Strong atom-photon coupling: applications toward quantum information

Darrick Chang
Institute for Quantum Information
California Institute of Technology

4th Winter School on Quantum Information Science Yilan, Taiwan

Strong coupling of atoms and photons

How do we get around inherently weak coupling between atoms and photons?

Resonant photon Single atom $\sigma = \frac{3 \, \lambda^2}{2 \, \pi}, A_{beam} > \lambda^2, P_{sc} = \frac{\sigma}{A_{beam}}$

- Approach #1: Cavity quantum electrodynamics (QED)
 - Put the atom between two mirrors and enhance the interaction by the number of round trips the photon makes

- Approach #2: Plasmonics ("Electrodynamics in 1D")
 - Circumvent the diffraction limit, $A_{beam} \ll \lambda^2$

Outline

- Motivation: what's special about strongly confined photons in 1D?
- Strong atom-photon coupling using nanoscale surface plasmons
 - "Cavity QED," but without a cavity!
- Single-photon nonlinear optics using surface plasmons
 - Single-photon transistor
- "Extreme" nonlinear optics strongly correlated, many-body photon states
 - Crystallization of photons in a nonlinear fiber
- Outlook on quantum optics at the nanoscale

Novel physics in lower dimensions

- Examples of few-particle behavior:
 - Enhancement of spontaneous emission and efficient photon collection

Infinite-range interactions (never lose a photon in pure 1D system)

Single-photon blockade

- Physical systems of implementation?
- Use tools of quantum optics to gain control over these processes!
- Even more exotic behavior to learn about?

Surface plasmons on a flat interface

- Surface plasmons coupled excitations of EM field and *free-charge* density waves guided along a conductor-dielectric interface
- Simplest example: SPs on a flat surface

Electric field / charge distribution

$$D_i = \epsilon_i E_i$$

$$\epsilon_1 > 0 \text{ (normal dielectric)}$$

e.g., Drude model
$$\epsilon_2(\omega) = 1 - \frac{\omega_p^2}{\omega^2}$$
 , $\omega < \omega_p$ $\epsilon_2 < 0 \text{ (conductor)}$

- How to derive the surface plasmon modes:
 - Guess solutions

$$E_{j} = e^{ik_{\parallel}z - \kappa_{j}|x| - i\omega t} E_{0}(\hat{z} + \alpha_{j}\hat{x})$$

$$\kappa_{j} \equiv i k_{j, \perp}$$

$$k_{\parallel}^{2} + k_{j, \perp}^{2} = \epsilon_{j}(\omega/c)^{2}$$

$$E_{j} = e^{ik_{\parallel}z - \kappa_{j}|x| - i\omega t} E_{0}(\hat{z} + \alpha_{j}\hat{x})$$

$$B_{j} = e^{ik_{\parallel}z - \kappa_{j}|x| - i\omega t} (E_{0}/i\omega)(ik_{\parallel}\alpha_{j} + \kappa_{j}sign(x))\hat{y}$$

$$E_{j} = e^{ik_{\parallel}z - \kappa_{j}|x| - i\omega t} (E_{0}/i\omega)(ik_{\parallel}\alpha_{j} + \kappa_{j}sign(x))\hat{y}$$

$$E_{j} = e^{ik_{\parallel}z - \kappa_{j}|x| - i\omega t} (E_{0}/i\omega)(ik_{\parallel}\alpha_{j} + \kappa_{j}sign(x))\hat{y}$$

Surface plasmon dispersion relation

- Solve for coefficients $\alpha_{_{\! |}}$ and wavevector $\mathbf{k}_{_{\! |}}$ by enforcing boundary conditions:
 - Continuity of D
 - Continuity of B_{||}
- Solution:

$$E_{j} = e^{ik_{\parallel}z - \kappa_{j}|x| - i\omega t} E_{0} \left(\hat{z} + i\frac{k_{\parallel}}{\kappa_{j}}\hat{x}\right)$$

$$k_{\parallel}^{2} = \left(\frac{\omega}{c}\right)^{2} \frac{\epsilon_{1}\epsilon_{2}}{\epsilon_{1} + \epsilon_{2}}$$

• Dispersion relation for Drude model $\epsilon_2(\omega) = 1 - \frac{\omega_p^2}{\omega^2}$, $\omega < \omega_p$

