Lecture I. Quantum contextuality: State-independent violation of Bell-like inequalities

Adán Cabello
Universidad de Sevilla Spain

4th Winter School on Quantum Information Science, Tamkang University Lanyang Campus, Yilan, Taiwan, February 11, 2009.

- EPR argument
- Bell's theorem
- Without inequalities (AVN proofs)
- Bell inequalities
- Kochen-Specker theorem
- State-independent violation of Bell-like inequalities
- EPR argument
- Bell's theorem
- Without inequalities (AVN proofs)
- Bell inequalities
- Kochen-Specker theorem
- State-independent violation of Bell-like inequalities

Is entanglement the characteristic trait of QM?

"Entanglement is the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought".

E. Schrödinger, Proc. Cambridge Philos. Soc. 31, 555 (1935).

Is QM complete?

MAY 15, 1935
PHYSICAL REVIEW
VOLUME 4.7
Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?
A. Einstein, B. Podolsky and N. Rosen, Institute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

EINSTEIN ATTACKS QUANTUM THEORY

Scientist and Two Colleagues Find it is Not 'Complete'
Even Though 'Correct.'

SEE FULLER ONE POSSIBLE

Believe a Whole Description of 'the Physical Reality' Can Be Provided Eventually.

Copyright iass by science service. PRINCETON, N. J., May 3.-Profeasor Albert Einstein will attack science's important theory of quantum mechanics, a theory of which he was a sort of grandfather. He
concludes that while it is "correct" concludes that while"
it is not "complete."
it is not "complete." With two colleagues at the Inatitute for Advanced Study here, the tute for Advanced Study here, the
noted aclentist is about to report to the American Physical Society what the American Phyaical Society what
is wrong with the theory of quanis wrong with the theory of quantum mechanics, it has been lea
The quantum theory. with which sience predicts with some succesa inter-atomic happenings, does not meet the requirements for a astisactory physical theory, Protensor Enatein will report a Jolnt pager with Dr. Bor N. Rosen.

In the quantum theory as now used, the latest Einstein paper will
point out that where two physical quantities auch as the position of a particle and ita velocity interact, a knowledge of one quantity precludes knowledge about the other. This is the famous principle of uncertainty put forward by Professor Werner Helsenberg and incorporated in the quantum theory. This
very fact, Profesaor Einatein feels. very fact. Profesaor Einatein feels. the requirements neceasary for a satiafactory physical theory.

Two Requirements Llated.
These two requirementa are:

1. The theory should make poe alble a calculation of the facts of
nature and prediet resulta which nature and prediet resulta which can be accurately checked by exother words, correct.
2. Moreover, a astiafactory theory ahould, as a good image of the objective world, contain a counter part for thinge found in the objeccomplete theory. Quantum theory. Profeseor Einstein and his colleagues will report. fulfilis the correctnese requirement but falls in the completeness requirement.
tum theory doen not prosent quanplete description of physical reality, Professor EInstefn bolleves reame later, atill undeveloped, theory mill la:
"Whille we have thus shown that the wave function lof quantum theory) does not provide a complete deacription of the physical reality. or not such a description exista. We believe, however, that such a theory is possible."
The development of quantum mechanics has proved very useful in Prizes in phyalcs. including one to Einateln, have been awarded for various phases of the researches leading up to quantum mechanics.

The names of Planck, Bohr, de Broplie. Heleenberg. Dirac and
Schroedinger, as well as Einatein, Schroedinger, as well as Einstein, are linked with quantum mechanics. Podolaky-Rooen paper is: "Can Quantum-Mechanical Description of Phyitical Reality Be Conaldered Complete? ${ }^{*}$

Fxplanation by Podolaky.

In explaining the lateat view of the physical world as revealed in their researches Dr. Podolaky, one of the authors, said: exiat real material thinga independont of our minds and our theories. We construct theories and invent words (auch as alectron, poeitron ourselves what wo know about our external world and to help us to obtain further knowledge of ft . Before a theory can be conaidered to very satiafactory it muat pase two must enable us to calculate facta of nature, and these calculations muat agree very accurately with observatoons and experiments. second, we good Image of objective reality, to contain a counterpart for every element of the phymical world. A heory satisfying the firat require ment may be called a correct
heory while, if it antiafies the second requirement, it may be called a complete theory.
"Hundreds of thousands of experimentron and mearurementa have hown that, at least in cases when natter moves much slower than ight, the theory of Phanck, EinSchroedinger known as quantum mechanica is a correct theory. Einstein, Podolaky and Rosen now discuss the question of the completeness of quantum mechanica. uantum mechanics, in its present orm, is not romplete. In quantum mechanica the con-
dition of any phyaical ayatem, such
an an electron, an atom, ate., is auppoeed to be completely described by a formula known as a Wave function. Suppose that wo of two physical aystems, and that these two syatema come togother, interact, and again separate (as When two particles collide and although giving us considerable in: formation about such a procens, does not enable us to calculate the wave function of each phyaical system after the oeparation. Thia fact wave functicn does not kive a complete description of physical reality. Since, howover, deecription of phyaical syatems by wave functions is an eseential step of that quantum mechanica is not a complete theory."

Ralsee Fotat of Double.
Apectal to Twe Now Tonk Trasa,
RINCETON, ${ }^{\circ}$ N. J., May 2. PRINCETON, 'N. J., May 3.of Professor Einatein and his col laborators. Profesaor Edward U. Condon, mathematical phyaiciat of rinceton Univeraity, sald tonight: rgument hingea on fuat what meas agg is to bl attached to the wort 'reality' in connection with phyaica. Thay have certainly discupsed an interesting point in connection with he theory. Dr. Einstein hae never oen satisfied with the statistical ruplaces the strict causality of the old physics.
"It is reported that when he first learned of the work of Schroedinger and Dirac, he sald. 'Der lieber does not throw dice). For the lam five yeara he has subjected th quantum mechanical theories to very searching critielsm from thin
atandpoint. But I am afrald that thus far the statistical theories have withatood criticiam."

EPR: QM is "incomplete"

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. Einstein, B. Podolsky and N. Rosen, Institute for Advanced Study, Princeton, New Jersey

(Received March 25, 1935)

In a complete theory there is an element corresponding to each element of reality. A sufficient condition for the reality of a physical quantity is the possibility of predicting it with certainty, without disturbing the system. In quantum mechanics in the case of two physical quantities described by non-commuting operators, the knowledge of one precludes the knowledge of the other. Then either (1) the description of reality given by the wave function in
quantum mechanics is not complete or (2) these two quantities cannot have simultaneous reality. Consideration of the problem of making predictions concerning a system on the basis of measurements made on another system that had previously interacted with it leads to the result that if (1) is false then (2) is also false. One is thus led to conclude that the description of reality as given by a wave function is not complete.

According to EPR, any satisfactory physical theory must be:
(1) Correct.
(2) "Complete".

EPR's elements of reality

"If, without in any way disturbing a system, we can predict with certainty (i.e., with probability equal to unity) the value of a physical quantity, then there exists an element of physical reality corresponding to this physical quantity."

EPR's elements of reality

"Without in any way disturbing a system" = Spacelike separation.

> "Predict with certainty" = Perfect correlations.

