Dark Matter WIMPs & Axions Experiments

Evidence and Candidates of Dark Matter

Direct and Indirect Searches of WIMPs
 PAMELA/ATIC/DAMA Anomalous Results

[+ talks Bi XJ ; Shan CL]

TEXONO Results on Low Mass WIMPs
[+ talk Lin ST]

>Axions (if time permits)

Henry T. Wong / 王子敬

May 2009

<u>a</u>

Evidence for Dark Matter

Spiral galaxies Solution Curve \Rightarrow Missing Ω (Galactic-kpc) Clusters & Superclusters Sravitational Lensing \Rightarrow Missing Ω (Cluster-Mpc) Large Scale Structures ⇒ Cold Dark Matter CMB Anisotropy $\Rightarrow \Omega_{\text{total}}$; Ω_{baryon} (cosmological) Big Bang Nucleosynthesis ⇒ Constrain Baryon density

Dark Matter is DARK (not interacting electromagnetically) And NOT modified Gravity

Galaxies in optical (Hubble Space Telescope)

Gravitational potential from weak lensing

X-ray emitting hot gas (Chandra)

Combined Constraints :

 $h = 0.71 \pm 0.04$

Cosmological constant $\Omega_{\Lambda} h^2 = 0.354 \pm 0.008$ Matter ($p \approx 0$) $\Omega_{\rm m} h^2 = 0.1369 \pm 0.003$ Radiation ($p = \rho/3$) $\Omega_{\rm r} h^2 = 2.47 \times 10^{-5}$

 $\begin{array}{ll} \mbox{Matter} & \Omega_b \, h^2 = 0.02265 \pm 0.00059 \\ \mbox{hot dark matter} & \Omega_v \, h^2 < 0.065 \ (95\% \ {\rm C.L.}) \\ \mbox{cold dark matter} & \Omega_c \, h^2 = 0.1143 \pm 0.0034 \end{array}$

at least as much neutrinos by mass as visible matter !

Properties of a Good Cold Dark Matter Candidates:

- stable (protected by a conserved quantum number)
- no charge, no colour (weakly interacting)
- cold, non dissipative
- ✓ relic abundance compatible to observation
- ✓ motivated by theory (vs. "ad hoc")

(Incomplete) List of CDM candidates

- RH neutrinos
- Axions

Å

Ô

ĝ

Ô

Â

Ô

Ô

Ô

- Lightest Supersymmetric particle (LSP) – neutralino, sneutrino, axino
- Lighest Kaluza-Klein Particle (LKP)
- Heavy photon in Little Higgs Models
- Solitons (Q-balls, B-balls) Black Hole remnants

Evolution of the Dark Matter Density

- Produced in big bang, but also annihilate with each other.
- Annihilation stops when number density drops to the point that

 $H > \Gamma_{\!_{A}} \approx n_{\chi} < \sigma_{\!_{A}} v >$

i.e. annihilation too slow to keep up with Hubble expansion ("freeze out")

Dark Matter Detection

Indirect Detection of WIMP

- through their annihilation products ≻ Signals ⇒ high-energy neutrinos, anti-protons, positrons & photons ➢ Sources ⇒ Sun, Earth, Galactic Center, Milky Way Halo, Stars, **External** Galaxies HE neutrinos from Sun/Earth or anomalous γ -rays peaks \Rightarrow smoking gun signatures Anomalous spectral distributions of e^+ , p-bar, γ etc. \Rightarrow dependent
 - on background models

Anomalous Cosmic Positron Spectrum

! Consolidated by latest results from PAMELA, PPB-BETS, ATIC

Astrophysical Primary sources or WIMP-induced ??

Cosmic-Ray Anti-proton from PAMELA is OK, however.....

FIG. 3 (color). The antiproton-to-proton flux ratio obtained in this work compared with theoretical calculations for a pure secondary production of antiprotons during the propagation of cosmic rays in the galaxy. The dashed lines show the upper and lower limits calculated by Simon *et al.* [17] for the standard leaky box model, while the dotted lines show the limits from Donato *et al.* [18] for a Diffusion model with reacceleration. The solid line shows the calculation by Ptuskin *et al.* [19] for the case of a plain diffusion model. The curves were obtained using appropriate solar modulation parameters (indicated as ϕ) for the PAMELA data taking period.

FIG. 4 (color). The antiproton-to-proton flux ratio obtained in this work compared with contemporary measurements [8-10,20-23].

