Environment driven Superconductor-Insulator phase transition in One-Dimensional Josephson-Junction Arrays

ShianChan Wu (吳憲昌)¹, ILin. Ho (何宜霖)², Watson Kuo (郭華丞)³, ShengDi Lin (林聖迪)⁴, ChiTe Liang (梁啓德)⁵ and <u>ChiiDong Chen (陳啓東)²</u>

Department of Physics, National Chang-Hua University of Education, ChangHua 500, Taiwan.
Institute of Physics, Academia Sinica, Nankang, 115, Taipei, Taiwan
Department of Physics, National Chung Hsing University, 250, Taichung, Taiwan
Department of Electronic Engineering, National Chiao-Tung University, Hsinchu 30050, Taiwan
Department of Physics, National Taiwan University, Taipei 106, Taiwan

Quantum Phase Transition in One-Dimensional Arrays of Resistively Shunted Small Josephson Junctions

Hisao Miyazaki, Yamaguchi Takahide, Akinobu Kanda, and Youiti Ootuka, PRL, 89, 197001 (02)

Dissipation-Driven Superconductor-Insulator Transition in a Two-Dimensional Josephson-Junction Array

A. J. Rimberg, T. R. Ho, C. Kurdak, and John Clarke, PRL 78, 2632 (97)

Device layout

1D Josephson junction array with tunable environment

1D-Josephson Junction Array with tunable coupling strength

Two relevant energy scales:

Charging energy
for single electrons
$$E_{CP} = \frac{4e^2}{2(2C)} = 212 \ \mu eV$$
 $\frac{2C = 1.5fF}{\text{with } C_s = 45fF/\mu m^2}$
Josephson coupling energy $E_J^0 = \frac{\Delta}{2} \frac{R_Q}{R_N} = 96.3 \ \mu eV$ (A1) and 81.3 μeV (A2)
 R_N (6.75k Ω for A1 and 8.0k Ω for A2), $\Delta = 200 \mu eV$
modulated coupling energy $E_J = E_J^0 \cos(\pi f)$ $f = AB/\Phi_o$ $f = B/42.5Gs$

2DEG

 $= \mathbf{1} (\mathbf{0})^{\prime}$

Characteristics of the 2 Dimensional Electron Gas layer

$$\alpha \equiv R_Q/R_{2DEG}$$

E_J/E_{CP} and α dependence of IV_b curves

Effect of α in phase- and charge-order regimes

 α = promote charge tunneling

0.4

Effect of α on quasi-reentrance behavior

Phase diagram

no electromagnetic environment varying temperature

In the presence of an electromagnetic environment

$$L_{total} = \frac{1}{2} \sum_{ij} Q_i (\hat{C}^{-1})_{ij} Q_j + \sum_{\langle i,j \rangle} E_J [1 - \cos(\varphi_i - \varphi_j)] + \frac{1}{2} \sum_n (m_n \dot{x}_n^2 - m_n \omega_n^2 x_n^2) - \sum_{in} F_{in} (Q_i, \varphi_i, x_n \lambda_{in})$$

1D Junction array
2DEG array-2DEG interaction

2DEG → harmonic oscillators

resonant frequencies $\omega_n = 2\pi n k_B T$ Matsubara frequencies

 λ_{in} = the coupling strength ζ superconducting island *i* environment oscillator *n*

In phase order regime: $(E_J > 0.2 E_{CP})$

Ohmic environment
$$\rightarrow \sum_{n} \frac{\pi \lambda_{in}^2}{2m_n} \delta(\omega - \omega_n) = R_{2DEG}^{-1}$$

Superconducting - insulating boundary $\langle E_J \cos \varphi_{ij} \rangle = 0$ $1 - E_J \int_0^{\frac{1}{k_B T}} d\tau \exp \left[-2k_B T \sum_n \frac{E_{CP}}{\sqrt{1 + \alpha E_{CP}/2\pi \omega_n}} \frac{1 - \cos(\omega_n \tau)}{\omega_n^2} \right] > 0 \rightarrow \text{superconductor}$ $< 0 \rightarrow \text{insulator}$

$$1 - E_J \int_0^{\frac{1}{k_B T}} d\tau \exp\left[-2k_B T \sum_n \frac{E_{CP}}{\sqrt{1 + \alpha E_{CP}/2\pi\omega_n}} \frac{1 - \cos(\omega_n \tau)}{\omega_n^2}\right] > 0 \rightarrow \text{superconductor} < 0 \rightarrow \text{insulator}$$

Presence of E_{CP} \leftarrow phase-charge duality

 $\alpha \neq 0$ suppresses phase fluctuations \rightarrow promotes Cooper pair tunneling

 \rightarrow an effective reduction of E_{CP} by a factor of $\sqrt{1 + \alpha E_{CP}/2\pi\omega_n}$

Phase boundary in charge order regime ($E_J << E_{CP}$)

P(E) ---- Probability for the tunneling electron to exchange energy E with the environment.

E/E

Calculated phase diagram for both

Comparison between theoretical and experimental phase diagram

1D Josephson junction arrays with a tunable environment

Finite temperature phase diagram