Bohm's version of EPR's argument

$A+0$

$A-0$$\quad$| \square | |
| :---: | :---: |
| A | $\begin{array}{l}\text { Source } \\ D A+\end{array}$ |

$$
\left|\psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
$$

Bohm's version of EPR's argument

$$
\begin{aligned}
X_{1} X_{2} & =-1 \\
Y_{1} Y_{2} & =-1
\end{aligned}
$$

- X_{2} and Y_{2} are both "elements of reality".
- In QM, X_{2} and Y_{2} are incompatible observables (Heisenberg's uncertainty principle).
$\rightarrow Q M$ is incomplete (according to EPR).
- EPR argument
- Bell's theorem
- Without inequalities (AVN proofs)
- Bell inequalities
- Kochen-Specker theorem
- State-independent violation of Bell-like inequalities

Bell's theorem

No theory of local hidden variables (LHV) can reproduce QM.

It is proven either by the violation of a Bell inequality or by a GHZ-like example.

Any proof of Bell's theorem is state-dependent: It is valid only for entangled states.

Bell inequalities prove the impossibility of local realism

A (loophole-free) violation of a Bell inequality would prove the impossibility of local realism (R. Gill's definition):
(i) Realism: measurement outcomes of nonperformed measurements can be introduced alongside of those of the actually performed measurements.
(ii) Locality: the measurement outcome at Alice's station does not depend on Bob's choice of setting [because they are space-like separated].
(iii) Freedom: Alice and Bob can perform either measurement.

- EPR argument
- Bell's theorem
- Without inequalities (AVN proofs)
- Bell inequalities
- Kochen-Specker theorem
- State-independent violation of Bell-like inequalities

Greenberger, Horne and Zeilinger

GHZ's proof of Bell's theorem

$|G H Z>=|H H H>-| \mathrm{WVV}\rangle$

$X_{1} y_{3}|G H Z>=| G H Z>$ $Y_{1} X_{2} Y_{3} \mid G \mathrm{HZ}=1 G \mathrm{GZZ}$ $Y_{1} X_{3} \mid G \mathrm{HZ}=1 G \mathrm{HZ}$
$X_{1} X_{2} X_{1} \mid G \mathrm{HZ}=-1 G \mathrm{HZ}$

Notation for single photon observables

Polarization observables:

$$
\begin{aligned}
& X=|H\rangle\langle V|+|V\rangle\langle H| \\
& Y=\mathrm{i}(|\mathrm{~V}\rangle\langle\mathrm{H}|-|\mathrm{H}\rangle\langle\mathrm{V}|) \\
& Z=|\mathrm{H}\rangle\langle\mathrm{H}|-|\mathrm{V}\rangle\langle\mathrm{V}|
\end{aligned}
$$

GHZ's proof of Bell's theorem: X_{i} and Y_{i} are ER

GHZ:

|HHH>-|VVV>

$$
\begin{aligned}
& v\left(X_{1}\right)\left(Y_{2}\right)=v\left(Y_{3}\right) \\
& v\left(Y_{1}\right) v\left(X_{2}\right)=v\left(Y_{3}\right) \\
& v\left(Y_{1}\right) v\left(Y_{2}\right)=v\left(X_{3}\right) \\
& v\left(X_{1}\right) v\left(X_{2}\right)=-v\left(X_{3}\right)
\end{aligned}
$$

GHZ's proof of Bell's theorem: Contradiction!

GHZ:
|HHH>-|VVV>

$$
\begin{aligned}
& v\left(X_{1}\right)\left(Y_{2}\right)=v\left(Y_{3}\right) \\
& v\left(Y_{1}\right) v\left(X_{2}\right)=v\left(Y_{3}\right) \\
& v\left(Y_{1}\right) v\left(Y_{2}\right)=v\left(X_{3}\right) \\
& v\left(X_{1}\right) v\left(X_{2}\right)=-v\left(X_{3}\right)
\end{aligned}
$$

Why "all-versus-nothing"?

$$
\begin{aligned}
& v\left(X_{1}\right)\left(Y_{2}\right)=v\left(Y_{3}\right) \\
& v\left(Y_{1}\right) v\left(X_{2}\right)=v\left(Y_{3}\right) \\
& v\left(Y_{1}\right) v\left(Y_{2}\right)=v\left(X_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& v\left(X_{1}\right)\left(Y_{2}\right)=v\left(Y_{3}\right) \\
& v\left(Y_{1}\right) v\left(X_{2}\right)=v\left(Y_{3}\right) \\
& v\left(Y_{1}\right) v\left(Y_{2}\right)=v\left(X_{3}\right) \\
& v\left(X_{1}\right) v\left(X_{2}\right)=+v\left(X_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& v\left(X_{1}\right)\left(Y_{2}\right)=v\left(Y_{3}\right) \\
& v\left(Y_{1}\right) v\left(X_{2}\right)=v\left(Y_{3}\right) \\
& v\left(Y_{1}\right) v\left(Y_{2}\right)=v\left(X_{3}\right) \\
& v\left(X_{1}\right) v\left(X_{2}\right)=-v\left(X_{3}\right)
\end{aligned}
$$

letters to nature

Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement

Jian-Wei Pan ${ }^{*}$, Dik Bouwmeester', Matthew Daniell', Harald Weinfurter $\$$ \& Anton Zeilinger*
${ }^{\text {* }}$ Institut fìr Experimentalphysik, Universität Wien, Boltzmanngasse 5, 1090 Wien, Austria
\dagger Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK \ddagger Sektion Physik, Ludwig-Maximilians-Universität of Mïnchen,
Schellingstrasse 4/III, D-80799 Mïnchen, Germany

c

Figure 1 Experimertal set- L p for Greenberger-Home-Zell inger (GHZZ) tests of quartum nonlocal ty. Parrs of polarization-entangled photons ${ }^{28}$ (one photon H polarized and the ofher V) are generated by a shot pulse of utravilet light ($-200 \mathrm{is}, \lambda=394 \mathrm{~nm}$). Observation of the desired GHZ correlations requires fouffald coincidence and therefore two pairs ${ }^{2 x}$. The photon registered at Tis always Hand thus its partner in \mathbf{b} must be V. The photon reflected at the polarizing beamspilter (PBS) in arm a is always V, beling tumed Into equal superposton of Vand H ty the $\lambda / 2$ plate, and its parther in armb must be H. Thus if all four detectors register at the same tme, the two photons in D_{1} and D_{2} must a therboth have been $V V$ and reflected by the last $P B S \propto H$ Hand transmitted. The photon at D_{3} was therefore $H \propto V$, respectively. Bon possbil tes are made indistinguishable by having equal path lengths via \mathbf{a} and b to $\mathrm{D}_{1} \mathrm{D}_{2}$) and by using narrow bandwidth filters (F $=4 \mathrm{nmi}$) t stratch feccherenca tmeto about 500 ts, substartial ly lager than the puisa lengtr ${ }^{30}$. This effectively erasss the prior correlation information and, owing to indstinguishabl ty, the firee photons registared at $\mathrm{D}_{1}, \mathrm{D}_{2}$ and D_{3} achibit the destred GHZ correlations predicted by the state of equaton (1), where for simplicity we assume the polarizations at D_{3} to be defned atrigit angles relativeto the of hers. Polarizers oriented at 45° and $\mathrm{N} / 4$ plates in front of the detectors allow measurement of linear $\mathrm{H} / \mathrm{V}^{\prime}$ circular R/4) polarization.

Problem

- Two-observer AVN proofs?

