shortcomings of the argument:

- Time-dependent perturbation theory: range of validity
- Comparing two infinities
- No time evolution
II. The Model

II. The Model

- Two Unruh-DeWitt detectors (HO) are back-to-back, uniformly accelerated in a massless scalar field:
$Q_{A} @ z_{A}^{\mu}=\left(a^{-1} \sinh a \tau, a^{-1} \cosh a \tau, 0,0\right)$
$Q_{B} @ z_{B}^{\mu}=\left(a^{-1} \sinh a \tau,-a^{-1} \cosh a \tau, 0,0\right)$
One never enters the other's light cone.
- Initial state at $\tau=\tau_{0}$ (Gaussian)

Free detectors' ground states Minkowski vacuum

$$
\begin{array}{r}
\text { Action } S=-\int d^{4} x \frac{1}{2} \partial_{\mu} \Phi \partial^{\mu} \Phi+\sum_{j=A, B}\left\{\int d \tau_{j} \frac{1}{2}\left[\left(\partial_{\tau_{j}} Q_{j}\right)^{2}-\Omega_{0}^{2} Q_{j}^{2}\right]\right. \\
\left.+\lambda_{0} \int d^{4} x \Phi(x) \int d \tau_{j} Q_{j}\left(\tau_{j}\right) \delta^{4}\left(x^{\mu}-z_{j}^{\mu}\left(\tau_{j}\right)\right)\right\}
\end{array}
$$

II. The Model

Sketch of calculation

- Evolution of operators $Q_{L}, P_{L}, Q_{R}, P_{R}, \Phi$, Π in Heisenberg picture.

$$
\hat{Q}_{i}\left(\tau_{i}\right)=\sqrt{\frac{\hbar}{2 \Omega_{r}}} \sum_{i} \frac{\left[q_{i}^{(j)}\left(\tau_{i}\right) \hat{a}_{j}+q_{i}^{(j) *}\left(\tau_{i}\right) \hat{a}_{j}^{\dagger}\right]}{\text { damped HO }}+\int \frac{d^{3} k}{(2 \pi)^{3}} \sqrt{\frac{\hbar}{2 \omega}} \frac{\left[q_{i}^{(+)}\left(\tau_{i}, \mathbf{k}\right) \hat{b}_{\mathbf{k}}+q_{i}^{(-)}\left(\tau_{i}, \mathbf{k}\right) \hat{b}_{\mathbf{k}}^{\dagger}\right]}{\text { damped driven HO }}
$$

- Sandwiched by the initial state: 10 symmetric correlators as elements of the covariance matrix

$$
V_{\mu \nu}(t)=\left\langle\mathcal{R}_{\mu}, \mathcal{R}_{\nu}\right\rangle \equiv \frac{1}{2}\left\langle\left(\mathcal{R}_{\mu} \mathcal{R}_{\nu}+\mathcal{R}_{\nu} \mathcal{R}_{\mu}\right)\right\rangle
$$

$$
\mathcal{R}_{\mu}=\left(Q_{L}(t), P_{L}(t), Q_{R}(t), P_{R}(t)\right)
$$

- Partial Transposition: $\quad \mathrm{V}^{P T}=\boldsymbol{\Lambda} \mathbf{V} \boldsymbol{\Lambda}$

The quantity

$$
\begin{aligned}
& \Sigma(t) \equiv \operatorname{det}\left[\mathbf{V}^{P T}+i \frac{\hbar}{2} \mathbf{M}\right] \\
&<0 \text { iff entangled [Simon 2000]. }
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{\Lambda} & =\operatorname{diag}(1,1,1,-1) \\
\mathbf{M} & \equiv\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right)
\end{aligned}
$$

or logarithmic negativity $\quad E_{\mathcal{N}} \equiv \max \left\{0,-\log _{2} 2 c_{-}\right\}$

II. The Model

Result: Entanglement can be created outside light cone!

