Rotated Einstein-Podolsky-Rosen States

Huang, Siendong

sdhuang@mail.ndhu.edu.tw

Department of Applied Mathematics, National Dong Hwa University, Shoufeng, Hualien

Sep. 10, 2009

Outline

States with perfect correlation: (Einstein, Podolsky, Rosen, 1935)

On a bipartite system $\mathcal{A B}$
if the outcome of a measurement A on one subsystem \mathcal{A} is known, then the outcome of some measurement B on the other subsystem \mathcal{B} can be predicted with certainty.

Outline

Examples of quantum states with perfect correlation:

- continuous system: EPR state (1935)

$$
\Psi_{E P R}\left(x_{1}, x_{2}\right)=\int_{-\infty}^{\infty} e^{(2 \pi i / h)\left(x_{1}-x_{2}+x_{0}\right) p} d p
$$

- finite-dimensional system: Bohm state (1951)

$$
\Phi_{\text {Bohm }}=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
$$

Outline

Comparison of EPR state and Bohm state:

- Bohm state $\Phi_{\text {Bohm }}$ is well-defined in $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$; EPR state $\Psi_{E P R}$ is not a well-defined vector $\mathscr{L}\left(\mathbb{R}^{2}\right)$!
- all states with perfect correlation on $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$ are unitarily equivalent to Bohm state $\Phi_{\text {Bohm }}$; for continuous system it is unknown.

Outline

Goals:

- a well-defined formulation of EPR state
- rotated EPR states
- entanglement properties
- measurement of individual particles

Outline

(1) Canonical commutation relation
(2) EPR representations
(3) Rotated EPR states
(4) Summary

Overview

Weyl form of CCR | $\frac{\text { Hilbert space }}{\ell\left(\mathbb{R}^{2}\right), \xi_{(0,0)}} \longrightarrow \frac{C^{*} \text {-algenra }}{\mathcal{A}\left(\mathbb{R}^{4}\right), \omega_{\text {epr }}}$ |
| :---: |
| $\frac{C^{*} \text {-algenra }}{\mathcal{A}\left(\mathbb{R}^{4}\right), \omega_{\theta}}$ |

Wintner (1947): for \hat{q} and \hat{p} satisfying

$$
[\hat{q}, \hat{p}]=i \mathbb{I}
$$

there is no realization of \hat{q} and \hat{p} as bounded operators on Hilbert space.

Weyl form

- Instead of looking for realization of unbounded operators \hat{q} and \hat{p} we look for a realization of some bounded operators.
- Form the unitary operator $W(u), u=(a, b)$

$$
W(u)=e^{i(a \hat{q}+b \hat{p})} .
$$

The unitary operator $W(u)$ is clearly bounded.

- Weyl form of canonical commutation relation (CCR):

$$
\begin{align*}
W(u) W(v) & =e^{-i \sigma(u, v) / 2} W(u+v) \tag{1}\\
\sigma(u, v) & =u_{1} v_{2}-u_{2} v_{1}, \quad u, v \in \mathbb{R}^{2} . \tag{2}
\end{align*}
$$

Weyl form

For two particle systems we consider the following operator

$$
W(a, b, c, d)=e^{i\left(a \hat{q}_{1}+b \hat{p}_{1}+c \hat{q}_{2}+d \hat{p}_{2}\right)} .
$$

Here (a, b) describes the first particle while (c, d) the second particle.

Representation: (\mathcal{H}, Ω)
In order to represent a well-defined EPR state we want to construct a Hilbert space \mathcal{H} where $W(a, b, c, d)$ acts as a unitary operator on \mathcal{H} and a vector state $\Omega \in \mathcal{H}$ with perfect correlation which represents the EPR state.

EPR representations

Halvorson (2000):
first C^{*}-algebra formulation of $W(a, b, c, d), a, b, c, d \in \mathbb{R}$ and then its GNS representation $\ell\left(\mathbb{R}^{2}\right)$.