The first two-observer AVN proof

Double Bell:
(|HV>-|VH>) (|ud>-|du>)
$v\left(Z_{1}\right)=-v\left(Z_{2}\right)$
$v\left(z_{1}\right)=-v\left(z_{2}\right)$
$v\left(X_{1}\right)=-v\left(X_{2}\right)$
$v\left(x_{1}\right)=-v\left(x_{2}\right)$
$v\left(Z_{1} Z_{1}\right)=v\left(Z_{2}\right) v\left(Z_{2}\right)$
$v\left(X_{1} x_{1}\right)=v\left(X_{2}\right) v\left(X_{2}\right)$
$v\left(Z_{1}\right) v\left(x_{1}\right)=$
$v\left(X_{1}\right)\left(z_{1}\right)=v\left(X_{2} z_{2}\right)$
$v\left(Z_{1} Z_{1}\right) v\left(X_{1} X_{1}\right)=-v\left(Z_{2} X_{1}\right) v\left(X_{2} Z_{2}\right)$
AC, PRL 86, 1911 (2001); 87, 010403 (2001).

Notation for single photon observables

Polarization observables:

$$
\begin{aligned}
& X=|H\rangle\langle V|+|V\rangle\langle H| \\
& Y=\mathrm{i}(|\mathrm{~V}\rangle\langle\mathrm{H}|-|\mathrm{H}\rangle\langle\mathrm{V}|) \\
& Z=|\mathrm{H}\rangle\langle\mathrm{H}|-|\mathrm{V}\rangle\langle\mathrm{V}|
\end{aligned}
$$

Path observables:

$$
\begin{aligned}
& x=|u\rangle\langle d|+|d\rangle\langle u| \\
& y=i(|d\rangle\langle u|-|u\rangle\langle d|) \\
& z=|u\rangle\langle u|-|d\rangle\langle d|
\end{aligned}
$$

Four qubits in two photons

All-Versus-Nothing Violation of Local Realism for Two Entangled Photons

Zeng-Bing Chen, ${ }^{1}$ Jian-Wei Pan, ${ }^{1,2}$ Yong-De Zhang, ${ }^{1}$ Časlav Brukner, ${ }^{2}$ and Anton Zeilinger ${ }^{2}$
${ }^{1}$ Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230027, China
${ }^{2}$ Institut für Experimentalphysik, Universität Wien, Boltzmanngasse 5, 1090 Wien, Austria (Received 18 November 2002; published 24 April 2003)
It is shown that the Greenberger-Horne-Zeilinger theorem can be generalized to the case with only two entangled particles. The reasoning makes use of two photons which are maximally entangled both in polarization and in spatial degrees of freedom. In contrast to Cabello's argument of "all versus nothing" nonlocality with four photons [Phys. Rev. Lett. 87, 010403 (2001)], our proposal to test the theorem can be implemented with linear optics and thus is well within the reach of current experimental technology.

$$
\begin{gathered}
z_{1} \cdot z_{2}|\Psi\rangle_{12}=-|\Psi\rangle_{12}, \quad z_{1}^{\prime} \cdot z_{2}^{\prime}|\Psi\rangle_{12}=-|\Psi\rangle_{12}, \\
x_{1} \cdot x_{2}|\Psi\rangle_{12}= \\
-|\Psi\rangle_{12}, \quad x_{1}^{\prime} \cdot x_{2}^{\prime}|\Psi\rangle_{12}=-|\Psi\rangle_{12}, \\
z_{1} z_{1}^{\prime} \cdot z_{2} \cdot z_{2}^{\prime}|\Psi\rangle_{12}=|\Psi\rangle_{12}, \\
x_{1} x_{1}^{\prime} \cdot x_{2} \cdot x_{2}^{\prime}|\Psi\rangle_{12}=|\Psi\rangle_{12}, \\
z_{1} \cdot x_{1}^{\prime} \cdot z_{2} x_{2}^{\prime}|\Psi\rangle_{12}=|\Psi\rangle_{12}, \\
x_{1} \cdot z_{1}^{\prime} \cdot x_{2} z_{2}^{\prime}|\Psi\rangle_{12}=|\Psi\rangle_{12}, \\
z_{1} z_{1}^{\prime} \cdot x_{1} x_{1}^{\prime} \cdot z_{2} x_{2}^{\prime} \cdot x_{2} z_{2}^{\prime}|\Psi\rangle_{12}=-|\Psi\rangle_{12} .
\end{gathered}
$$

FIG. 2 Six apparatuses for measuring z_{1}, x_{1}^{\prime}, and $z_{1} \cdot x_{1}^{\prime}$ (a); x_{2}, x_{2}^{\prime}, and $x_{2} \cdot x_{2}^{\prime}$ (b); z_{1}^{\prime}, x_{1}, and $x_{1} \cdot z_{1}^{\prime}$ (c); z_{2}, z_{2}^{\prime}, and $z_{2} \cdot z_{2}^{\prime}$ (d); $z_{1} z_{1}^{\prime}, x_{1} x_{1}^{\prime}$, and $z_{1} z_{1}^{\prime} \cdot x_{1} x_{1}^{\prime}(\mathrm{e}) ; z_{2} x_{2}^{\prime}, x_{2} z_{2}^{\prime}$, and $z_{2} x_{2}^{\prime} \cdot x_{2} z_{2}^{\prime}(\mathrm{f})$ By \pm, we mean ± 1.

Rome and Hefei experiments

All-Versus-Nothing Nonlocality Test of Quantum Mechanics by Two-Photon Hyperentanglement

> C. Cinelli, M. Barbieri, R. Perris, P. Mataloni, and F. De Martini
> Dipartimento di Fisica dell' Università "La Sapienza" and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Roma, 00185 Italy (Received 27 April 2005; published 9 December 2005)
> We report the experimental realization and the characterization of polarization and momentum hyperentangled two-photon states, generated by a new parametric source of correlated photon pairs. By adoption of these states an "all-versus-nothing" test of quantum mechanics was performed. The twophoton hyperentangled states are expected to find at an increasing rate a widespread application in state engineering and quantum information.

All-Versus-Nothing Violation of Local Realism by Two-Photon, Four-Dimensional Entanglement

> Tao Yang, ${ }^{1}$ Qiang Zhang, ${ }^{1}$ Jun Zhang,,1 Juan Yin, ${ }^{1}$ Zhi Zhao, ${ }^{1,2}$ Marek Zukowski, ${ }^{3}$ Zeng-Bing Chen, ${ }^{1,2, *}$ and Jian-Wei Pan ${ }^{1,2, \uparrow}$
> ${ }^{1}$ Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 , China
> ${ }^{2}$ Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg, Germany
> ${ }^{3}$ Instytut Fizyki Teoretycznej i Astrofizyki Uniwersytet Gdañski, PL-80-952 Gdańsk, Poland (Received 4 June 2005; published 9 December 2005)

We develop and exploit a source of two-photon, four-dimensional entanglement to report the first twoparticle all-versus-nothing test of local realism with a linear optics setup, but without resorting to a noncontextuality assumption. Our experimental results are in good agreement with quantum mechanics while in extreme contradiction to local realism. Potential applications of our experiment are briefly discussed.