Advanced Thin Ionization Calorimeter

411

Typical (p,e,γ) Shower image in ATIC (Flight data 250 GeV @ BGO)

- Electron and gamma-ray showers are narrower than the proton shower
- Gamma-ray shower: No hits at top detectors around shower axis
- p-rejection in e ~ 10⁻⁴

An excess of cosmic ray electrons at energies of 300–800 GeV

J. Chang^{1,2}, J. H. Adams Jr³, H. S. Ahn⁴, G. L. Bashindzhagyan⁵, M. Christl³, O. Ganel⁴, T. G. Guzik⁶, J. Isbert⁶, K. C. Kim⁴, E. N. Kuznetsov⁵, M. I. Panasyuk⁵, A. D. Panov⁵, W. K. H. Schmidt², E. S. Seo⁴, N. V. Sokolskaya⁵, J. W. Watts³, J. P. Wefel⁶, J. Wu⁴ & V. I. Zatsepin⁵

Galactic cosmic rays consist of protons, electrons and ions, most of which are believed to be accelerated to relativistic speeds in supernova remnants¹⁻³. All components of the cosmic rays show an intensity that decreases as a power law with increasing energy (for example as $E^{-2.7}$). Electrons in particular lose energy rapidly through synchrotron and inverse Compton processes, resulting in a relatively short lifetime (about 10⁵ years) and a rapidly falling intensity, which raises the possibility of seeing the contribution from individual nearby sources (less than one kiloparsec away)⁴. Here we report an excess of galactic cosmic-ray electrons at energies of ~300–800 GeV, which indicates a nearby source of energetic electrons. Such a source could be an unseen astrophysical object (such as a pulsar⁵ or micro-quasar⁶) that accelerates electrons to those energies, or the electrons could arise from the annihilation of dark matter particles (such as a Kaluza-Klein particle⁷ with a mass of about 620 GeV).

Figure 3 | ATIC results showing agreement with previous data at lower energy and with the imaging calorimeter PPB-BETS at higher energy. The

a Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics

e/p separation: **Calo-E-fraction**

Energy-momentum match **Shower start point** Shower long./lat profile

FIG. 1: Calorimeter energy fraction \mathcal{F} . The fraction of calorimeter energy deposited inside a cylinder of radius 0.3 Molière radii, as a function of deflection. d p-rejection < 10⁻⁵ by extrapolating the particle track reconstructed by the spectro

An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV

O. Adriani^{1,2}, G. C. Barbarino^{3,4}, G. A. Bazilevskaya⁵, R. Bellotti^{6,7}, M. Boezio⁸, E. A. Bogomolov⁹, L. Bonechi^{1,2}, M. Bongi², V. Bonvicini⁸, S. Bottai², A. Bruno^{6,7}, F. Cafagna⁷, D. Campana⁴, P. Carlson¹⁰, M. Casolino¹¹, G. Castellini¹², M. P. De Pascale^{11,13}, G. De Rosa⁴, N. De Simone^{11,13}, V. Di Felice^{11,13}, A. M. Galper¹⁴, L. Grishantseva¹⁴, P. Hofverberg¹⁰, S. V. Koldashov¹⁴, S. Y. Krutkov⁹, A. N. Kvashnin⁵, A. Leonov¹⁴, V. Malvezzi¹¹, L. Marcelli¹¹, W. Menn¹⁵, V. V. Mikhailov¹⁴, E. Mocchiutti⁸, S. Orsi^{10,11}, G. Osteria⁴, P. Papini², M. Pearce¹⁶, P. Picozza^{11,13}, M. Ricci¹⁷, S. B. Ricciarini², M. Simon¹⁵, R. Sparvoli^{11,13}, P. Spillantini^{1,2}, Y. I. Stozhkov⁵, A. Vacchi⁸, E. Vannuccini², G. Vasilyev⁹, S. A. Voronov¹⁴, Y. T. Yurkin¹⁴, G. Zampa⁸, N. Zampa⁸ & V. G. Zverev¹⁴

Antiparticles account for a small fraction of cosmic rays and are known to be produced in interactions between cosmic-ray nuclei and atoms in the interstellar medium¹, which is referred to as a 'secondary source'. Positrons might also originate in objects such as pulsars² and microquasars³ or through dark matter annihilation⁴, which would be 'primary sources'. Previous statistically limited measurements^{5–7} of the ratio of positron and electron fluxes have been interpreted as evidence for a primary source for the positrons, as has an increase in the total electron+positron flux at energies between 300 and 600 GeV (ref. 8). Here we report a measurement of the positron fraction in the energy range 1.5–100 GeV. We find that the positron fraction increases sharply over much of that range, in a way that appears to be completely inconsistent with secondary sources. We therefore conclude that a primary source, be it an astrophysical object or dark matter annihilation, is necessary.