Here:
first representation $\ell\left(\mathbb{R}^{2}\right)$ and then C^{*}-algebra formulation
$\ell\left(\mathbb{R}^{2}\right)$, the Hilbert space of square-summable functions from \mathbb{R}^{2} to \mathbb{C} :

$$
\begin{aligned}
f & : \mathbb{R}^{2} \rightarrow \mathbb{C} \\
\langle f \mid g\rangle & =\sum \overline{f(\lambda, \mu)} g(\lambda, \mu) \\
\|f\| & =\left(\sum|f(\lambda, \mu)|^{2}\right)^{1 / 2}
\end{aligned}
$$

EPR representations

$\xi_{(\lambda, \mu)}$: the characteristic function of the set $\{(\lambda, \mu)\}$:

$$
\xi_{(\lambda, \mu)}(x, y)= \begin{cases}1 & (x, y)=(\lambda, \mu) \\ 0 & (x, y) \neq(\lambda, \mu)\end{cases}
$$

Define the following operator on $\ell\left(\mathbb{R}^{2}\right)$:

$$
\begin{align*}
W(a, 0,-a, 0) \xi_{(\lambda, \mu)} & =e^{i a \lambda} \xi_{(\lambda, \mu)} \tag{3}\\
W(0, b / 2,0,-b / 2) \xi_{(\lambda, \mu)} & =\xi_{(\lambda-b, \mu)} \tag{4}\\
W(c / 2,0, c / 2,0) \xi_{(\lambda, \mu)} & =\xi_{(\lambda, \mu+c)} \tag{5}\\
W(0, d, 0, d) \xi_{(\lambda, \mu)} & =e^{i d \mu} \xi_{(\lambda, \mu)} . \tag{6}
\end{align*}
$$

EPR representation

$\left(\ell\left(\mathbb{R}^{2}\right), \xi_{(0,0)}\right)$ has properties:

- $\xi_{(0,0)}$ is cyclic for $W(a, b, 0,0)$, i.e.,

$$
\overline{\left\{W(a, b, 0,0) \xi_{(0,0)} ; a, b \in \mathbb{R}\right\}}=\ell\left(\mathbb{R}^{2}\right)
$$

and similarly for $W(0,0, c, d)$. Thus $\xi_{(0,0)}$ is entangled.

- $\xi_{(0,0)}$ is perfect correlated,i.e., EPR state:

$$
\left(\xi_{(0,0)}, W(a, b, c, d) \xi_{(0,0)}\right)=\delta(a+c) \delta(b-d) e^{i\left(a \lambda_{0}+b \mu_{0}\right)}
$$

- $\xi_{(0,0)}$ assigns
- a dispersion-free value λ_{0} to $\hat{q}_{1}-\hat{q}_{2}$ and
- a dispersion-free value μ_{0} to $\hat{p}_{1}+\hat{p}_{2}$.

C*-algebra

C^{*}-algebra formulation:

- The one-particle system is described by $\mathcal{A}\left(\mathbb{R}^{2}\right)$:

$$
\mathcal{A}\left(\mathbb{R}^{2}\right)=\overline{\left\{\sum_{j=1}^{n} c_{j} W\left(u_{j}\right) \mid u_{j}=\left(a_{j}, b_{j}\right) \in \mathbb{R}^{2}\right\}}
$$

- $\ln \mathcal{A}\left(\mathbb{R}^{2}\right)$ we have $*$-operation:

$$
W(u)^{*}=W(-u)
$$

- relation between the operator $*$ and the norm $\|\cdot\|$:

$$
\left\|A^{*} A\right\|=\|A\|^{2}, \quad \forall A \in \mathcal{A}\left(\mathbb{R}^{2}\right)
$$

C^{*}-algebra

Only observables and states are important!

- An observable associated with a measurement procedure corresponds to an element $A \in \mathcal{A}\left(\mathbb{R}^{2}\right)$ with

$$
A=A^{*} .
$$

- A state ω of a particle is given by a unital positive linear functional on $\mathcal{A}\left(\mathbb{R}^{2}\right)$:

$$
\omega: \mathcal{A}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{C} .
$$

$\omega(A)=$ the expectation value of the observable A in the state ω.