Rome experiment 2005

Rome experiment 2005

All-Versus-Nothing Nonlocality Test of Quantum Mechanics by Two-Photon Hyperentanglement

C. Cinelli, M. Barbieri, R. Perris, P. Mataloni, and F. De Martini

Dipartimento di Fisica dell' Università "La Sapienza"
and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Roma, 00185 Italy

FIG. 3 (color online). Barchart of expectation values for the nine operators involved in the experiment. The following results have been obtained: $z_{1} \cdot z_{2}=-0.9428 \pm 0.0030$, $z_{1}^{\prime} \cdot z_{2}^{\prime}=-0.9953 \pm 0.0033, \quad z_{1} z_{1}^{\prime} \cdot z_{2} \cdot z_{2}^{\prime}=0.9424 \pm 0.0030$. $x_{1} \cdot x_{2}=-0.9215 \pm 0.0033, x_{1} \cdot z_{1}^{\prime} \cdot x_{2} z_{2}^{f}=0.9217 \pm 0.0033$, $x_{1}^{\prime} \cdot x_{2}^{\prime}=-0.8642 \pm 0.0043 \quad z_{1} \cdot x_{\mathrm{j}}^{\prime} \cdot z_{2} x_{2}^{\prime}=0.8039 \pm 0.0040$, $x_{1} x_{1}^{\prime} \cdot x_{2} \cdot x_{2}^{\prime}=0.8542 \pm 0.0040, \quad z_{1} z_{1}^{\prime} \cdot x_{1} x_{1}^{\prime} \cdot z_{2} x_{2}^{\prime} \cdot x_{2} z_{2}^{\prime}=$ -0.8678 ± 0.0043.

Hefei experiment 2005

Hefei experiment 2005

All-Versus-Nothing Violation of Local Realism by Two-Photon, Four-Dimensional Entanglement

Tao Yang, ${ }^{1}$ Qiang Zhang, ${ }^{1}$ Jun Zhang, ${ }^{1}$ Juan Yin, ${ }^{1}$ Zhi Zhao, ${ }^{1,2}$ Marek Zukowski, ${ }^{3}$

$$
\text { Zeng-Bing Chen, }{ }^{1,2, *} \text { and Jian-Wei Pan }{ }^{1,2, \dagger}
$$

${ }^{1}$ Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
${ }^{2}$ Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg, Germany
${ }^{3}$ Instytut Fizyki Teoretycznej i Astrofizyki Uniwersytet Gdański, PL-80-952 Gdańsk, Poland

FIG. 1 (color online), Experimental setups. (a) An ultraviolet beam from Argon ion laser ($351.1 \mathrm{~nm}, 120 \mathrm{~mW}$) is directed into the BBO crystal from opposite directions, and thus can create photon pairs (with wavelength 702.2 nm) in $|\Psi\rangle$. Four compensators (Comp.) are used to offset the birefringent effect caused by the BBO crystal during parametric down-conversion. The reflection mirrors M0 and M1 are mounted on translation stages, to balance each arm of the interferometer and to optimize the entanglement in path. (b) Apparatuses to measure all necessary observables of doubly entangled states. D is single-photon count module, with collection and detection efficiency 26%. IF is interference filter with a bandwidth of 2.88 nm and a center wavelength of 702.2 nm ; Pol is polarizer. Apparatus c has been included in (a) at the tocations of Alice and Bob

$$
\begin{array}{cc}
z_{A} \cdot z_{B}|\Psi\rangle=-|\Psi\rangle, \quad z_{A}^{\prime} \cdot z_{B}^{\prime}|\Psi\rangle=-|\Psi\rangle, \\
x_{A} \cdot x_{B}|\Psi\rangle=-|\Psi\rangle, \quad x_{A}^{\prime} \cdot x_{B}^{\prime}|\Psi\rangle=-|\Psi\rangle, \\
z_{A} z_{A}^{\prime} \cdot z_{B} \cdot z_{B}^{\prime}|\Psi\rangle=|\Psi\rangle, \quad x_{A} x_{A}^{\prime} \cdot x_{B} \cdot x_{B}^{\prime}|\Psi\rangle=|\Psi\rangle, \\
z_{A} \cdot x_{A}^{\prime} \cdot z_{B} x_{B}^{\prime}|\Psi\rangle=|\Psi\rangle, \quad x_{A} \cdot z_{A}^{\prime} \cdot x_{B} z_{B}^{\prime}|\Psi\rangle=|\Psi\rangle, \\
z_{A} z_{A}^{\prime} \cdot x_{A} x_{A}^{\prime} \cdot z_{B} x_{B}^{\prime} \cdot x_{B} z_{B}^{\prime}|\Psi\rangle=-|\Psi\rangle, \tag{5}
\end{array}
$$

FIG. 3 (color online). Predictions of LR (a) and of QM (b), and observed results (c) for the $z_{A} z_{A}^{\prime} \cdot x_{A} x_{A}^{\prime} \cdot z_{B} x_{B}^{\prime} \cdot x_{B} z_{B}^{\prime}$ experiment.

Requires two-qubit measurements!

$$
\begin{aligned}
v\left(Z_{1}\right) & =-v\left(Z_{2}\right) \\
v\left(Z_{1}\right) & =-v\left(Z_{2}\right) \\
v\left(X_{1}\right) & =-v\left(X_{2}\right) \\
v\left(X_{1}\right) & =-v\left(X_{2}\right) \\
v\left(Z_{1} Z_{1}\right) & =v\left(Z_{2}\right) v\left(Z_{2}\right) \\
v\left(X_{1} x_{1}\right) & =v\left(X_{2}\right) v\left(X_{2}\right) \\
v\left(Z_{1}\right) v\left(X_{1}\right) & =v\left(Z_{2} X_{2}\right) \\
v\left(X_{1}\right) v\left(Z_{1}\right) & =v\left(X_{2} Z_{2}\right) \\
v\left(Z_{1} Z_{1}\right) v\left(X_{1} X_{1}\right) & =-v\left(Z_{2} x_{2}\right) v\left(X_{2} Z_{2}\right)
\end{aligned}
$$

Requires two-qubit measurements!

$$
\begin{aligned}
v\left(Z_{1}\right) & =-v\left(Z_{2}\right) \\
v\left(Z_{1}\right) & =-v\left(Z_{2}\right) \\
v\left(X_{1}\right) & =-v\left(X_{2}\right) \\
v\left(X_{1}\right) & =-v\left(X_{2}\right) \\
v\left(Z_{1} Z_{1}\right) & =v\left(Z_{2}\right) v\left(Z_{2}\right) \\
v\left(X_{1} X_{1}\right) & =v\left(X_{2}\right) v\left(X_{2}\right) \\
v\left(Z_{1}\right) v\left(X_{1}\right) & =v\left(Z_{2} X_{2}\right) \\
v\left(X_{1}\right) v\left(Z_{1}\right) & =v\left(X_{2} Z_{2}\right) \\
v\left(Z_{1} Z_{1}\right) X\left(X_{1} X_{1}\right) & =-v\left(Z_{2} X_{2}\right) v\left(X_{2} Z_{2}\right)
\end{aligned}
$$

Problem

- Two-observer AVN proof with single-qubit observables?

Two-observer AVN proof with single qubit observables

Hyperentangled cluster:

|HuHu>+ |HdHd>+ |VuVu>- |VdVd>

$$
\begin{aligned}
& v\left(Z_{1}\right)=v\left(Z_{2}\right) \\
& v\left(Z_{1}\right)=v\left(Z_{2}\right) v\left(Z_{2}\right) \\
& v\left(X_{1}\right)=v\left(X_{2}\right) v\left(Z_{2}\right) \\
& v\left(X_{1}\right)=v\left(Z_{2}\right) v\left(X_{2}\right) \\
& v\left(Y_{1}\right)=-v\left(X_{1}\right) v\left(Z_{2}\right) \\
& v\left(y_{1}\right)=-v\left(Z_{2}\right) v\left(y_{2}\right) \\
& v\left(X_{2}\right)=v\left(X_{1}\right) v\left(Z_{1}\right) \\
& v\left(x_{2}\right)=v\left(Z_{1}\right) v\left(X_{1}\right) \\
& v\left(y_{2}\right)=-v\left(y_{1}\right) v\left(Z_{1}\right) \\
& v\left(y_{2}\right)=-v\left(Z_{1}\right) v\left(y_{1}\right)
\end{aligned}
$$