II. The Model

Result: Entanglement can be created outside light cone!

$$
c_{-}<\hbar / 2 \quad: \text { Entangled }
$$

$z_{A}^{\mu}=\left(a^{-1} \sinh a \tau, a^{-1} \cosh a \tau, 0,0\right)$
$z_{B}^{\mu}=\left(a^{-1} \sinh a \tau,-a^{-1} \cosh a \tau, 0,0\right)$

More observations:

1. The detectors will be disentangled at late times.
2. It seems that the entanglement time is after the moment that the third party can have causal contact with both detectors

II. The Model

- Covariance matrix of the detectors

Self Correlators
Cross Correlators

$$
V \equiv\left(\begin{array}{cccc}
\left\langle Q_{A}^{2}\right\rangle & \left\langle Q_{A}, P_{A}\right\rangle & \left\langle Q_{A}, Q_{B}\right\rangle & \left\langle Q_{A}, P_{B}\right\rangle \\
\left\langle Q_{A}, P_{A}\right\rangle & \left\langle P_{A}^{2}\right\rangle & \left\langle P_{A}, Q_{B}\right\rangle & \left\langle P_{A}, P_{B}\right\rangle \\
\left\langle Q_{A}, Q_{B}\right\rangle & \left\langle P_{A}, Q_{B}\right\rangle & \left\langle Q_{B}^{2}\right\rangle & \left\langle Q_{B}, P_{B}\right\rangle \\
\left\langle Q_{A}, P_{B}\right\rangle & \left\langle P_{A}, P_{B}\right\rangle & \left\langle Q_{B}, P_{B}\right\rangle & \left\langle P_{B}^{2}\right\rangle
\end{array}\right)
$$

II. The Model

Self correlators $\left\langle Q_{A}^{2}\right\rangle=\left\langle Q_{B}^{2}\right\rangle,\left\langle P_{A}^{2}\right\rangle=\left\langle P_{B}^{2}\right\rangle$ are always positive and "large",

$$
a=1, \gamma=0.1, \Omega=2.3 \quad \gamma \equiv \lambda_{0}^{2} / 8 \pi: \text { coupling strength }
$$

$\left\langle Q^{2}\right\rangle$

$$
\left\langle Q_{A}^{2}\right\rangle=\left\langle Q_{B}^{2}\right\rangle
$$

$$
\left\langle P^{2}\right\rangle-\frac{2}{\pi} \hbar \gamma\left(\Lambda_{1}-\ln \frac{a}{\Omega}\right) \quad\left(m_{0}=1\right)
$$

$$
\left\langle P_{A}^{2}\right\rangle=\left\langle P_{B}^{2}\right\rangle
$$

while $\left\langle P_{A}, Q_{A}\right\rangle,\left\langle P_{B}, Q_{B}\right\rangle=\left(m_{0} / 2\right)(d / d \tau)\left\langle Q^{2}\right\rangle$ are oscillating in small amplitude.

II. The Model

Cross correlators oscillate with growing amplitude after $t=0$ for $\tau_{0}<0$.

II. The Model

Cross correlators oscillate with growing amplitude after $\mathrm{t}=0$ for $\tau_{0}<0$.

Positive frequency Wightman function of the massless scalar field

II. The Model

Cross correlators oscillate with growing amplitude after $\mathrm{t}=0$ for $\tau_{0}<0$.