- "X-ray wavelengths at optical frequencies"
- Small wavelengths and tight confinement only at frequencies around $\omega_p/\sqrt{2}$
 - Very material dependent

Surface plasmons on a nanowire

Surface plasmon modes of a nanowire:

- Like optical fiber modes, but charge leads to unique properties!
- Finding modes of nanowire: use separation of variables

$$E_{j} = \alpha_{j} e^{ik_{\parallel} z - i\omega t} e^{i m\phi} F_{j}(k_{j\perp} \rho)$$
, similar expression for H_{j}

j=1 (outside wire), j=2 (inside wire), F_j Bessel/Hankel functions

• Solve for coefficients $\alpha_j k_{\parallel}$ by enforcing proper boundary conditions at the interface ρ =R, for example,

$$\epsilon_1 E_{1,\perp}(R) = \epsilon_2(\omega) E_{2,\perp}(R)$$

Unique feature: $\varepsilon(\omega)$ <0 for a conductor, e.g., Drude model $\epsilon_2(\omega)$ =1 $-\frac{\omega_p^2}{\omega^2}$, $\omega<\omega_p$

Surface plasmons on a nanowire

Surface plasmons of a nanowire

Slow phase and group velocities

 $(k \sim 1/R)$ 1.18 fundamental mode 1.16 (m=0)1.14 1.12 **⋚** 1.1 1.08 1.06 1.04 1.02 k_{\parallel} vs. R

Confinement below diffraction

Sub-wavelength wire → system becomes a single-mode fiber

plasmon modes of a cylinder, ε₂=-16, ε₄=1

Single mode behaves "electrostatically" -- R becomes only length scale

A more mathematical explanation

 To solve a full electrodynamics problem, need to find the E&M Green's function, e.g.,

$$G(r,r') = \frac{e^{ik|r-r'|}}{4\pi|r-r'|}$$
 in free space

For small systems (like a nanowire),

$$G(r, r') \sim \frac{1}{4\pi |r-r'|} + O(k) = \text{Electrostatic Green's function!}$$

- For small systems, can just solve Laplace's Equation, $\nabla^2 \Phi = 0$, to find electric field and charge distribution
- In electrostatics, the wire radius R is the only length scale ($\lambda = 2\pi/k$ cannot appear in the solution)
 - R should determine all of the electric field and charge distribution properties

A geometrical effect

 Compare the surface plasmon dispersion relations of a flat interface and nanowire (Drude model):

Blue: flat interface Green: k₀R = 0.5

Red: $k_0 R = 0.2$

- Small wires pull dispersion relation to the right
 - Can achieve "x-ray wavelengths" at any frequency! Not just near $\omega_p/\sqrt{2}$
 - Tight confinement now achieved by wire size (geometry) instead of material properties

Strong coupling to surface plasmons

Slow velocity + tight confinement = strong emission into surface plasmon

Hamiltonian for system resembles a multi-mode Jaynes-Cummings model

$$H = \hbar \omega_0 \sigma_{ee} + \int dk \, \hbar \, v \, |k| \hat{a}_k^{\dagger} \hat{a}_k + \int dk \, \frac{\hbar \, g_k}{2} \left(\sigma_{eg} \, \hat{a}_k \, e^{ikz_a} + h.c. \right)$$

Waveguide modes: k>0 (k<0) for right (left) propagating modes, $v = d \omega / dk$ is group velocity of surface plasmons

SP-atom coupling: atom can be excited and destroy a photon at position z_a , coupling strength

$$g_{k} \sim d_{0} \sqrt{\frac{\hbar \omega_{k}}{\epsilon_{0} A_{eff}}} f(k_{1,\perp} \rho)$$

$$g_k \propto \frac{d_0}{R} \sqrt{\frac{\hbar \omega_k}{\epsilon_0}}$$

Spontaneous emission into SPs

- Spontaneous emission rate into SPs can be calculated using Fermi's Golden Rule
 - Valid for a discrete system coupled to a continuum of modes
 - Also can be calculated using an "input-output" formalism similar to cavity coupled to waveguide
- Fermi's Golden Rule:

$$\Gamma_{pl} \sim g(\omega_0)^2 D(\omega_0)$$

$$\sim g(\omega_0)^2 (d \omega l dk)^{-1}$$

$$g_k \propto \frac{d_0}{R} \sqrt{\frac{\hbar \omega_k}{\epsilon_0}} \qquad d \omega l dk = v \propto \omega R$$

Putting everything together,

$$\Gamma_{pl} \sim \frac{\Gamma_0}{(k_0 R)^3}$$
, where Γ_0 = spontaneous emission rate of atom in free space, $k_0 = 2\frac{\pi}{\lambda_0}$

A broadband, geometrical effect (occurs just by using small wires!)