Two-observer AVN proof with single qubit observables

$$
\begin{aligned}
v\left(X_{1}\right) & =v\left(X_{2}\right) v\left(z_{2}\right) \\
v\left(Y_{1}\right) & =-v\left(Y_{2}\right) v\left(z_{2}\right) \\
v\left(X_{1}\right) v\left(X_{1}\right) & =v\left(y_{2} v\left(y_{2}\right)\right. \\
v\left(Y_{1}\right) v\left(X_{1}\right) & =v\left(X_{2}\right) v\left(y_{2}\right)
\end{aligned}
$$

Rome experiment 2007

Realization and characterization of a 2-photon 4-qubit linear cluster state
Giuseppe Vallone ${ }^{1, *}$, Enrico Pomarico ${ }^{1, *}$, Paolo Mataloni ${ }^{1, *}$, Francesco De Martini ${ }^{1, *}$, Vincenzo Berardi ${ }^{2}$
${ }^{1}$ Dipartimento di Fisica dell'Universitá "La Sapienza" and Consorzio Nazionale
Interuniversitario per le Scienze Fisiche della Materia, Roma, 00185 Italy
${ }^{2}$ Dipartimento Interateneo di Fisica, Università e Politecnico di Bari and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Bari, 70126 Italy

FIG. 1: Generation of the linear cluster state by a source of polarization-momentum hyperentangled 2 -photon state. The state $|\Xi\rangle=\left|\Phi^{-}\right\rangle \otimes\left|\psi^{+}\right\rangle$corresponds to two separate 2-qubit clusters. The HW acts as a Controlled-Phase (CP) thus generating the 4 -qubit linear cluster $\left|C_{4}\right\rangle$.

FIG. 2: Interferometer and measurement apparatus. a) The mode pairs $r_{A}-\ell_{B}$ and $\ell_{A}-r_{B}$ are matched on the BS. The phase shifters ϕ_{A} and ϕ_{B} (thin glass plates) are used for the measurement of momentum observables. The polarization analyzers on each of BS output modes are shown (QWP/HWP=Quarter/Half-Wave Plate, PBS $=$ Polarized Beam Splitter). b) Same configuration as in a) with BS and glasses removed.

PRL 98, 180502 (2007).

Rome experiment 2007

FIG. 4: Measurement setup for momentum (a),b)) and polarization (c)) observables for photon $i(i=A, B)$. By the a) setup we measure $x_{i}\left(\phi_{i}=0\right)$ and $y_{i}\left(\phi_{i}=\frac{\pi}{2}\right)$, while the b) setup is used for measuring z_{i}. By the c) setup we measure $X_{i}\left(\theta_{Q}=\frac{\pi}{4} ; \theta_{H}=\frac{1}{8} \pi, \frac{3}{8} \pi\right), Y_{i}\left(\theta_{Q}=0 ; \theta_{H}=\frac{1}{8} \pi, \frac{3}{8} \pi\right)$ and $Z_{i}\left(\theta_{Q}=0 ; \theta_{H}=0, \frac{\pi}{4}\right)$, where $\theta_{H(Q)}$ is the angle between the $H W P(Q W P)$ optical axis and the vertical direction. The polarization analysis is performed contextually to x_{i}, y_{i} (i.e. with BS and glass) or z_{i} (without BS and glass), as shown by the dotted lines for BS and glass in c).

Observable	Value	\mathcal{W}	S	C
$Z_{A} Z_{B}$	$+0.9283 \pm 0.0032$	\checkmark		
$Z_{A} x_{A} x_{B}$	$+0.8194 \pm 0.0049$	\checkmark		
$X_{A} z_{A} X_{B}$	-0.9074 ± 0.0037	\checkmark		\checkmark
$z_{A} z_{B}$	-0.9951 ± 0.0009	\checkmark		\checkmark
$x_{A} Z_{B} x_{B}$	$+0.8110 \pm 0.0050$	\checkmark		\checkmark
$Z_{A} y_{A} y_{B}$	$+0.8071 \pm 0.0050$			\checkmark
$Y_{A} z_{A} Y_{B}$	$+0.8948 \pm 0.0040$			\checkmark
$X_{A} X_{B} z_{B}$	$+0.9074 \pm 0.0037$	\checkmark	\checkmark	\checkmark
$Y_{A} Y_{B} z_{B}$	-0.8936 ± 0.0041		\checkmark	\checkmark
$X_{A} x_{A} Y_{B} y_{B}$	$+0.8177 \pm 0.0055$		\checkmark	
$Y_{A} x_{A} X_{B} y_{B}$	$+0.7959 \pm 0.0055$		\checkmark	

TABLE I: Experimental values of the observables used for measuring the entanglement witness \mathcal{W} and the expectation value of S on the cluster state $\left|C_{4}\right\rangle$. The third column (C) refers to the control measurements needed to verify that X_{A}, $Y_{A}, x_{A}, X_{B}, Y_{B}, y_{B}$ and z_{B} can be considered as elements of reality. Each experimental value corresponds to a measure lasting an average time of 10 sec . In the experimental errors we considered the poissonian statistic and the uncertainties due to the manual setting of the polarization analysis wave plates.

$$
\operatorname{Tr}\left[S \rho_{\text {exp }}\right]=3.4145 \pm 0.0095
$$

- EPR argument
- Bell's theorem
- Without inequalities (AVN proofs)
- Bell inequalities
- Kochen-Specker theorem
- State-independent violation of Bell-like inequalities

Bell-CHSH inequality: Derivation

$$
\left|\left\langle A_{0} B_{0}\right\rangle+\left\langle A_{0} B_{1}\right\rangle+\left\langle A_{1} B_{0}\right\rangle-\left\langle A_{1} B_{1}\right\rangle\right| \leq 2
$$

$$
\begin{gathered}
A_{0}, A_{1}, B_{0}, B_{1} \in\{-1,1\} \\
\left(A_{0}+A_{1}, A_{0}-A_{1}\right) \in\{(\pm 2,0),(0, \pm 2)\} \\
\left(A_{0}+A_{1}\right) B_{0}+\left(A_{0}-A_{1}\right) B_{1} \in\{-2,2\} \\
-2 \leq\left\langle A_{0} B_{0}+A_{0} B_{1}+A_{1} B_{0}-A_{1} B_{1}\right\rangle \leq 2
\end{gathered}
$$

Scenario for the Bell-CHSH inequality

Selector 1

QM violates the Bell-CHSH inequality

$$
\begin{aligned}
\left|\psi^{-}\right\rangle & =\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle) \\
A_{0} & =\sigma_{x}, \\
A_{1} & =\sigma_{z}, \\
B_{0} & =\left(\sigma_{x}+\sigma_{z}\right) / \sqrt{2}, \\
B_{1} & =\left(\sigma_{x}-\sigma_{z}\right) / \sqrt{2} .
\end{aligned}
$$

$$
\beta_{\mathrm{QM}}=2 \sqrt{2}>2!!!
$$

Bell inequalities

The use of Bell inequalities has some advantages:
(i) Independence of QM. Follow from the assumption of locality (the results of local measurements are independent of spacelike separated events).
(ii) Provide a testable method to experimentally exclude LHV.
(iii) Applications in communication complexity, entanglement detection, security of key distribution, state discrimination...

