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Outline

Outline

States with perfect correlation: (Einstein, Podolsky, Rosen, 1935)

On a bipartite system AB

if the outcome of a measurement A on one subsystem A is known,

then the outcome of some measurement B on the other subsystem B can
be predicted with certainty.
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Outline

Examples of quantum states with perfect correlation:

continuous system: EPR state (1935)

ΨEPR(x1, x2) =

∫ ∞
−∞

e(2πi/h)(x1−x2+x0)pdp

finite-dimensional system: Bohm state (1951)

ΦBohm =
1√
2

(|01〉 − |10〉)
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Outline

Comparison of EPR state and Bohm state:

Bohm state ΦBohm is well-defined in C2 ⊗ C2;
EPR state ΨEPR is not a well-defined vector L (R2)!

all states with perfect correlation on C2 ⊗ C2 are unitarily equivalent
to Bohm state ΦBohm;
for continuous system it is unknown.

Huang, Siendong (NDHU) Rotated EPR States Sep. 10, 2009 4 / 34



Outline

Outline

Goals:

a well-defined formulation of EPR state

rotated EPR states

entanglement properties

measurement of individual particles
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1 Canonical commutation relation

2 EPR representations

3 Rotated EPR states

4 Summary
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Overview

Weyl form
of CCR

Hilbert space
`(R2), ξ(0,0)

C ∗-algenra
A(R4), ωepr

C ∗-algenra
A(R4), ωθ
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Canonical commutation relation

CCR

Wintner (1947): for q̂ and p̂ satisfying

[q̂, p̂] = i I

there is no realization of q̂ and p̂ as bounded operators on Hilbert space.
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Canonical commutation relation

Weyl form

Instead of looking for realization of unbounded operators q̂ and p̂ we
look for a realization of some bounded operators.

Form the unitary operator W (u), u = (a, b)

W (u) = e i(aq̂+bp̂).

The unitary operator W (u) is clearly bounded.

Weyl form of canonical commutation relation (CCR):

W (u)W (v) = e−iσ(u,v)/2W (u + v) (1)

σ(u, v) = u1v2 − u2v1, u, v ∈ R2. (2)
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Canonical commutation relation

Weyl form

For two particle systems we consider the following operator

W (a, b, c , d) = e i(aq̂1+bp̂1+cq̂2+dp̂2).

Here (a, b) describes the first particle while (c , d) the second particle.

Representation: (H,Ω)
In order to represent a well-defined EPR state
we want to construct a Hilbert space H
where W (a, b, c , d) acts as a unitary operator on H
and a vector state Ω ∈ H with perfect correlation
which represents the EPR state.
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EPR representations

EPR representations

Halvorson (2000):
first C ∗-algebra formulation of W (a, b, c , d), a, b, c , d ∈ R and then its
GNS representation `(R2).

Here:
first representation `(R2) and then C ∗-algebra formulation

`(R2), the Hilbert space of square-summable functions from R2 to C:

f : R2 → C,
〈f |g〉 =

∑
f (λ, µ)g(λ, µ),

‖f ‖ =
(∑

|f (λ, µ)|2
)1/2

.
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EPR representations

EPR representations

ξ(λ,µ): the characteristic function of the set {(λ, µ)}:

ξ(λ,µ)(x , y) =

{
1 (x , y) = (λ, µ)

0 (x , y) 6= (λ, µ)

Define the following operator on `(R2):

W (a, 0,−a, 0)ξ(λ,µ) = e iaλξ(λ,µ), (3)

W (0, b/2, 0,−b/2)ξ(λ,µ) = ξ(λ−b,µ), (4)

W (c/2, 0, c/2, 0)ξ(λ,µ) = ξ(λ,µ+c), (5)

W (0, d , 0, d)ξ(λ,µ) = e idµξ(λ,µ). (6)
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EPR representations

EPR representation

(`(R2), ξ(0,0)) has properties:

ξ(0,0) is cyclic for W (a, b, 0, 0), i.e.,

{W (a, b, 0, 0)ξ(0,0) ; a, b ∈ R} = `(R2)

and similarly for W (0, 0, c , d). Thus ξ(0,0) is entangled.