The effective "Purcell" factor

- Like in cavity QED, the rate $\Gamma_{_{DI}}$ is not always of direct importance itself
 - Need to compare this "good" with "bad" decay rates

The bad decay channels:

 Γ_{rad} Radiative emission: atoms emits into far-field radiative modes at a rate $\sim \Gamma_0$

Non-radiative emission: atomic near-field induces local "currents" that are dissipated by the conductor (causing heating)

$$\Gamma_{non-rad} \sim \frac{\Gamma_0}{(k_0 d)^3} \frac{\operatorname{Im} \epsilon_2}{(\operatorname{Re} \epsilon_2)^2}$$

Electric near field of dipole (atom) scales like 1/d³

Is proportional to material losses/absorption (imaginary part of ε)

$$\epsilon_2(\omega) = 1 - \frac{\omega_p^2}{\omega^2 + i \omega \gamma} \approx 1 - \frac{\omega_p^2}{\omega^2} + i \frac{\omega_p^2 \gamma}{\omega^3}$$

Effective Purcell factor

 Like cooperativity parameter C in cavity QED, we can define a branching ratio between good and bad decay channels

$$P(r) = \frac{\Gamma_{pl}}{\Gamma_{rad} + \Gamma_{non-rad}}$$
 Effective "Purcell factor" for surface plasmons

P is position-dependent, since the decay rates depend on how close the emitter sits to the wire

$$\begin{split} &\Gamma_{pl} \sim \frac{\Gamma_0}{\left(k_0 R\right)^3} e^{-k_{\scriptscriptstyle 1,\perp} d} & \text{decays exponentially away from wire edge} \\ &\Gamma_{non-rad} \sim \frac{\Gamma_0}{\left(k_0 d\right)^3} \frac{\text{Im}\,\epsilon_2}{\left(\text{Re}\,\epsilon_2\right)^2} & \text{diverges as one approaches wire edge} \end{split}$$

- To maximize P, one wants the emitter to sit within the evanescent field of the SPs, but not so close to the wire edge that non-radiative emission dominates
- Also better to use smaller wires to increase $\Gamma_{_{\mathrm{pl}}}$

Optimization of Purcell factor

Purcell factor as a function of wire size (optimized over position of emitter)

Effective Purcell factor $P = \frac{\Gamma_{pl}}{\Gamma_{other}}$ approaching 10³ in realistic systems

- The regime P>1 is the strong-coupling regime for SP systems (just like C>1 for cavity QED)
 - Many important protocols for quantum information have efficiencies depending only on P (or C)
- Nanowire acts as a "super lens" with extraordinary numerical aperture
 - Emission almost completely directed into the nanowire
- A broadband, geometrical effect!

A first experiment to detect strong coupling:

Single emitter (two-level atom) coupled to nanowire

A first experiment to detect strong coupling:

A first experiment to detect strong coupling:

Collect light scattered off wire end into the far field

Scattering process as momentum transfer:

A first experiment to detect strong coupling:

Collect light scattered off wire end into the far field

Collected light should consist of single photons measurable by field correlations

Sample preparation

 Chemically synthesized crystalline silver nanowires

PMMA

Wires

PMMA

Qdots in buffer

Glass

Good for imaging: excite w/ green, collect in red

Imaging setup

Modified confocal microscopy

Typical image (green excitation):

Ch II

C

Wire end lights up!

Independent red scan

Scattered green light

 Check that the green arrow is really a single QD: measure second-order field correlation function of its direct fluorescence

- If my light detector clicks at τ =0, what is the likelihood it clicks again at time τ ?
- Observe anti-bunching: a single two-level atom!

Typical image (green excitation):

Wire end lights up! Ch I Ch II Scattered green light Independent red scan 1 μm Collected red light

What about light scattered off the wire end?

High degree of correlation indicates light at wire end originates from QD

Typical image (green excitation):

Scattered green light

Ch II

Ch III

Independent red scan

Collected red light

What about light scattered off the wire end?