Aspect's experiments

Experimental Tests of Realistic Local Theories via Bell's Theorem

Alain Aspect, Philippe Grangier ${ }_{3}$ and Gérard Roger
Institut d'Optique Théorique et Appliquée, Universite Paris-Sud, F-91406 Orsay, France (Received 30 March 1981)
We have measured the linear polarization correlation of the photons emitted in a radiative atomic cascade of calcium. A high-efficiency source provided an improved statistical accuracy and an ability to perform new tests. Our resuits, in excellent agreement with the quantum mechanical predictions, strongly violate the generalized Bell's inequalities and rule out the whole class of realistic local theories. No significant change in results was observed with source-polarizer separations of up to 6.5 m .

Volume 49, Number 2
PHYSICAL REVIEW LETTERS
12 July 1982
Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities
Alain Aspect, Philippe Grangier, and Gérard Roger
Institut d'Optique Théorique et Appliquée, Laboratoire associé au Centre National de la Recherche Scientifique, Université Paris-Sud, F-91406 Orsay, France
(Received 30 December 1981)
The linear-polarization correlation of pairs of photons emitted in a radiative cascade of calcium has been measured. The new experimental scheme, using two-channel polarizers (i.e., optical analogs of Stern-Gerlach filters), is a straightforward transposition of Ein-stein-Podolsky-Rosen-Bohm gedankenexperiment. The present results, in excellent agreement with the quantum mechanical predictions, lead to the greatest violation of generalized Bell's inequalities ever achieved.

Experimental Test of Bell's Inequalities Using Time-Varying Analyzers

Alain Aspect, Jean Dalibard, ${ }^{(a)}$ and Gérard Roger

Institut d'Optique Théorique et Appliquée, F-91406 Orsay Cédex, France (Received 27 September 1982)

Correlations of linear polarizations of pairs of photons have been measured with time-varying analyzers. The analyzer in each leg of the apparatus is an acousto-optical switch followed by two linear polarizers. The switches operate at incommensurate frequencies near 50 MHz . Each analyzer amounts to a polarizer which jumps between two orientations in a time short compared with the photon transit time. The results are in good agreement with quantum mechanical predictions but violate Bell's inequalities by 5 standard deviations.

Loophole-free Bell experiments

So far, the results of any performed Bell experiment admit an interpretation in terms of local realistic theories.

A loophole-free experiment would require:

- Spacelike separation between Alice's measurement choice and Bob's measurement in order to exclude the possibility that Alice's measurement choice influences the result of Bob's measurement (locality loophole).
- Sufficiently large number of detections of the prepared particles in order to exclude the possibility that the nondetections correspond to local hidden-variable instructions (detection loophole).

Photons, ions... the good news

- Photons are the best candidates for closing the locality loophole. For instance, one can do a Bell experiment with pairs of polarization-entangled photons separated $d=400 \mathrm{~m}$, which is not subject to the locality loophole (Innsbruck 98).
- Ions are the best candidates for closing the detection loophole. For instance, one can do a Bell experiment with pairs of trapped ions with a detection efficiency $\eta=1$ (Boulder 01, Maryland 08).

Photons, ions... the bad news

- Photo-detection efficiency $(\eta=0.05-0.33)$ is not high enough to close the detection loophole ($\eta>0.83$ is required for the CHSH inequality).
- Separation between trapped ions ($d=1 \mathrm{~m}$ in the Maryland 08 experiment) is not enough to close the locality loophole ($d>15 \mathrm{~km}$ is required for the Maryland 08 experiment).

The Mermin inequality

$$
\left|\left\langle A_{1} B_{0} C_{0}\right\rangle+\left\langle A_{0} B_{1} C_{0}\right\rangle+\left\langle A_{0} B_{0} C_{1}\right\rangle-\left\langle A_{1} B_{1} C_{1}\right\rangle\right| \leq 2
$$

$$
\beta_{\mathrm{QM}}=4
$$

Scenario for the Mermin inequality

$X_{1} \quad Y_{1}$
\square Analyzer 1

Analyzer 3

Source of GHZ states

Analyzer 2

- EPR argument
- Bell's theorem
- Without inequalities (AVN proofs)
- Bell inequalities

Kochen-Specker theorem

- State-independent violation of Bell-like inequalities

The Kochen-Specker theorem

No theory of noncontextual hidden variables (NCHV) can reproduce QM.

NCHV theories are those based on the assumption of noncontextuality, according to which the result of a measurement is independent of which other compatible observables are jointly measured

(i) Realism: measurement outcomes of nonperformed measurements can be introduced alongside of those of the actually performed measurements.
(ii) Noncontextuality: Alice's measurement outcome does not depend on Bob's choice of measurement [assuming they measure compatible observables].
(iii) Freedom: Alice and Bob can perform either measurement.

The Kochen-Specker theorem

The Kochen-Specker theorem

MICHAEL REDHEAD INCOMPLETENESS NONLOCALITY AND REALISM
 A Prolegomenon to the Philosophy of Quantum Mechanics

[^0]
ciencia popular

Lo demostrable e indemostrable Yu.I. Manin

LE a

Editorial • Mir • Moscú

The 18 -vector proof of the KS theorem

1000	1111	1111	1000	1001	1001	$111-1$	$111-1$	$100-1$
0100	$11-1-1$	$1-11-1$	0010	0100	$1-11-1$	$1-100$	0101	0110
0011	$1-100$	$10-10$	0101	0010	$11-1-1$	0011	$10-10$	$11-11$
$001-1$	$001-1$	$010-1$	$010-1$	$100-1$	0110	$11-11$	$1-111$	$1-111$

- Each vector represents the projection operator onto the corresponding normalized vector. For instance, 111-1 represents the projector onto the vector (1,1,1,-1)/2.
- Each column contains four mutually orthogonal vectors, so that the corresponding projectors sum the identity.
- In any NCHV theory, each column must have assigned the answer "yes" to one and only one vector.
- But such an assignment is impossible, since each vector appears in two columns, so the total number of "yes" answers must be an even number. However, the number of columns is an odd number.
A. Cabello, J. M. Estebaranz, and G. García-Alcaine, Phys. Lett. A 212, 183 (1996).

The 18 -vector proof of the KS theorem

1000	1111	1111	1000	1001	1001	$111-1$	$111-1$	$100-1$
0100	$11-1-1$	$1-11-1$	0010	0100	$1-11-1$	$1-100$	0101	0110
0011	$1-100$	$10-10$	0101	0010	$11-1-1$	0011	$10-10$	$11-11$
$001-1$	$001-1$	$010-1$	$010-1$	$100-1$	0110	$11-11$	$1-111$	$1-111$

- Each vector represents the projection operator onto the corresponding normalized vector. For instance, 111-1 represents the projector onto the vector (1,1,1,-1)/2.
- Each column contains four mutually orthogonal vectors, so that the corresponding projectors sum the identity.
- In any NCHV theory, each column must have assigned the answer "yes" to one and only one vector.
- But such an assignment is impossible, since each vector appears in two columns, so the total number of "yes" answers must be an even number. However, the number of columns is an odd number.
A. Cabello, J. M. Estebaranz, and G. García-Alcaine, Phys. Lett. A 212, 183 (1996).

The 18 -vector proof of the KS theorem

1000	1111	1111	1000	1001	1001	$111-1$	$111-1$	$100-1$
0100	$11-1-1$	$1-11-1$	0010	0100	$1-11-1$	$1-100$	0101	0110
0011	$1-100$	$10-10$	0101	0010	$11-1-1$	0011	$10-10$	$11-11$
$001-1$	$001-1$	$010-1$	$010-1$	$100-1$	0110	$11-11$	$1-111$	$1-111$

- Each vector represents the projection operator onto the corresponding normalized vector. For instance, 111-1 represents the projector onto the vector (1,1,1,-1)/2.
- Each column contains four mutually orthogonal vectors, so that the corresponding projectors sum the identity.
- In any NCHV theory, each column must have assigned the answer "yes" to one and only one vector.
- But such an assignment is impossible, since each vector appears in two columns, so the total number of "yes" answers must be an even number. However, the number of columns is an odd number.
A. Cabello, J. M. Estebaranz, and G. García-Alcaine, Phys. Lett. A 212, 183 (1996).