Positive frequency Wightman function

$$
\left\langle Q_{A}(\eta), Q_{B}\left(\eta^{\prime}\right)\right\rangle=\frac{\lambda_{0}^{2} \hbar}{\Omega^{2}} \operatorname{Re} \int_{\tau_{0}}^{\tau} d s \int_{\tau_{0}^{\prime}}^{s} d s^{\prime} e^{-\gamma(\tau-s)-\gamma\left(\tau^{\prime}-s^{\prime}\right)} \sin \Omega(\tau-s) \sin \Omega\left(\tau^{\prime}-s^{\prime}\right) D^{+}\left(z_{A}^{\mu}(s), z_{B}^{\nu}\left(s^{\prime}\right)\right)
$$

II. The Model

Cross correlators oscillate with growing amplitude after $\mathrm{t}=0$ for $\tau_{0}<0$.

$$
D^{+}\left(z_{j}^{\mu}, z_{j^{\prime}}^{\nu}\right)=\frac{\hbar / 4 \pi^{2}}{\left|\mathbf{z}_{j}-\mathbf{z}_{j^{\prime}}\right|^{2}-\left(z_{j}^{0}-z_{j^{\prime}}^{0}-(i \epsilon)\right)^{2}}
$$

Positive frequency Wightman function

$$
\left\langle Q_{A}(\eta), Q_{B}\left(\eta^{\prime}\right)\right\rangle=\frac{\lambda_{0}^{2} \hbar}{\Omega^{2}} \operatorname{Re} \int_{\tau_{0}}^{\tau} d s \int_{\tau_{0}^{\prime}}^{\tau^{\prime}} d s^{\prime} e^{-\gamma(\tau-s)-\gamma\left(\tau^{\prime}-s^{\prime}\right)} \sin \Omega(\tau-s) \sin \Omega\left(\tau^{\prime}-s^{\prime}\right) D^{+}\left(z_{A}^{\mu}(s), z_{B}^{\nu}\left(s^{\prime}\right)\right)
$$

II. The Model

Cross correlators oscillate with growing amplitude after $\mathrm{t}=0$ for $\tau_{0}<0$.

$\left\langle Q_{A}(\eta), Q_{B}\left(\eta^{\prime}\right)\right\rangle=\frac{\lambda_{0}^{2} \hbar}{\Omega^{2}} \operatorname{Re} \int_{\tau_{0}}^{\top} d s \int_{\tau_{0}^{\prime}}^{s} \overbrace{}^{10} d s^{\prime} e^{-\gamma(\tau-s)-\gamma\left(\tau^{\prime}-s^{\prime}\right)} \sin \Omega(\tau-s) \sin \Omega\left(\tau^{\prime}-s^{\prime}\right) D^{+}\left(z_{A}^{\mu}(s), z_{B}^{\nu}\left(s^{\prime}\right)\right)$

II. The Model

Cross correlators oscillate with growing amplitude after $t=0$ for $\tau_{0}<0$.

$$
D^{+}\left(z_{j}^{\mu}, z_{j^{\prime}}^{\nu}\right)=\frac{\hbar / 4 \pi^{2}}{\left|\mathbf{z}_{j}-\mathbf{z}_{j^{\prime}}\right|^{2}-\left(z_{j}^{0}-z_{j^{\prime}}^{0}-j \epsilon^{2}\right)^{\pi^{2}}}
$$

$$
\left|D^{+}\left(z_{A}^{\mu}(s), z_{B}^{\nu}\left(s^{\prime}\right)\right)\right|
$$

Positive frequency Wightman function

$$
\left\langle Q_{A}(\eta), Q_{B}\left(\eta^{\prime}\right)\right\rangle=\frac{\lambda_{0}^{2} \hbar}{\Omega^{2}} \operatorname{Re} \int_{\tau_{0}}^{\tau} d s \int_{\tau_{0}^{\prime}}^{\tau^{\prime}} d s^{\prime} e^{-\gamma(\tau-s)-\gamma\left(\tau^{\prime}-s^{\prime}\right)} \sin \Omega(\tau-s) \sin \Omega\left(\tau^{\prime}-s^{\prime}\right) D^{+}\left(z_{A}^{\mu}(s), z_{B}^{\nu}\left(s^{\prime}\right)\right)
$$

II. The Model

Cross correlators oscillate with growing amplitude after $\mathrm{t}=0$ for $\tau_{0}<0$. This could generate entanglement.
$\left\langle Q_{A}, Q_{B}\right\rangle$ with $\gamma=0.01, \Omega=1.3, a=1, \hbar=1, \tau_{0}=-60$.