- Cross-correlation function: if I measure light from direct emission, what is the likelihood I also measure light at wire end?
- Anti-bunching: the QD emits a single photon either into free space or into SPs, but never both at the same time!

Typical image (green excitation):

Ch I Ch II Ch III

Wire end lights up!

Independent red scan

What about light scattered off the wire end?

Scattered green light

- Efficient single photon emission into nanowire surface plasmons
- Broadband coupling does not depend on QD inhomogenities, spectral diffusion, etc.

What can we conclude?

- Efficient coupling between a single quantum emitter (QD) and single, quantized surface plasmons (single photons)
- Broadband coupling effect is observed despite large inhomogeneity of QDs, spectral diffusion, etc., and is observed at room temperature
- We can also determine the Purcell factor by looking at field correlation functions

The *width* of the anti-bunching dip tells us how long it takes for the system to get ready to emit another photon (*i.e.*, spontaneous emission time)

Enhancement and coupling efficiency

QDs and samples are very inhomogeneous, but can build up distributions

- 2.5x enhancement of spontaneous emission, 60% coupling efficiency into nanowire
- Can do better with smaller wires, but harder to see scattered SPs

Integrated systems

- Previous approach:
 - Propagation distance limited by losses in conductor
 - Scattering at wire ends is not very efficient and is omnidirectional
- Solution: optimized nano-structure geometries and evanescent out-coupling to dielectric waveguides

- Theory: 95% emitter to waveguide coupling is possible when optimized
- Enables many exciting opportunities
 - Single photons on demand
 - Coupling of distant qubits involving "passing and catching" photons
 - Large-scale integrated systems

Single-photon nonlinear optics

 Tight confinement of plasmons -> strong nonlinear interactions between photons mediated by emitters

- Let's build up some intuition
 - P $\rightarrow \infty$ (true 1D system): there can be no losses, since the atom always re-scatters back into the 1D waveguide. One never loses the photon!

$$|r|^2 + |t|^2 = 1$$

• P>>1 (occurs when $A_{eff} << \lambda^2$): the atom cross section ($\sim \lambda^2$) is larger than the pipe carrying the photons. It "clogs" the pipe and the photon must be reflected most of the time!

$$|r| \approx 1$$

Reflection and transmission coefficients

- r,t can be calculated using an input-output formalism
 - Relates light scattered by the atom to light in the nanowire

Cavity coupled to waveguide Atom coupled to waveguide

cavity:
$$\hat{E}(z,t) = \hat{E}_{free}(z-vt) + i\sqrt{\frac{\kappa}{v}}\Theta(z-z_c)\hat{a}(t-(z-z_c)/v)$$

atom: $\hat{E}(z,t) = \hat{E}_{free}(z-vt) + i\sqrt{\frac{\Gamma_{pl}}{v}}\Theta(z-z_a)\sigma_{ge}(t-(z-z_a)/v)$

Reflectance and transmittance spectrum

- On resonance, a single atom is optically dense to single photons
- A near-perfect mirror for single photons
- In contrast to cavity QED, strong atomphoton coupling is achieved on a single pass

Single-photon nonlinear optics

- Resonant single photons are blocked, but what about photon pairs?
 - The two-level atom is anharmonic can't absorb two photons at once

- Intuition: photon pairs should tend to be transmitted past the atom
- Can look for signatures of pair transmission in correlation functions!

- Two-level emitter acts as a single-photon switch
 - Single photons are reflected, pairs are transmitted
- Use quantum optical techniques to gain even more control of this process!

Single-photon transistor

 A single photon in a "gate" field controls the propagation of a stream of "signal" photons

Single-photon transistor

 A single photon in a "gate" field controls the propagation of a stream of "signal" photons

- Possible applications: single-photon detection, optical computing, generating Schrodinger cat states
 - Can use many signal photons to determine whether a single gate photon is present

System: three-level atom

Three-level atom allows coherent control over interactions

Single-photon generation and photon shaping on demand

 One-to-one map between control field shape Ω(t) and shape f(t) of out-going single photon wavepacket (same as cavity QED)

System: three-level atom

Three-level atom allows coherent control over interactions

Single-photon generation and photon shaping on demand

System: three-level atom

Three-level atom allows coherent control over interactions

Time-reversal: coherent photon storage

System: three-level atom

Three-level atom allows coherent control over interactions

Time-reversal: coherent photon storage

Photon transport for three-level atom

- When the atom is in state |g>, it is strongly coupled to the SPs
 - Highly reflecting for resonant single photons

- When the atom is in state |s>, it is de-coupled from the SPs
 - The atom doesn't see SPs at all

Single-photon transistor

Single-photon transistor

Single-photon transistor

- Transistor "gain" is determined by Purcell factor of system
 - # signal photons / gate photon > P
- Other schemes are possible to loosen timing requirements, etc...