The 18 -vector proof of the KS theorem

1000	1111	1111	1000	1001	1001	$111-1$	$111-1$	$100-1$
0100	$11-1-1$	$1-11-1$	0010	0100	$1-11-1$	$1-100$	0101	0110
0011	$1-100$	$10-10$	0101	0010	$11-1-1$	0011	$10-10$	$11-11$
$001-1$	$001-1$	$010-1$	$010-1$	$100-1$	0110	$11-11$	$1-111$	$1-111$

- Each vector represents the projection operator onto the corresponding normalized vector. For instance, 111-1 represents the projector onto the vector (1,1,1,-1)/2.
- Each column contains four mutually orthogonal vectors, so that the corresponding projectors sum the identity.
- In any NCHV theory, each column must have assigned the answer "yes" to one and only one vector.
- But such an assignment is impossible, since each vector appears in two columns, so the total number of "yes" answers must be an even number. However, the number of columns is an odd number.
A. Cabello, J. M. Estebaranz, and G. García-Alcaine, Phys. Lett. A 212, 183 (1996).

The 18 -vector proof of the KS theorem

1000	1111	1111	1000	1001	1001	$111-1$	$111-1$	$100-1$
0100	$11-1-1$	$1-11-1$	0010	0100	$1-11-1$	$1-100$	0101	0110
0011	$1-100$	$10-10$	0101	0010	$11-1-1$	0011	$10-10$	$11-11$
$001-1$	$001-1$	$010-1$	$010-1$	$100-1$	0110	$11-11$	$1-111$	$1-111$

- Each vector represents the projection operator onto the corresponding normalized vector. For instance, 111-1 represents the projector onto the vector (1,1,1,-1)/2.
- Each column contains four mutually orthogonal vectors, so that the corresponding projectors sum the identity.
- In any NCHV theory, each column must have assigned the answer "yes" to one and only one vector.
- But such an assignment is impossible, since each vector appears in two columns, so the total number of "yes" answers must be an even number. However, the number of columns is an odd number.
A. Cabello, J. M. Estebaranz, and G. García-Alcaine, Phys. Lett. A 212, 183 (1996).

The 18 -vector proof of the KS theorem

1000	1111	1111	1000	1001	1001	$111-1$	$111-1$	$100-1$
0100	$11-1-1$	$1-11-1$	0010	0100	$1-11-1$	$1-100$	0101	0110
0011	$1-100$	$10-10$	0101	0010	$11-1-1$	0011	$10-10$	$11-11$
$001-1$	$001-1$	$010-1$	$010-1$	$100-1$	0110	$11-11$	$1-111$	$1-111$

- Each vector represents the projection operator onto the corresponding normalized vector. For instance, 111-1 represents the projector onto the vector (1,1,1,-1)/2.
- Each column contains four mutually orthogonal vectors, so that the corresponding projectors sum the identity.
- In any NCHV theory, each column must have assigned the answer "yes" to one and only one vector.
- But such an assignment is impossible, since each vector appears in two columns, so the total number of "yes" answers must be an even number. However, the number of columns is an odd number.
A. Cabello, J. M. Estebaranz, and G. García-Alcaine, Phys. Lett. A 212, 183 (1996).

The 18 -vector proof of the KS theorem

$$
v_{37}=(1,1,1,-1)
$$

A. Cabello, J. M. Estebaranz, and G. García-Alcaine, Phys. Lett. A 212, 183 (1996).

- EPR argument
- Bell's theorem
- Without inequalities (AVN proofs)
- Bell inequalities
- Kochen-Specker theorem
- State-independent violation of Bell-like inequalities

State-dependent inequalities for NCHV

There are inequalities that are based only on the assumption of noncontextuality, in the same way that the Bell inequalities are based only on the assumption of locality.

These inequalities have the advantage of providing a testable method to experimentally exclude any alternative description based on NCHV.
A. Cabello, S. Filipp, H. Rauch, and Y. Hasegawa, Phys. Rev. Lett. 100, 130404 (2008).
A. A. Klyachko, M. A. Can, S. Binicioğlu, and A. S. Shumovsky, Phys. Rev. Lett. 101, 020403
(2008).
Y. Nambu, e-print arXiv:0805.3398 [quant-ph].

State-independent inequalities?

However, the fact that all these new inequalities are state-dependent, while the proofs of the KS theorem are state-independent, has been recently described as "a drawback".
A. A. Klyachko, M. A. Can, S. Binicioğlu, and A. S. Shumovsky, Phys. Rev. Lett. 101, 020403
(2008).

A natural question is the following: Given a physical system described in QM by a Hilbert space of dimension d (i.e., a physical system admitting d compatible dichotomic observables), is it possible to derive experimentally testable Bell-like correlation inequalities using only the assumption of noncontextuality, such that any quantum state violates them?

First inequality

$$
\begin{aligned}
& -\left\langle A_{12} A_{16} A_{17} A_{18}\right\rangle-\left\langle A_{12} A_{23} A_{28} A_{29}\right\rangle-\left\langle A_{23} A_{34} A_{37} A_{39}\right\rangle \\
& -\left\langle A_{34} A_{45} A_{47} A_{48}\right\rangle-\left\langle A_{45} A_{56} A_{58} A_{59}\right\rangle-\left\langle A_{16} A_{56} A_{67} A_{69}\right\rangle \\
& -\left\langle A_{17} A_{37} A_{47} A_{67}\right\rangle-\left\langle A_{18} A_{28} A_{48} A_{58}\right\rangle-\left\langle A_{29} A_{39} A_{59} A_{69}\right\rangle \leq 7 \\
& \hline
\end{aligned}
$$

A. Cabello, Phys. Rev. Lett. 101, 210401 (2008).

State-independent violation

$$
A_{i j}=2\left|v_{i j}\right\rangle\left\langle v_{i j}\right|-\mathbb{1}
$$

A. Cabello, Phys. Rev. Lett. 101, 210401 (2008).

First inequality

$$
\begin{aligned}
& -\left\langle A_{12} A_{16} A_{17} A_{18}\right\rangle-\left\langle A_{12} A_{23} A_{28} A_{29}\right\rangle-\left\langle A_{23} A_{34} A_{37} A_{39}\right\rangle \\
& -\left\langle A_{34} A_{45} A_{47} A_{48}\right\rangle-\left\langle A_{45} A_{56} A_{58} A_{59}\right\rangle-\left\langle A_{16} A_{56} A_{67} A_{69}\right\rangle \\
& -\left\langle A_{17} A_{37} A_{47} A_{67}\right\rangle-\left\langle A_{18} A_{28} A_{48} A_{58}\right\rangle-\left\langle A_{29} A_{39} A_{59} A_{69}\right\rangle \leq 7
\end{aligned}
$$