Two-particle systems

- Let $\mathcal{A}=\mathcal{B}=\mathcal{A}\left(\mathbb{R}^{2}\right)$. The two particle system is then given by

$$
\mathcal{A} \otimes \mathcal{B} \cong \mathcal{A}\left(\mathbb{R}^{4}\right)
$$

where the elements $W(u) \in \mathcal{A}\left(\mathbb{R}^{4}\right)$ satisfy $C C R$ similarly as (1) with

$$
\sigma_{2}=\sigma \oplus \sigma
$$

- A state ω on $\mathcal{A}\left(\mathbb{R}^{4}\right)$ is a positive linear functional on $\mathcal{A}\left(\mathbb{R}^{4}\right)$ with norm one:

$$
\omega: \mathcal{A}\left(\mathbb{R}^{4}\right) \rightarrow \mathbb{C}
$$

- Basically,

$$
\omega: W(a, b, c, d) \mapsto \omega(W(a, b, c, d)) \in \mathbb{C}
$$

EPR states

Halvorson (2000):
The EPR state $\omega_{\text {epr }}$ is as a unital positive linear functional on $\mathcal{A}\left(\mathbb{R}^{4}\right)$:

$$
\begin{equation*}
\omega_{e p r}(W(a, b, c, d))=\delta(a+c) \delta(b-d) e^{i\left(a \lambda_{0}+b \mu_{0}\right)} . \tag{7}
\end{equation*}
$$

$\omega_{\text {epr }}$ assigns

- a dispersion-free value λ_{0} to $\hat{q}_{1}-\hat{q}_{2}$ and
- a dispersion-free value μ_{0} to $\hat{p}_{1}+\hat{p}_{2}$:

states and representations

Each state ω on a C^{*}-algebra \mathcal{A} gives a representation \mathcal{H} of \mathcal{A} and ω is represented as a vector Ω in \mathcal{H},

$$
(\mathcal{A}, \omega) \Longleftrightarrow(\mathcal{H}, \Omega)
$$

Here:

$$
\begin{aligned}
\mathcal{A} & =\mathcal{A}\left(\mathbb{R}^{4}\right) \\
\omega=\omega_{\text {epr }} & \Longleftrightarrow \Omega=\xi_{(0,0)} \\
\mathcal{H} & =\ell\left(\mathbb{R}^{2}\right) \\
\omega_{\text {epr }}(W(a, b, c, d)) & =\left(\xi_{(0,0)}, W(a, b, c, d) \xi_{(0,0)}\right)
\end{aligned}
$$

$W(a, b, c, d)$ acts on $\ell\left(\mathbb{R}^{2}\right)$ according to Equations (3)-(6) and

$$
\overline{\left\{W(a, b, c, d) \xi_{(0,0)} ; a, b, c, d \in \mathbb{R}\right\}}=\ell\left(\mathbb{R}^{2}\right)
$$

essential points of $\omega_{\text {epr }}$

- $\omega_{\text {epr }}$ can be viewed as a mapping from the phase space \mathbb{R}^{4} to \mathbb{C} with some additional conditions:

$$
\begin{aligned}
\mathbb{R}^{4} & \rightarrow \mathbb{C} \\
(a, b, c, d) & \mapsto \delta(a+c) \delta(b-d) e^{i\left(a \lambda_{0}+b \mu_{0}\right)}=\omega_{e p r}(W(a, b, c, d))
\end{aligned}
$$

- rotation in phase space \Longleftrightarrow rotation of $\omega_{\text {epr }}$.

Rotated EPR states

Bohr (1935):
in EPR states (\hat{q}, \hat{p}) cab be replaced by (\hat{Q}, \hat{P})

$$
\begin{array}{ll}
\hat{Q}_{1}=\hat{q}_{1} \cos \theta+\hat{q}_{2} \sin \theta, & \hat{Q}_{2}=-\hat{q}_{1} \sin \theta+\hat{q}_{2} \cos \theta, \\
\hat{P}_{1}=\hat{p}_{1} \cos \theta+\hat{p}_{2} \sin \theta, & \hat{P}_{2}=-\hat{p}_{1} \sin \theta+\hat{p}_{2} \cos \theta .
\end{array}
$$

(1) This corresponds to a rotation R_{θ} in phase space.
(2) The commutation relation remains, i.e.,

$$
\left[\hat{Q}_{j}, \hat{P}_{j}\right]=i, \quad j=1,2
$$

Rotated EPR states

Remark of Bohr (1935) $+\omega_{\text {epr }}$ by Halvorson (2000)
\Rightarrow rotated EPR states (Huang, 2007)