$$
\begin{array}{rlr}
\left\langle Q_{A}, Q_{B}\right\rangle & \approx \frac{\hbar \gamma e^{-2 \gamma \tau}}{\Omega \sinh \frac{\pi \Omega}{a}}\left[-2 \tau \cos 2 \Omega \tau+\frac{\pi}{a} \operatorname{coth} \frac{\pi \Omega}{a} \sin 2 \Omega \tau\right] & \text { in Stage } 2 \\
& \approx \frac{\hbar \gamma e^{-2 \gamma \tau}}{\Omega^{2} \sinh \frac{\pi \Omega}{a}}\left[2 \Omega \tau_{0} \cos 2 \Omega \tau+\ldots .\right] & \text { in Stage } 3
\end{array}
$$

II. The Model

Cross correlators oscillate with growing amplitude after $\mathrm{t}=0$ for $\tau_{0}<0$. This could generate entanglement.

If $\left.\tau_{0}=0,<Q_{A}, Q_{B}\right\rangle$ has no Stage 1 or 2 and is always small.
\longrightarrow No entanglement creation outside light cone if $\tau_{0}=0$

- similar to [Lin, Hu 2009] and [Braun 2005].

II. The Model

Cross correlators oscillate with growing amplitude after $\mathrm{t}=0$ for $\tau_{0}<0$. This could and could not generate entanglement.

C-

$$
\tau_{0}=-60
$$

entanglement creation

$$
\tau_{0}=-10
$$

No entanglement creation

No entanglement creation outside light cone if $\tau_{0}=0$
Entanglement Dynamics depend on τ_{0} : Non-Markovian.

II. The Model

- In strong-coupling regime and ultrahigh-acceleration regime, the self correlators always dominate over the cross correlators....

No entanglement creation.

II. The Model

Summary

For two initially separable, local-in-space quantum objects without direct interaction between them, a long-lifetime quantum entanglement between the two quantum objects could be generated by the environment before one object enters the other's light cone under some conditions
 (e.g. back-to-back accelerated uniformly with

Entanglement created in this way will disappear in a finite time if the two detectors are sufficiently far from each other at late times.

II. The Model

Two ions separated by 1 m

[Maunz, Olmschenk, Hayes, Matsukevich, Duan, Monroe, PRL102, 250502 (2009)]

FIG. 1 (color online). The experimental apparatus. Two ${ }^{171} \mathrm{Yb}^{+}$ions are trapped in identically constructed ion traps separated by 1 m . A magnetic field B is applied perpendicular to the excitation and observation axes to define the quantization axis. About 2% of the emitted light from each ion is collected by an imaging system (OL) with numerical aperture of about 0.3 and coupled into single-mode fibers. Polarization control paddles
are used to adjust the fibers to maintain linear polarization. The output of these fibers is directed to interfere on a polarizationindependent 50% beam splitter (BS). Polarizers (PBS) transmit only the π-polarized light from the ions. The photons are detected by single-photon counting photomultiplier tubes (PMT A and PMT B). Detection of the atomic state is done independently for the two traps with dedicated photomultiplier tubes (PMTs).

II. The Model

Two ions separated by 1 m
[Maunz, Olmschenk, Hayes, Matsukevich, Duan, Monroe, PRL102, 250502 (2009)]

With measurement (on spontaneously emitted photons), entanglement between two atoms can be created after the third party have causal contact with both atoms, while the atoms could be outside the light cones of each other then.

II. The Model

Conjecture

Entanglement is created after $t=\left(\exp a \tau_{0}\right) / a$.

The entanglement creation could not happen any earlier than the earliest possible moment that the third party, which is also local-in-space, is able to have causal contact with both quantum objects.