Strongly correlated, many-body physics

"Quantumness" Single-photon transistor, photon blockade in cavity QED, parametric down conversion, etc... Nonlinear optical processes "Classical" optics: self-focusing, solitons, etc... no interesting quantum properties Photon number

- Strongly correlated, many-body photonic states:
 - System no longer well-described by the properties of the underlying individual photons
- Other strongly correlated, many-body phenomena:
 - Fractional and integer quantum hall effect
 - Confinement in quantum chromodynamics

Recent work on phase transitions

Strongly Correlated Photons in a Two-Dimensional Array of Photonic Crystal Microcavities

Y.C. Neil Na, 1 Shoko Utsunomiya, 2 Lin Tian, 1 and Yoshihisa Yamamoto 1.2

¹E. L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA

²National Institute of Informatics, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Strongly interacting polaritons in coupled arrays of cavities

MICHAEL J. HARTMANN1-2*, FERNANDO G. S. L. BRANDÃO1-2 AND MARTIN B. PLENIO1-2*

¹Institute for Mathematical Sciences, Imperial College London, 53 Eshibition Road, SW7 2PG, UK
²00LS, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2BW, UK

Quantum phase transitions of light

ANDREW D. GREENTREE1*, CHARLES TAHAN1-2, JARED H. COLE1 AND LLOYD C. L. HOLLENBERG1

Centre for Quantum Computer Technology, School of Physics, The University of Melbourne, Victoria 3010, Asstralia

*Covendish Laboratory, University of Cambridge, JJ Thornson Ave, Cambridge CB3 (IHE, UK

"e-qualt andrew green beed on unimethed use

- Large system of identical emitters in coupled cavities is technically difficult
 - e.g., disorder could ruin the quantum phases
- Ground state of such system has interesting properties, but photons don't thermalize, so how to reach it?

Motivation: "Crystallization" of photons

How do we create a periodic train (a crystal) of single photons?

- Technical challenges: limited efficiency, inhomogeneous wavepackets, multiple photons, etc...
- A different paradigm: classical light in, photon crystal out

Crystallization of photons

How do we create a periodic train (a crystal) of single photons?

- Technical challenges: limited efficiency, inhomogeneous wavepackets, multiple photons, etc...
- A different paradigm: classical light in, photon crystal out

Crystal of single photons!

 It's not totally crazy... let's look to an example from condensed matter physics

Another problem: interacting hard-core bosons

Consider a 1D system of bosons with hard-core repulsive interactions

- Two particles cannot sit on top of each other (takes infinite energy)... this resembles the Pauli exclusion principle for fermions
- In fact, a one-to-one map exists:

- Leads to a very interesting ground state for bosons! (Tonks-Girardeau gas)
- More realistic definition of TG regime: $y = \frac{I}{K} = \frac{gm}{n_z} \gg 1$

Tonks-Girardeau gas

- The relationship between hard-core bosons and non-interacting fermions in 1D:
- Consider N non-interacting particles in a box

- Fermions obey Pauli exclusion: no two particles can occupy the same state
 - N particle ground state:

$$\Psi_n(z_{1,..}, z_n) = \Psi_0(z_1) \psi_1(z_2) ... \psi_{n-1}(z_n)$$
anti-symmetrize

 Wave function vanishes when any two position arguments are equal

$$\Psi_n(z,z,z_{3,...},z_n)=0$$

- Hard-core bosons:
 - Wave function also must vanish when any two positions are equal (infinite interaction energy)
 - N particle ground state:

$$\Psi_n(z_{1,...}, z_n) = \int \psi_0(z_1)\psi_1(z_2)...\psi_{n-1}(z_n)$$
 (versus BEC for non-interacting)

Correlations of a Tonks-Girardeau gas

Density-density correlation function for TG gas

How do these oscillations arise?