Rotated EPR states

Introduce a new basis $E_{\theta}=\left[u_{1}, v_{1}, u_{2}, v_{2}\right]$ for \mathbb{R}^{4},

$$
\begin{array}{ll}
u_{1}=(\cos \theta, 0, \sin \theta, 0) & v_{1}=(0, \cos \theta, 0, \sin \theta) \\
u_{2}=(-\sin \theta, 0, \cos \theta, 0), & v_{2}=(0,-\sin \theta, 0, \cos \theta)
\end{array}
$$

$$
\begin{aligned}
& W\left(u_{1}\right) \Leftrightarrow \hat{Q}_{1} \\
& W\left(u_{2}\right) \Leftrightarrow \hat{Q}_{2}
\end{aligned}
$$

$$
W\left(v_{1}\right) \Leftrightarrow \hat{P}_{1}
$$

$$
W\left(v_{2}\right) \Leftrightarrow \hat{P}_{2}
$$

Rotated EPR states

Idea:

A state which assigns sharp values to $W\left(u_{1}\right)$ and $W\left(v_{2}\right)$ has the same perfect correlation as the EPR states.

Definition:

A rotated EPR state ω_{θ} is a unital positive linear functional on $\mathcal{A}\left(\mathbb{R}^{4}\right)$ such that \hat{Q}_{1} and \hat{P}_{2} have the sharp value 0 can then be defined as

$$
\begin{equation*}
\omega_{\theta}\left(W(a, b, c, d)_{\theta}\right)=\delta_{b, 0} \delta_{c, 0} \tag{8}
\end{equation*}
$$

$(a, b, c, d)_{\theta}$ denote the coordinates with respect to the basis E_{θ}. (Here: for simply $\lambda_{0}=0, \mu_{0}=0$ for ω_{θ} and $\omega_{e p r}$)

Royated states and EPR state

Some Remarks:
(1) ω_{θ} with $\theta=n \pi$ or $(n \pm 1 / 2) \pi$ is a product state.
(2) $\omega_{e p r}$ corresponds to ω_{θ} with $\theta=-\pi / 4$.
(3) Let R_{θ} denotes the rotation $R_{\theta}(a, b, c, d)_{\theta}=(a, b, c, d)_{\theta=-\pi / 4}$ Then we have

$$
\begin{aligned}
\omega_{\theta}\left(W(a, b, c, d)_{\theta}\right) & =\omega_{e p r}\left(\left(W(a, b, c, d)_{-\pi / 4}\right)\right) \\
& =\omega_{e p r}\left(\tau_{\theta}\left(W(a, b, c, d)_{\theta}\right)\right)
\end{aligned}
$$

where τ_{θ} is the ${ }^{*}$-automorphism of $\mathcal{A}\left(\mathbb{R}^{4}\right)$ corresponding to R_{θ}.

Rotated EPR states and their representations

Define $W(a, b, c, d)$ on $\mathcal{B}\left(\ell\left(\mathbb{R}^{2}\right)\right)$:

$$
\begin{aligned}
W(a, 0,0,0) \xi_{(\lambda, \mu)} & =e^{i a \cos \theta \lambda} \xi_{(\lambda, \mu-a \sin \theta)}, \\
W(0, b, 0,0) \xi_{(\lambda, \mu)} & =e^{-i b \sin \theta \mu} \xi_{(\lambda-b \cos \theta, \mu)}, \\
W(0,0, c, 0) \xi_{(\lambda, \mu)} & =e^{i c \sin \theta \lambda} \xi_{(\lambda, \mu+c \cos \theta)}, \\
W(0,0,0, d) \xi_{(\lambda, \mu)} & =e^{i d \cos \theta \mu} \xi_{(\lambda-d \sin \theta, \mu)} .
\end{aligned}
$$

$\xi_{(0,0)}$ has the following properties:

$$
\begin{gathered}
\overline{\left\{W(a, b, c, d) \xi_{(0,0)} ; a, b, c, d \in \mathbb{R}\right\}}=\ell\left(\mathbb{R}^{2}\right) \\
\omega_{\theta}(A)=\left(\xi_{(0,0)}, \pi_{\theta}(A) \xi_{(0,0)}\right)
\end{gathered}
$$

Rotated EPR representation

Property I:
$\xi_{(0,0)}$ has the entanglement property:

$$
\overline{\left\{W(a, b, 0,0) \xi_{(0,0)} ; a, b \in \mathbb{R}\right\}}=\overline{\left\{W(0,0, c, d) \xi_{(0,0)} ; c, d \in \mathbb{R}\right\}}=\ell\left(\mathbb{R}^{2}\right) .
$$

Rotated EPR representation

Property (II):
Halvorson (2000):
$\omega_{\text {epr }}$ maximally violate Bell's inequalities.
Here: similar arguments as Halvorson (2000), ω_{θ} maximally violate Bell's inequalities.