III. Concluding Remarks

III. Concluding Remark (1)

- RDM truncated up to the 1st excited state contains complete information about the separability of two detectors.

$$
\rho_{n_{A} n_{B}, n_{A}^{\prime} n_{B}^{\prime}}^{R} \approx\left(\begin{array}{cccc}
00 & 01 & 10 & 11 \\
g & 0 & 0 & g K^{2} \mathcal{J}^{A^{\prime} B^{\prime}} \\
0 & g K^{2} \mathcal{J}^{B B^{\prime}} & g K^{2} \mathcal{J}^{A^{\prime} B} & 0 \\
0 & g K^{2} \mathcal{J}^{A B^{\prime}} & g K^{2} \mathcal{J}^{A A^{\prime}} & 0 \\
g K^{2} \mathcal{J}^{A B} & 0 & 0 & g K^{4}\left[\mathcal{J}^{A B} \mathcal{J}^{A^{\prime} B^{\prime}}+\mathcal{J}^{A A^{\prime}} \mathcal{J}^{B B^{\prime}}+\mathcal{J}^{A B^{\prime}} \mathcal{J}^{A^{\prime} B}\right]
\end{array}\right) \begin{aligned}
& 00 \\
& 01 \\
& 10 \\
& 11
\end{aligned}
$$

III. Concluding Remark (1)

- RDM truncated up to the 1st excited state contains complete information about the separability of two detectors.

$$
\rho_{n_{A} n_{B}, n_{A}^{\prime} n_{B}^{\prime}}^{R} \approx\left(\begin{array}{cccc}
00 & 01 & 10 & 11 \\
g & 0 & 0 & g K^{2} \mathcal{J}^{A^{\prime} B^{\prime}} \\
0 & g K^{2} \mathcal{J}^{B B^{\prime}} & g K^{2} \mathcal{J}^{A^{\prime} B} & 0 \\
0 & g K^{2} \mathcal{J}^{A B^{\prime}} g K^{2} \mathcal{J}^{A A^{\prime}} & 0 & \\
g K^{2} \mathcal{J}^{A B^{\prime}} & 0 & 0 & g K^{4}\left[\mathcal{J}^{A B} \mathcal{J}^{A^{\prime} B^{\prime}}+\mathcal{J}^{A A^{\prime}} \mathcal{J}^{B B^{\prime}}+\mathcal{J}^{A B^{\prime}} \mathcal{J}^{A^{\prime} B}\right]
\end{array}\right)
$$

Partially Transposed $\rho_{n_{A} n_{B}, n_{A}^{\prime} n_{B}^{\prime}}^{R}$ has a negative eigenvalue if

$$
\begin{aligned}
& 0> \mathcal{J}^{A A^{\prime}} \mathcal{J}^{B B^{\prime}}-\mathcal{J}^{A B} \mathcal{J}^{A^{\prime} B^{\prime}} \\
& \text { or } 0>\rho_{00,00}^{R} \rho_{11,11}^{R}-\rho_{10,01}^{R} \rho_{01,10}^{R}
\end{aligned}=\frac{\Sigma \Omega^{2} \operatorname{det}\left(V+V_{0}\right)}{16 \hbar^{10}\left[\left\langle Q_{A}^{2}\right\rangle\left\langle Q_{B}^{2}\right\rangle-\left\langle Q_{A}, Q_{B}\right\rangle^{2}\right]^{2}}
$$

III. Concluding Remark (2)

- A replacement of Wightman function in textbook actually changes the interpretation of the cutoff.

$$
\rho_{10,10}^{R} \approx \frac{\lambda_{0}^{2}}{2 \hbar \Omega} \int_{\tau_{0}}^{\tau} d s \int_{\tau_{0}}^{\tau} d s^{\prime} e^{-i \Omega\left(s-s^{\prime}\right)} D^{+}\left(z_{A}^{\mu}(s), z_{A}^{\nu}\left(s^{\prime}\right)\right)
$$

