Cosmic e^{+/-} excess and its possible origins and implications

Bi Xiao-Jun

IHEP, CAS 2009-5-23

PPP8, May 20-23, 2009,NCKU, Tainan, Taiwan

<u>O. Adriani et al., PAMELA Collaboration, arXiv:0810.4995</u> [221]

An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV

O. Adriani et al., PAMELA Collaboration, arXiv:0810.4994
[118]

A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation

 <u>J. Chang et al., ATIC Collaboration, Nature 456, 362 (2008)</u> [147]

An Excess of Cosmic Ray Electrons at Energies Of 300-800 GeV

<u>HESS Collaboration, arXiv:0811.3894 [59]; arXiv:0905.0105</u>
 [12]

Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S

• Fermi Collaboration, arXiv:0905.0025 [18]

Measurement of the Cosmic Ray e+ plus e- spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope

Standard cosmology

Detection of WIMP

 Indirect detection DM increases in Galaxies, annihilation restarts(∝ ρ²); ID looks for the annihilation products of WIMPs, such as the neutrinos, gamma rays, positrons at the ground/space-based experiments

indirect detection

• Direct detection of WIMP at terrestrial detectors via scattering of WIMP of the detector material. γ

 $\chi \overline{\chi} \rightarrow l \overline{l} \Leftrightarrow \chi l \rightarrow \chi l$

Direct detection

PAMELA detection ability

 $50 MeV < e^+ < 270 GeV$ $e^- < 400 GeV$ $80 MeV < \overline{p} < 190 GeV$ p < 700 GeV $e^{\pm} < 2 TeV (Cal)$

<u>arXiv:0810.4995</u> [ps, pdf, other]

Title: Observation of an anomalous positron abundance in the cosmic radiation

Bump at the electron/positron spectrum

electron differential energy spectrum measured by ATIC (scaled by E^{*}) at the top of the atmosphere (red filled circles) is compared with previous observations from the Alpha Magnetic Spectrometer AMS (green stars)³¹, HEAT (open black triangles)³⁰, BETS (open blue circles)³², PPB-BETS (blue crosses)¹⁶ and emulsion chambers (black open diamonds)^{4,8,9}, with one sigma uncertainties. The GALPROP code calculates a power-law spectral

Summary of data

- Substantive positron excess was observed beyond the standard prediction by cosmic ray physics above ~10 GeV (up to ~100 GeV by PAMELA, ~1TeV by ATIC).
- Consistent with previous results from HEAT and AMS01.
- Assuming primary sources producing equal amount of electron/positron, ATIC and PAMELA are consistent with each other that they can be explained by the same source(s) simultaneously.
- ATIC data show very sharp 'falling' at the electron spectrum at ~600 GeV. (consistent with the spectrum produced by dark matter; can astrophysical processes produce similar spectrum?)
- No antiproton excess. The sources seem have to be leptonic.

Fermi results

 Fermi gives softer spectrum of (e+e-) than ATIC. Excess exists above the conventional model

HESS result

- HESS measures the Cherenkov light of the showers developed by high energy cosmic rays in the atmosphere.
- It can discriminate hardronic and EM showers. However, can not discriminate electrons and gammas.
- Electron flux is larger than gamma beyond the galactic plane.
- Energy resolution is at best 15%.

Comments

- Debates on the inconsistent results of Fermi and ATIC.
- Fermi is a satellite experiment with large statistic of events. Therefore the error bar is very small.
- However, Fermi is a 'thin' detection which leads to bad energy resolution, low efficiency of background rejection.
- Possibly there is misidentification of protons.
- Each set of data is consistent with PAMELA separately.
- For DM annihilation explanation, actually we need similar DM mass and annihilation rates.
- Fermi does not lead to very different DM pictures from ATIC.

cosmic electron observation

- It is difficult to observe electron in the space because of high cosmic ray backgrounds
- If we want to observe electron using 'Thin' detector (as FERMI), the detection efficiency is not a 'Constant', it will change with energy.
- Here is the expect result from a 'Thin ATIC' Detector (thickness is like FERMI)