Rotated EPR states

Property (III):
ω_{θ} has the perfect correlation:
If the outcome of one measurement on one subsystem is obtained, then the outcome of some measurement on the other subsystem can be predicted with certain.

Rotated EPR states

Property (IV):

No information about individual particle can be obtained!

- The operator \hat{q}_{1} does not exist.

Due to the weak discontinuity of $\omega_{\theta}(W(a, 0,0,0))$

$$
\begin{aligned}
\omega_{\theta}(W(a, 0,0,0)) & =\left\langle\xi_{(0,0)}, \pi(W(a, 0,0,0)) \xi_{(0,0)}\right\rangle \\
& = \begin{cases}1, & a=0 \\
0, & a \neq 0\end{cases}
\end{aligned}
$$

the limit does not exist!

$$
\lim _{a \rightarrow 0} \frac{W(a, 0,0,0)-\mathbb{I}}{a} \xi_{(0,0)}=: i \hat{q} \xi_{(0,0)}
$$

- Similarly, \hat{q}_{2}, \hat{p}_{1} and \hat{p}_{2} does not exist.

Rotated EPR states

- Keyl, Schlingemann, and Werner (2003): In an EPR states the probability of finding a particle at infinity is one!
- Halvorson (2004):

In any representation where the position operator has eigenstates, there is no momentum operator, and vice versa.

Rotated EPR states

Property (V):
The uncertainty principle implies that two representations ω_{θ} and $\omega_{\theta^{\prime}}$ are not unitarily equivalent if $\theta \neq \theta^{\prime}+n \pi$ or $\theta \neq \theta^{\prime}+(n+1 / 2) \pi$, i.e., there is no unitary operator U on $\ell\left(\mathbb{R}^{2}\right)$ such that

$$
\begin{aligned}
W_{\theta}(x) & =U^{\dagger} W_{\theta^{\prime}}(x) U \\
\xi_{(0,0)} & =U \xi_{(0,0)}
\end{aligned}
$$

where W_{θ} denotes operations according θ on $\ell\left(\mathbb{R}^{2}\right)$.
Physical meaning: external unitary operator outside the observable algebra $\mathcal{A}\left(\mathbb{R}^{4}\right)$ is necessary to change ω_{θ} into $\omega_{\theta^{\prime}}$

Rotated EPR states

- For finite systems $M_{n} \otimes M_{n}$: states with perfect correlation:

$$
\Phi=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}\left|e_{j} f_{j}\right\rangle, \quad\left\{e_{j}\right\},\left\{f_{j}\right\} \text { ONB for } \mathbb{C}^{n}
$$

All states satisfying perfect correlation can transfered into each other by a unitary operator on the same vector space $\mathbb{C}^{n} \otimes \mathbb{C}^{n}$.

- For infinite systems $\mathcal{A}\left(\mathbb{R}^{n}\right)$:
there exists non-unitarily equivalent states satisfying perfect correlation.
\Rightarrow New entanglement phenomenon.

Summary

(1) Rotated EPR states ω_{θ} is constructed!

Summary

(1) Rotated EPR states ω_{θ} is constructed!
(2) No information of individual particle from ω_{θ} can be obtained!

Summary

(1) Rotated EPR states ω_{θ} is constructed!
(2) No information of individual particle from ω_{θ} can be obtained!
(3) ω_{θ} non-unitarily equivalent to $\omega_{\theta^{\prime}}$

Summary

(1) Rotated EPR states ω_{θ} is constructed!
(2) No information of individual particle from ω_{θ} can be obtained!
(3) ω_{θ} non-unitarily equivalent to $\omega_{\theta^{\prime}}$
(9) Another construction ω_{ϕ} :

$$
\omega_{\phi}\left(W(a, b, c, d)_{\phi}\right)=\delta_{b, 0} \delta_{c, 0} e^{i\left(a \lambda_{0}+d \mu_{0}\right)}
$$

$$
\begin{array}{ll}
s_{1}=(\cos \phi, 0,0, \sin \phi) & t_{1}=(0, \cos \phi,-\sin \phi, 0) \\
s_{2}=(-\sin \phi, 0,0, \cos \phi), & t_{2}=(0,-\sin \phi,-\cos \phi, 0)
\end{array}
$$

Thank you for your attention!