Positive frequency
Wightman function

$$
\begin{aligned}
D^{+}\left(z_{j}^{\mu}, z_{j^{\prime}}^{\nu}\right) & \equiv\left\langle 0_{M}\right| \phi\left(z_{j}^{\mu}\right) \phi\left(z_{j^{\prime}}^{\nu}\right)\left|0_{M}\right\rangle \\
& =\int \frac{\hbar d^{3} k}{(2 \pi)^{3} 2 \omega} e^{-\omega \epsilon} e^{-i \omega\left(z_{j}^{0}-z_{j^{\prime}}^{0}\right)+i \mathbf{k} \cdot\left(\mathbf{z}_{\left.j^{\prime}-z_{j^{\prime}}\right)}\right.} \\
& =\frac{\hbar / 4 \pi^{2}}{\left|\mathbf{z}_{j}-\mathbf{z}_{j^{\prime}}\right|^{2}-\left(z_{j}^{0}-z_{j^{\prime}}^{0}-i \epsilon\right)^{2}}
\end{aligned}
$$

$z_{A}^{\mu}=\left(a^{-1} \sinh a \tau, a^{-1} \cosh a \tau, 0,0\right)$
$D^{+}\left(z_{A}^{\mu}(s), z_{A}^{\nu}\left(s^{\prime}\right)\right)=\frac{\hbar / 4 \pi^{2}}{-\frac{4}{a^{2}} \sinh \frac{a}{2} \Delta\left(\sinh \frac{a}{2} \Delta-i \epsilon a \cosh a T\right)+\epsilon^{2}} \quad \begin{array}{ll}T \equiv\left(s+s^{\prime}\right) / 2 \\ \Delta \equiv s-s^{\prime}\end{array}$

III. Concluding Remark (2)

- A replacement of Wightman function in textbook actually changes the interpretation of the cutoff.

$$
\rho_{10,10}^{R} \approx \frac{\lambda_{0}^{2}}{2 \hbar \Omega} \int_{\tau_{0}}^{\tau} d s \int_{\tau_{0}}^{\tau} d s^{\prime} e^{-i \Omega\left(s-s^{\prime}\right)} D^{+}\left(z_{A}^{\mu}(s), z_{A}^{\nu}\left(s^{\prime}\right)\right)
$$

$$
\begin{array}{ll}
D^{+}\left(z_{A}^{\mu}(s), z_{A}^{\nu}\left(s^{\prime}\right)\right)=\frac{\hbar / 4 \pi^{2}}{-\frac{4}{a^{2}} \sinh \frac{a}{2} \Delta\left(\sinh \frac{a}{2} \Delta-i \epsilon a \cosh a T\right)+\epsilon^{2}} & T \equiv\left(s+s^{\prime}\right) / 2 \\
\Delta \equiv s-s^{\prime}
\end{array}
$$

In textbook this is replaced by (since $\boldsymbol{\epsilon}$ is extremely small)

$$
D^{\prime+}\left(z_{A}^{\mu}(s), z_{A}^{\prime}\left(s^{\prime}\right)\right)=\frac{\hbar / 4 \pi^{2}}{-\frac{4}{a^{2}} \sinh ^{2} \frac{a}{2}\left(\Delta-i \epsilon^{\prime}\right)}
$$

Alternatively, one can use the original D^{+}but put the time-resolution of the detector (physical cutoffs)

$$
\rho_{10,10}^{R} \approx \frac{\lambda_{0}^{2}}{2 \hbar \Omega} \int_{\tau_{0}}^{\tau+\epsilon_{1}} d s \int_{\tau_{0}+\epsilon_{0}}^{\tau} d s^{\prime} e^{-i \Omega\left(s-s^{\prime}\right)} D^{+}\left(z_{A}^{\mu}(s), z_{A}^{\nu}\left(s^{\prime}\right)\right)
$$

III. Concluding Remark (2)

- A replacement of Wightman function in textbook actually changes the interpretation of the cutoff.

Thank you!