Typical (p,e,γ) shower image from ATIC flight data

- 3 events, energy deposit in BGO is about 250 GeV
- Electron and gamma-ray showers are narrower than the proton shower
- Gamma-ray shower: No hits in the top detectors around the shower axis

gamma

Theoretical works to explain the excesses

Recalculation of background

- New formulization of spallation cross section pp -> e+
- Uncertainty from e- spectrum
- Uncertainty from propagation

PAMELA result might not be really an excess but due to the uncertainty of background estimate

Delahaye et al., 0809.5268

But cannot explain ATIC result

Possible origins of e⁺e⁻: pp interaction (Blasi, 0903.2794)

Occur at the cosmic ray acceleration source: hard spectrum

Comment: nature for Fermi spectrum; antiprotons may set constraints on this picture

From CRs interaction (Hu, Bi et al., 0901.1520)

- There is knee in CR spectrum at $\sim 10^{15} \text{ eV}$
- It is proposed the knee is generated by pγ → pe⁺e⁻ interaction, with E γ =1eV, the threshold energy is at ~10^{∧15} eV
- 3% converted e^+e^- can explain the ATIC or Fermi

Nearby pulsars

FIG. 4: The positron spectrum and positron fraction from the sum of contributions from B0656+14, Geminga, and all pulsars farther than 500 parsecs from the Solar System.

Primary positron/electrons from dark matter – implication from new data

- DM annihilation/decay produce leptons dominantly in order not to produce too much antiprotons.
- Very hard electron spectrum -> dark matter annihilates/decay into leptons.
- Very large annihilation cross section, much larger than the requirement by relic density. (1) nonthermal production, 2) Sommerfeld enhancement, 3) Breit-Wigner enhancement, 4) dark matter decay.)

why should annihilate into leptons? Yin, Yuan, Bi et al. arXiv:0811.0176 DR DC 0.1 0.1 DR DC 0.1 0.1 e*/(e*+e') e⁺/ (e⁺+e') bg bg e 100GeV 7.6 e 100GeV 7.0 μ 100GeV 5.5 μ 100GeV 4.8 τ 100GeV 3.2 τ 100GeV 2.5 e 300GeV 2.8 e 300GeV 2.4 u 300GeV 2.1 u 300GeV 2.0 300GeV 1.8 300GeV 1.5 0.01 0.01 10 100 10 100 1 E_{kin} (GeV) E_{kin} (GeV) T 1E-4 T 1E-4 <u>p</u> <u>p</u> ba bg 1E-5 1E-5 c 100GeV 2.1 c 100GeV 3.1 b 100GeV 2.1 - b 100GeV 3.0 c 300GeV 3.1 c 300GeV 3.5 b 300GeV 2.9 b 300GeV 3.3 300GeV 3.3 t 300GeV 2.8 1E-6 1E-6 0.1 10 100 0.1 10 100 1 1 E_{kin} (GeV) E_{kin} (GeV)

Dark matter models to produce leptons

m

 $m_{\phi} \sim \text{GeV}$

• Kinematically suppression Mass of Φ is about 1GeV, is

Kinematically suppressed to anti a) x

- At the same time attractive interaction can enhance the annihilaition rate, Sommerfeld enhancement. (Arkani-Hamed et al. 0810.0713)
- Dynamically suppression, Φ carries U(1)'_{e-µ(τ)} (Baek; Fox; Bi)
- DM models related with neutrino mass (Bi et al 0901.0176; Cao et al. 0901.1334)
- These models lead to hard positron spectrum and suppress antiproton flux naturally.