$\beta_{\mathrm{QM}}=9$

A. Cabello, Phys. Rev. Lett. 101, 210401 (2008).

Second inequality

$\langle A B C\rangle+\langle a b c\rangle+\langle\alpha \beta \gamma\rangle+\langle A a \alpha\rangle+\langle B b \beta\rangle-\langle C c \gamma\rangle \leq 4$

$$
\begin{aligned}
& A=\sigma_{z}^{(1)}, \quad B=\sigma_{z}^{(2)}, \\
& C=\sigma_{z}^{(1)} \otimes \sigma_{z}^{(2)}, \\
& a=\sigma_{x}^{(2)}, \quad b=\sigma_{x}^{(1)}, \\
& c=\sigma_{x}^{(1)} \otimes \sigma_{x}^{(2)}, \\
& \alpha=\sigma_{z}^{(1)} \otimes \sigma_{x}^{(2)}, \\
& \beta=\sigma_{x}^{(1)} \otimes \sigma_{z}^{(2)}, \\
& \gamma=\sigma_{y}^{(1)} \otimes \sigma_{y}^{(2)} .
\end{aligned}
$$

$\beta_{\mathrm{QM}}=6$

A. Peres, Phys. Lett. A 151, 107 (1990).
N. D. Mermin, Phys. Rev. Lett. 65, 3373 (1990).

Particular cases of the second inequality

$$
-\langle A B\rangle-\langle a b\rangle-\langle\alpha \beta\rangle+\langle A a \alpha\rangle+\langle B b \beta\rangle \leq 3
$$

A. Cabello, S. Filipp, H. Rauch, and Y. Hasegawa, Phys. Rev. Lett. 100, 130404 (2008).

$$
\langle A B C\rangle+\langle a b c\rangle+\langle\alpha \beta\rangle+\langle A a \alpha\rangle+\langle B b \beta\rangle-\langle C c\rangle \leq 4
$$

Y. Nambu, e-print arXiv:0805.3398 [quant-ph].

Third inequality

$$
\begin{aligned}
& \left\langle\mathcal{A}_{1} \mathcal{B}_{1} \mathcal{B}_{2} \prod_{i=3}^{n} \mathcal{B}_{i}\right\rangle+\left\langle\mathcal{A}_{2} \mathcal{B}_{1} \mathcal{C}_{2} \prod_{i=3}^{n} \mathcal{C}_{i}\right\rangle+\left\langle\mathcal{A}_{3} \mathcal{C}_{1} \mathcal{B}_{2} \prod_{i=3}^{n} \mathcal{C}_{i}\right\rangle \\
& +\left\langle\mathcal{A}_{4} \mathcal{C}_{1} \mathcal{C}_{2} \prod_{i=3}^{n} \mathcal{B}_{i}\right\rangle-\left\langle\mathcal{A}_{1} \mathcal{A}_{2} \mathcal{A}_{3} \mathcal{A}_{4}\right\rangle \leq 3
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{A}_{1}=Z_{1} \otimes Z_{2} \otimes Z_{3} \otimes \ldots \otimes Z_{n}, \\
& \mathcal{A}_{2}=Z_{1} \otimes X_{2} \otimes X_{3} \otimes \ldots \otimes X_{n}, \\
& \mathcal{A}_{3}=X_{1} \otimes Z_{2} \otimes X_{3} \otimes \ldots \otimes X_{n}, \\
& \mathcal{A}_{4}=X_{1} \otimes X_{2} \otimes Z_{3} \otimes \ldots \otimes Z_{n},
\end{aligned}
$$

$$
\beta_{\mathrm{QM}}=5
$$

$$
\mathcal{B}_{i}=Z_{i},
$$

$$
\mathcal{C}_{i}=X_{i}
$$

Particular case of the third inequality

$$
\left\langle\mathcal{B}_{1} \mathcal{B}_{2} \prod_{i=3}^{n} \mathcal{B}_{i}\right\rangle+\left\langle\mathcal{B}_{1} \mathcal{C}_{2} \prod_{i=3}^{n} \mathcal{C}_{i}\right\rangle+\left\langle\mathcal{C}_{1} \mathcal{B}_{2} \prod_{i=3}^{n} \mathcal{C}_{i}\right\rangle-\left\langle\mathcal{C}_{1} \mathcal{C}_{2} \prod_{i=3}^{n} \mathcal{B}_{i}\right\rangle \leq 2
$$

N. D. Mermin, Phys. Rev. Lett. 65, 1838 (1990).

Is it universal?

Can any physical system which, in principle, admits a non-contextual description show a state-independent violation of one of these inequalities?

Non-contextual descriptions are possible whenever $d \geq 3$. If $d=2$, there are no 3 observables \mathcal{A}, \mathcal{B}, and \mathcal{C}, such that \mathcal{A} is compatible with \mathcal{B} and \mathcal{C}, but \mathcal{B} is incompatible with \mathcal{C}; thus, non-contextual descriptions of these systems are meaningless. $d=3$ is the first case in which non-contextuality is a non-trivial property.
P. Badziąg, I. Bengtsson, A. Cabello, and I. Pitowsky, e-print arXiv:0809.0430 [quant-ph].

Conclusions

(i) "classical" states are impossible in quantum mechanics, and this impossibility can be tested by experiments.
(ii) Bell inequalities are particular cases of more general inequalities in which neither space-like separation nor entanglement play a fundamental role.
P. Badziąg, I. Bengtsson, A. Cabello, and I. Pitowsky, e-print arXiv:0809.0430 [quant-ph].

How can these inequalities be tested?

Experimental state-independent violation

$\langle A B C\rangle+\langle a b c\rangle+\langle\alpha \beta \gamma\rangle+\langle A a \alpha\rangle+\langle B b \beta\rangle-\langle C c \gamma\rangle \leq 4$

$A=\sigma_{z}^{(1)}$,	$B=\sigma_{z}^{(2)}$,	$C=\sigma_{z}^{(1)} \otimes \sigma_{z}^{(2)}$,
$a=\sigma_{x}^{(2)}$,	$b=\sigma_{x}^{(1)}$,	$c=\sigma_{x}^{(1)} \otimes \sigma_{x}^{(2)}$,
$\alpha=\sigma_{z}^{(1)} \otimes \sigma_{x}^{(2)}$,	$\beta=\sigma_{x}^{(1)} \otimes \sigma_{z}^{(2)}$,	$\gamma=\sigma_{y}^{(1)} \otimes \sigma_{y}^{(2)}$.

Experimental state-independent violation

$\langle A B C\rangle+\langle a b c\rangle+\langle\alpha \beta \gamma\rangle+\langle A a \alpha\rangle+\langle B b \beta\rangle-\langle C c \gamma\rangle \leq 4$

$A=\sigma_{z}^{(1)}$,	$B=\sigma_{z}^{(2)}$,	$C=\sigma_{z}^{(1)} \otimes \sigma_{z}^{(2)}$,
$a=\sigma_{x}^{(2)}$,	$b=\sigma_{x}^{(1)}$,	$c=\sigma_{x}^{(1)} \otimes \sigma_{x}^{(2)}$,
$\alpha=\sigma_{z}^{(1)} \otimes \sigma_{x}^{(2)}$,	$\beta=\sigma_{x}^{(1)} \otimes \sigma_{z}^{(2)}$,	$\gamma=\sigma_{y}^{(1)} \otimes \sigma_{y}^{(2)}$.

E. Amselem, M. Rådmark, M. Bourennane, and A. Cabello.

Can it be tested in different physical systems?

- Polarization and path of single photons? Yes
- Spin and path of single neutrons? Partially, H. Bartosik et al.
- lons?
- Other systems?

Loopholes?

- Locality loophole? No
- Detection loophole? Yes
- New loopholes? Yes: Compatibility loophole

Collaborators

S. Filipp
I. Pitowsky

[^0]: 布布
 CLARENDON PAPERBACKS