ξ(0,0) is perfect correlated,i.e., EPR state:

(ξ(0,0),W (a, b, c , d)ξ(0,0)) = δ(a + c)δ(b − d)e i(aλ0+bµ0)

ξ(0,0) assigns

a dispersion-free value λ0 to q̂1 − q̂2 and
a dispersion-free value µ0 to p̂1 + p̂2.
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EPR representations

C ∗-algebra

C ∗-algebra formulation:

The one-particle system is described by A(R2):

A(R2) =


n∑

j=1

cjW (uj)
∣∣∣ uj = (aj , bj) ∈ R2


In A(R2) we have ∗-operation:

W (u)∗ = W (−u).

relation between the operator ∗ and the norm ‖ · ‖:

‖A∗A‖ = ‖A‖2, ∀A ∈ A(R2).
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EPR representations

C ∗-algebra

Only observables and states are important!

An observable associated with a measurement procedure corresponds
to an element A ∈ A(R2) with

A = A∗.

A state ω of a particle is given by a unital positive linear functional
on A(R2):

ω : A(R2)→ C.

ω(A) = the expectation value of the observable A in the state ω.
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EPR representations

Two-particle systems

Let A = B = A(R2). The two particle system is then given by

A⊗ B ∼= A(R4)

where the elements W (u) ∈ A(R4) satisfy CCR similarly as (1) with

σ2 = σ ⊕ σ.

A state ω on A(R4) is a positive linear functional on A(R4) with
norm one:

ω : A(R4)→ C

Basically,
ω : W (a, b, c , d) 7→ ω(W (a, b, c , d)) ∈ C.
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EPR representations

EPR states

Halvorson (2000):
The EPR state ωepr is as a unital positive linear functional on A(R4):

ωepr (W (a, b, c , d)) = δ(a + c)δ(b − d)e i(aλ0+bµ0). (7)

ωepr assigns

a dispersion-free value λ0 to q̂1 − q̂2 and

a dispersion-free value µ0 to p̂1 + p̂2:
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EPR representations

states and representations

Each state ω on a C ∗-algebra A gives a representation H of A and ω is
represented as a vector Ω in H,

(A, ω)⇐⇒ (H,Ω)

Here:

A = A(R4)

ω = ωepr ⇐⇒ Ω = ξ(0,0)

H = `(R2)

ωepr (W (a, b, c , d)) = (ξ(0,0),W (a, b, c , d)ξ(0,0))

W (a, b, c, d) acts on `(R2) according to Equations (3)–(6) and

{W (a, b, c , d)ξ(0,0) ; a, b, c , d ∈ R} = `(R2)
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EPR representations

essential points of ωepr

ωepr can be viewed as a mapping from the phase space R4 to C with
some additional conditions:

R4 → C
(a, b, c, d) 7→ δ(a + c)δ(b − d)e i(aλ0+bµ0) = ωepr (W (a, b, c , d))

rotation in phase space ⇐⇒ rotation of ωepr .
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Rotated EPR states

Rotated EPR states

Bohr (1935):
in EPR states (q̂, p̂) cab be replaced by (Q̂, P̂)

Q̂1 = q̂1 cos θ + q̂2 sin θ, Q̂2 = −q̂1 sin θ + q̂2 cos θ,

P̂1 = p̂1 cos θ + p̂2 sin θ, P̂2 = −p̂1 sin θ + p̂2 cos θ.

1 This corresponds to a rotation Rθ in phase space.

2 The commutation relation remains, i.e.,

[Q̂j , P̂j ] = i , j = 1, 2.
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Rotated EPR states

Rotated EPR states

Remark of Bohr (1935) + ωepr by Halvorson (2000)

⇒ rotated EPR states (Huang, 2007)
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Rotated EPR states

Rotated EPR states

Introduce a new basis Eθ = [u1, v1, u2, v2] for R4,

u1 = (cos θ, 0, sin θ, 0) v1 = (0, cos θ, 0, sin θ),

u2 = (− sin θ, 0, cos θ, 0), v2 = (0,− sin θ, 0, cos θ).

W (u1)⇔ Q̂1 W (v1)⇔ P̂1

W (u2)⇔ Q̂2, W (v2)⇔ P̂2.
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Rotated EPR states

Rotated EPR states

Idea:
A state which assigns sharp values to W (u1) and W (v2) has the same
perfect correlation as the EPR states.

Definition:
A rotated EPR state ωθ is a unital positive linear functional on A(R4)
such that Q̂1 and P̂2 have the sharp value 0 can then be defined as

ωθ(W (a, b, c , d)θ) = δb,0δc,0 (8)

(a, b, c, d)θ denote the coordinates with respect to the basis Eθ.
(Here: for simply λ0 = 0, µ0 = 0 for ωθ and ωepr )
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Rotated EPR states

Royated states and EPR state

Some Remarks:

1 ωθ with θ = nπ or (n ± 1/2)π is a product state.