- Sommerfeld enhancement
- For attractive Coulomb Potential

$$S_k \sim |\frac{\epsilon_v^{1/2} \alpha M}{Mv}|^2 = \frac{\alpha}{v}$$

• To enhance the dark matter annihilation we have long range attractive force

Bi, He, Yuan 0903.0122

			Decay	da	rk ma	tter with	h life time 10 ²⁶ s Yin, Yuan, Bi et al.
Ī		SUSY	MC	Mas	s(GeV)	$m_0(GeV)$	Chen, Nojiri et al
ľ	A	SPS6	bino		190	150	Ibarra, Tran
ľ		SUSY	MC	Mas	s(GeV)	$m_0(GeV)$	Hamguchi, Shirai, Yanagida
ľ	В	mSUGRA	bino		341	900	Neutralino-DC
ľ	С	mSUGRA	bino		614	1750	
	D	mSUGRA	bino		899	5000	0.1
	Е	mSUGRA	higgsino	1	126	9100	
Ī		SUSY	MC	Mas	s(GeV)	$m_0(GeV)$	to bg
	F	AMSB	wino	2	2040	18000	— A 190GeV — B 341GeV — C 614GeV
D	С	$\tau(10^{26}s)$	$\lambda'(10^{-25})$	DR	$\tau (10^{26} s$	s) $\lambda'(10^{-25})$	D 899GeV E 1126GeV
A	7	9.1	2.2	Α	7.3	2.5	
ł	3	5.3	10.3	В	4.3	11.3	E _{kin} (GeV)
(2	3.4	11.5	С	2.8	12.4	
Ι)	2.5	41.5	D	2.0	46.4	
ł	3	2.0	180.1	Е	1.7	195.1	
ł	7	1.2	113.7	F	1.0	122.8	

ATIC and Fermi

- Model of gauge $U(1)'_{e-\mu(\tau)}$
- 1TeV DM to e+mu, e+tau can explain ATIC
- 1.5 TeV DM to mu+tau can explain Fermi data
- All have similar annihilation rate

Bi, He, Yuan 0903.0122

How DM models are constrained by the PAMELA and ATIC data

--- branching ratios to gauge bosons and quarks are constrained

Propagation of CRs

- Due to rapid energy loss of electron/positron the flux measured on Earth comes from nearby regions; antiproton can come from far regions
- Height of diffusion region is a crucial factor; astrophysical sources from the Galactic plane is less affected; however, DM signals will be affected significantly.

From Lavalla

Julien Lavalle, TeV Particle Astrophysics - Beijing, 24-28/09/2008 - p.f

Julien Lavalle, TeV Particle Astrophysics - Beijing, 24-28/09/2008 - p.8/20

Primary antiproton flux depends on the diffusion region heavily

PARTICLE SPECTRA: 1.1

ISOTOPIC RATIO: (5.10+ 5.11)/(6.12+ 6.13)

Figure 3: The background predictions of 4 kpc model.

Give good fits to PAMELA and ATIC results with WW quark branchs

Upper bounds on the WW and quark branching ratios for M_{DM} =1TeV

Table 3:	Results	for	WW	and	lepton	final	state
----------	---------	-----	----	-----	--------	-------	-------

WW	1kpc	2kpc	4kpc
$\bar{p}/p \ \chi^2_{min}/(N-1)$	19.63/16	19.63/16	18.65/16
Br_{ww} , best fit	0.00%	0.00%	0.00%
Br _{ww} , C.L. 68.3%	15.51%	7.09%	3.81%
$Br_{ww}, C.L. 95.5\%$	34.20%	15.83%	8.05%
Br _{ww} , C.L. 99.7%	51.27%	23.46%	12.29%

Table 5: Results for quark-pair and lepton final state

quark	1kpc	2kpc	4kpc
$\bar{p}/p \ \chi^2_{min}/N$	19.63/16	19.63/16	18.65/16
Br_{quark} , best fit	0.00%	0.00%	0.00%
$Br_{quark}, C.L. 68.3\%$	7.33%	3.60%	2.01%
$Br_{quark}, C.L. 95.5\%$	19.91%	10.04%	5.07%
$Br_{quark}, C.L. 99.7\%$	32.01%	16.64%	8.17%

For antiprotons with M_{DM}=1TeV

Constraints on some DM models (~1TeV)

- Neutralino, mainly into gauge bosons; excluded
- In UED KK mode of U(1)_Y gauge boson, ~30% into quarks (universal KK mass); marginally allowed
- U(1)'_{B-L}, ~40% into quarks, slightly disfavored
- Leptophilic models U(1)'_{e-mu(tau)}, best fit data