Ground state of fermions: filled Fermi sea

Correlations of a Tonks-Girardeau gas

Density-density correlation function for TG gas

How do these oscillations arise?

Two types of low-energy excitations: Small wavevector (long wavelength)

Large wavevector 2k_F (short wavelength)

Leads to oscillations in correlation function!

TG gas of ultracold atoms

Observation of a One-Dimensional Tonks-Girardeau Gas

Toshiya Kinoshita, Trevor Wenger, David S. Weiss*

Tonks-Girardeau gas of ultracold atoms in an optical lattice

Belén Paredes¹, Artur Widera^{1,2,3}, Valentin Murg¹, Olaf Mandel^{1,2,3}, Simon Fölling^{1,2,3}, Ignacio Cirac¹, Gora V. Shlyapnikov⁴, Theodor W. Hänsch^{1,2} & Immanuel Bloch^{1,2,3}

Forming a TG gas of photons

- Three requirements:
- Need a physical implementation
 - 1D waveguide, strong interactions between photons (mediated by atoms)
- Need some prescription to prepare the TG gas ground state
- Need a method to detect strongly correlated states
 - Done! Can look at field correlation functions of light leaving our waveguide.

Possible physical realizations

1D waveguides with loaded cold atoms that mediate interactions

Tapered optical fibers •

Tapered MOT Optical Fiber

Photonic crystal fibers

Plasmonics

Hakuta (Tokyo), Rauschenbeutel (Bonn)

Typical core diameter

~ 100 nm

Best possible confinement

 $\sim (\lambda/n)^2$

Max coupling efficiency

Propagation losses

Loading cold atoms

 \odot

0

< 50%

Lukin (Harvard) & Vuletic (MIT)

 $\sim 5 \mu m$

 $\sim \lambda^2$

< 50%

(3)

0

Lukin & Park (Harvard)

~ 100 nm

 $\sim R^2$

>99% 😊

(2)

???

Engineering coherent atom-photon interactions

We need photons to obey a non-trivial evolution:

H= $\sum_{i=1}^{N} -\frac{\hbar^{2}}{2m} \frac{\partial^{2}}{\partial z_{i}^{2}} + \sum_{i \neq j} g \, \delta(z_{i} - z_{j})$ No velocity $i \frac{\partial \Psi}{\partial t} = -\frac{1}{2m} \frac{\partial^{2} \Psi}{\partial z^{2}} + 2g \Psi^{\dagger} \Psi \Psi + 0 \times v_{g} \frac{\partial \Psi}{\partial z}$ Kerr nonlinearity Second quantization:

- Quantum optical techniques -> manipulate propagation and interaction of photons
- Ideas based on Electromagnetically Induced Transparency (EIT) provide widely tunable system

Field propagation in an atomic medium

Consider the linear propagation of light through an atomic system

Output is related to input through a susceptibility:

$$E_{out}(\omega, L) = E_{in}(\omega) e^{i\omega\chi L/c}$$

- Real part of χ yields a phase shift (dispersion)
- Imaginary part of χ yields absorption
- Susceptibility for two-level atoms:

- Response of harmonic oscillator near resonance
- Large absorption on resonance

An introduction to EIT

Three-level atom:

$$H = \Omega |b\rangle \langle c| + E |b\rangle \langle a| + h.c.$$
$$|D\rangle \sim E |c\rangle - \Omega |a\rangle$$
$$H |D\rangle = 0$$

- Dark state D decoupled from H and excited state no absorption of E on resonance
- Effect of quantum coherence and interference

Susceptibility for three-level atom

Susceptibility for three-level atom

- Looks like two separate harmonic oscillator resonances
- Control field creates two resonances separated by frequency 2Ω
 - No absorption on resonance! A "transparency window" is created.

Susceptibility for three-level atom

Susceptibility for three-level atom

- Looks like two separate harmonic oscillator resonances
- Control field creates two resonances separated by frequency 2Ω
 - No absorption on resonance! A "transparency window" is created.