2 ωepr corresponds to ωθ with θ = −π/4.

3 Let Rθ denotes the rotation Rθ(a, b, c , d)θ = (a, b, c, d)θ=−π/4 Then
we have

ωθ(W (a, b, c , d)θ) = ωepr ((W (a, b, c, d)−π/4))

= ωepr (τθ(W (a, b, c , d)θ))

where τθ is the ∗-automorphism of A(R4) corresponding to Rθ.
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Rotated EPR states

Rotated EPR states and their representations

Define W (a, b, c, d) on B(`(R2)):

W (a, 0, 0, 0)ξ(λ,µ) = e ia cos θλξ(λ,µ−a sin θ),

W (0, b, 0, 0)ξ(λ,µ) = e−ib sin θµξ(λ−b cos θ,µ),

W (0, 0, c , 0)ξ(λ,µ) = e ic sin θλξ(λ,µ+c cos θ),

W (0, 0, 0, d)ξ(λ,µ) = e id cos θµξ(λ−d sin θ,µ).

ξ(0,0) has the following properties:

{W (a, b, c , d)ξ(0,0) ; a, b, c , d ∈ R} = `(R2)

ωθ(A) = (ξ(0,0), πθ(A)ξ(0,0))
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Rotated EPR states

Rotated EPR representation

Property I:
ξ(0,0) has the entanglement property:

{W (a, b, 0, 0)ξ(0,0) ; a, b ∈ R} = {W (0, 0, c , d)ξ(0,0) ; c , d ∈ R} = `(R2).
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Rotated EPR states

Rotated EPR representation

Property (II):

Halvorson (2000):
ωepr maximally violate Bell’s inequalities.

Here: similar arguments as Halvorson (2000),
ωθ maximally violate Bell’s inequalities.
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Rotated EPR states

Rotated EPR states

Property (III):

ωθ has the perfect correlation:

If the outcome of one measurement on one subsystem is obtained, then
the outcome of some measurement on the other subsystem can be
predicted with certain.
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Rotated EPR states

Rotated EPR states

Property (IV):

No information about individual particle can be obtained!

The operator q̂1 does not exist.
Due to the weak discontinuity of ωθ(W (a, 0, 0, 0))

ωθ(W (a, 0, 0, 0)) = 〈ξ(0,0), π(W (a, 0, 0, 0))ξ(0,0)〉

=

{
1, a = 0

0, a 6= 0
,

the limit does not exist!

lim
a→0

W (a, 0, 0, 0)− I
a

ξ(0,0) =: i q̂ ξ(0,0)

Similarly, q̂2, p̂1 and p̂2 does not exist.
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Rotated EPR states

Rotated EPR states

Keyl, Schlingemann, and Werner (2003):
In an EPR states the probability of finding a particle at infinity is one!

Halvorson (2004):
In any representation where the position operator has eigenstates,
there is no momentum operator, and vice versa.
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Rotated EPR states

Rotated EPR states

Property (V):

The uncertainty principle implies that two representations ωθ and ωθ′ are
not unitarily equivalent if θ 6= θ′ + nπ or θ 6= θ′ + (n + 1/2)π, i.e., there is
no unitary operator U on `(R2) such that

Wθ(x) = U†Wθ′(x)U

ξ(0,0) = Uξ(0,0)

where Wθ denotes operations according θ on `(R2).

Physical meaning: external unitary operator outside the observable algebra
A(R4) is necessary to change ωθ into ωθ′
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Rotated EPR states

Rotated EPR states

For finite systems Mn ⊗Mn:
states with perfect correlation:

Φ =
1√
n

n∑
j=1

|ej fj〉, {ej}, {fj} ONB for Cn

All states satisfying perfect correlation can transfered into each other
by a unitary operator on the same vector space Cn ⊗ Cn.

For infinite systems A(Rn):
there exists non-unitarily equivalent states satisfying perfect
correlation.
⇒ New entanglement phenomenon.
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Summary

Summary

1 Rotated EPR states ωθ is constructed!

2 No information of individual particle from ωθ can be obtained!

3 ωθ non-unitarily equivalent to ωθ′

4 Another construction ωφ:

ωφ(W (a, b, c , d)φ) = δb,0δc,0e
i(aλ0+dµ0)

s1 = (cosφ, 0, 0, sinφ) t1 = (0, cosφ,− sinφ, 0),

s2 = (− sinφ, 0, 0, cosφ), t2 = (0,− sinφ,− cosφ, 0).
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Summary

Thank you for your attention!
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