For DM=300GeV

Table 3: Results for ww and lepton final state with DM=300 GeV

WW	1kpc	2kpc	4kpc
$\bar{p}/p \ \chi^2_{min}/(N-1)$	19.63/16	19.63/16	18.65/16
Br_{ww} , best fit	0.00%	0.00%	0.00%
Br _{ww} , C.L. 68.3%	3.24%	2.40%	1.47%
Br _{ww} , C.L. 95.5%	9.32%	7.08%	3.96%
Br _{ww} , C.L. 99.7%	15.46%	12.07%	6.46%

Results for quark-pair and lepton final state with DM=300GeV

quark	1kpc	2kpc	4kpc
$\bar{p}/p \ \chi^2_{min}/N$	19.63/16	19.63/16	18.65/16
$\operatorname{Br}_{quark}$, best fit	0.00%	0.00%	0.00%
$Br_{quark}, C.L. 68.3\%$	2.84%	2.14%	1.27%
$Br_{quark}, C.L. 95.5\%$	8.17%	6.23%	3.43%
$Br_{quark}, C.L. 99.7\%$	13.53%	10.49%	5.62%

For DM=300GeV

 SUSY, UED DM models are excluded nearly only leptonic dark matter models are permitted.

Radiations from these primary electrons/positrons to account for PAMELA and ATIC data

--- how to discriminate different scenarios?

Different models can work well

• Adjusting parameters, DM decay/annihilation, pulsars can all explain PAMELA and ATIC

Zhang, Bi, et al. 0812.0522

Galactic Pulsar source

• $Q_P(R, z, E) = K \cdot f(R, z) \cdot \left. \frac{dN}{dE} \right|_P$

•
$$f(R,z) \propto \left(\frac{R}{R_{\odot}}\right)^{a} e^{-\frac{b(R-R_{\odot})}{R_{\odot}}} e^{-\frac{|z|}{z_{s}}}$$
, a=1.0,b=1.8

•
$$\frac{\mathrm{d}N}{\mathrm{d}E}$$
 ~ $E^{-\alpha}$, α ~1.2, Ec~1TeV,

Can we test these scenarios?

• Detect the synchrotron and IC gamma ray signals from the GC.

Synchrotron Profiles:

35

Compared with Haze data:

Diffuse gamma spectra:

Uncertainties of the prediction

- Particle physics models
- Propagation models
- Dark matter profiles
- Sources of boost fac

Emission from the GC

- Constraint on the central density of DM
- 10 10 • Tension — e†e ---u*u HESS GC region: ||<0.8°, |b|<0.3 10 10 dN/dE (GeV⁻¹cm⁻²s⁻¹sr⁻¹) 0.00 dN/dE (GeV⁻¹cm⁻²s⁻¹sr⁻¹) Exist for the 10 annihilating Ŧ 10 DM scenario 10⁻¹⁸ 10⁻¹ 10⁻¹ 10-14 10³ E (GeV) 10⁴ 10 10² 20 ∙e⁺e⁻ ----µ⁺µ⁻ М_{мw}=10¹²М_{ент} 15 15 o_{,≓} °, M_{MW}=2×10¹²M_ 10 10

50

0.3

0.6

γ

0.9

1.2

1.5

γ

10³ E (GeV)

• • ⁺ • ⁻

-μ⁺μ⁻

HESS GC region: ||<0.8°, |b|<0.3°

10⁴

Bi et al., 0905.1253

Discrimination I. precise spectrum measurement of e⁺e⁻

Dark matter vs. pulsar: sharp drop or not? (Hall & Hooper, 0811.3362)

in some cases (Profumo, 0812.4457)

Discrimination I. precise electron spectrum (continued)

Dark matter vs. pulsar: fluctuations on the spectrum? (Malyshev et al., 0903.1310)

Discrimination II. anisotropy of electron flux

Diffuse vs. point (Hooper et al., 2009, JCAP, 01, 025)

A local dark matter clump may also behave like this.

Outlook

- PAMELA finally detect positron to 270GeV; antiproton to 190 GeV (published <100GeV)
- PAMELA detect e+e- to 2 TeV (not released)
- AMS02 launch at the end of 2009 (or 2010)
- Re-flight of ATIC for electrons (AREL) was proposed to NASA Mar. 2009
- Satellite detector for electron up to 10TeV proposed in China
- Fermi and HESS are cumulating more events