Case of small control field (small Ω)

- Can create steep variations in real part of susceptibility around resonance
- Small change in frequency leads to large change in propagation phase
 - Small group velocity!

$$v_g \sim \frac{\Omega^2(t)}{\Gamma n_z}$$

Slow light

- Speed of light in EIT can be made arbitrarily small in principle!
 - Use high atomic densities and small control fields

$$v_g \sim \frac{\Omega^2(t)}{\Gamma n_z}$$

In practice limited just by atomic decoherence

Experimental demonstration:

Reduction of speed of light to 17 m/s

Hau (Harvard), Nature (1999)

Engineering coherent atom-photon interactions

We need photons to obey a non-trivial evolution:

 $H = \sum_{i=1}^{N} -\frac{\hbar^{2}}{2m} \frac{\partial^{2}}{\partial z_{i}^{2}} + \sum_{i \neq j} g \, \delta(z_{i} - z_{j})$ $i \frac{\partial \Psi}{\partial t} = -\frac{1}{2m} \frac{\partial^{2} \Psi}{\partial z^{2}} + 2g \Psi^{\dagger} \Psi \Psi + 0 \times v_{g} \frac{\partial \Psi}{\partial z}$ No velocity (photon trapping) effective mass Kerr nonlinearity

Second quantization:

How does EIT help us achieve this evolution?

- Use the versatility of atomic level structure and tunability of frequencies to add more terms into EIT evolution equations
- This level scheme allows one to realize the nonlinear Schrodinger equation (NLSE) for photons

Nonlinear Schrodinger equation for photons

Full dynamics of system given by 1-D nonlinear Schrodinger equation

$$i\partial_t \Psi(z,t) = -\frac{1}{2m_{\text{eff}}} \partial_z^2 \Psi(z,t) + 2\tilde{g} \Psi^{\dagger}(z,t) \Psi^2(z,t),$$

$$i\partial_t \Psi(z,t) = -\frac{1}{2m_{\rm eff}} \partial_z^2 \Psi(z,t) + 2\tilde{g} \Psi^\dagger(z,t) \Psi^2(z,t),$$

$$\tilde{E}_\pm$$

$$\Psi = \frac{(\Psi_+ + \Psi_-)}{2}, \qquad m_{\rm eff} = -\frac{\Gamma_{1D} n_z}{4\Delta_0 v_g}, \qquad 2\tilde{g} = \frac{\Gamma_{1D} v_g}{\Delta_p}$$
 tion that leads to a TG gas of photons when γ is large

- This is the equation that leads to a TG gas of photons when γ is large
 - \bullet γ is dynamically tunable in our system by changing detunings!

$$\gamma(t) = \frac{\tilde{g}(t) m_{eff}(t)}{n_{ph}}$$

- The value of γ we can achieve depends on our physical resources:
 - The number of atoms we have (atom-photon coupling enhanced by large) atom number)
 - Strong coupling per single atom $\eta = \frac{I_{\text{1D}}}{\Gamma}$

Experimental parameters

- Requirements for observing a TG gas and crystal correlations
 - N=10 photons

DEC, V. Gritsev, et al., submitted (2008), also see cond-mat/0712.1817

A TG gas of photons and beyond

- Quantum optical techniques + novel technologies = strongly correlated, many-body photon gases
- Applications in areas such as quantum information and metrology
 - Sub-shot noise photon number fluctuations!
- Novel connections between optical and condensed matter physics
- TG gas is solvable, but many other many-body systems are not

High-Tc superconductivity

- Use light to simulate quantum Hamiltonians of interest and learn about fundamental phenomena
- Interesting open challenges non-equilibrium physics, photon absorption & noise, externally driven systems

Outlook

Integrated photonics: plasmonics + optical waveguides New physics with strongly correlated photons: simulation of quantum matter

New applications: e.g., electrical SP detection

AMO physics + nano-optics

Nonlinear optics with single photons

?????

Atom-nanoscale interface: single atom trapping, manipulation and readout

Efficient singlephoton manipulation:
new tools for
quantum information

New regimes of operation: carbon nanotubes @ THz

Nanoscale traps for atoms using SPs

Dilemma: in quantum information and other applications, use atoms or "artificial atoms"?

A	Atoms	Artificial
Homogeneity	©	@
"Clean" transitions (e.g., three-level system)	©	@
Simple environments	©	@
 Robust nanoscale positioning/trapping 	@	©
Can bring into nanoscale proximity of other systems	.	©

- Nanoscale trapping schemes for neutral atoms would allow:
 - Realization of similar functionalities as artificial atoms
 - While maintaining benefits of neutral atoms

Challenges of optical trapping