Figure 2 | PAMELA positron fraction with other experimental data and with secondary production model. The positron fraction measured by the

AMS: Construction of the detectors is complete. Expected Launch : Fall 2010

AMS-2 Sensitivities ...

... charge determination till ~500 GeV

Fig. 1. AMS-02 e⁺ fraction in the case of a primary e⁺ from annihilating χ [11]

γ-rays from WIMP annihilation

Continuum spectrum with cutoff at M_χ

Spectral line at M_{χ}

 Detection of prompt annihilation into γγ (γZ⁰) would provide smoking gun for dark matter annihilation

• Requires best energy resolution

• However, annihilation fraction in the range 10⁻³-10⁻⁴ (depending on the model)

Anomalous Cosmic Gamma Spectrum

γ-rays from WIMP annihilation

Continuum spectrum with cutoff at M_χ

Spectral line at M_{χ}

 Detection of prompt annihilation into γγ (γZ⁰) would provide smoking gun for dark matter annihilation

• Requires best energy resolution

• However, annihilation fraction in the range 10⁻³-10⁻⁴ (depending on the model)

Anomalous Cosmic Gamma Spectrum

! from ERGET, soon tested by GLAST

Data explained by 50-100 GeV neutralino?

WIMP Direct Detection

- Elastic recoil of non relativistic halo WIMPs off the nuclei
- Both Spin-Independent (~A²) and Spin-Dependent [~(J+1/J)] Couplings
- Recoil energy of the nucleus in the keV range
- Annual modulation effect due to the rotation of the Earth around the Sun
- Directional Recoils, experimentally challenging

WIMP-detection Experiments Worldwide

(from Subject Review TAUP-07)

Detector Techniques - Present Focus : Nuclear Vs Electron recoils

Future : Lower Threshold ; Direction Sensitive

DAMA/LIBRA

 NaI(TI) Scintillator at Gran Sasso : total 0.82 ton-year data
 Observe annual modulation in the 2-6 keV single-hit signal band, total 11 cycles, > 85
 No modulations at higher energy & for multiple-hits

 Single Hit 2-6 keV Signal Region
 DAMA/NaI (7 years)

 DAMA/LIBRA (4 years)

 Total exposure: 300555 kg×day = 0.82 ton×yr

Single-Hit Power Spectrum

*No Modulation for multiple hits at 2-6 keV

*No Modulation for single hit above 6 keV

Sensitive Techniques: Phonon+Ionization & Dual Phase Xenon

➡ Nuclear Vs electron recoils differentiation

TEXONO Detector & Shieldings

4X5g

ULEGe

- Candidate Events: selected by Anti-Compton [ACV : γ] and Cosmic-Ray [CRV: μ] vetos & Pulse-Shape Discrimination [PSD: electronic noise]
- Critical Issues: Signal efficiencies for trigger, DAQ & Selection
- Non-Ge Efficiency [DAQ,ACV,CRV] : evaluated by Random Trigger events.

Exclusion Plot : Spin-Independent Couplings

TEXONO : 20 g ULEGe at 220 eV threshold ⇒ low WIMP masses [PRD 2009] [Lin ST's talk]

Data Taking at KS with 500 g Point-Contact Ge Underway

Exclusion Plot : Spin-Dependent Couplings

To Reconcile DAMA Results:

- ? Do we understand of WIMP physics and astrophysics properties (mass, local density distribution, local velocity distributions...)
 ? Do we understand how WIMP
 - interacts with matter (e.g. χ -e)
 - ? Do we understand our detector response (e.g. Quenching Factor in crystal lattice...)

Detector Scale-up Plans: Point Contact Ge Detector

- 500-g, single-element, modified coaxial HPGe design, inspired by successful demonstration of Chicago group (nucl-ex/0701012)
- Position-sensitive from drift-profile pulse shape
- Dual-electrode readout and ULB specification
- Delivered July 2008, KS data taking November 2008
- 900-g detector under construction

锦屏山隧道 Mt. Jin-Ping Tunnel

 MoU signed May 2009
 Excavation of 1st cavern begins 2009
 Operating ULEGe 2010.

- Tallest Peak 4193 m
- Max. Rock Overburden: 2375 m
- Road Tunnel Distance: 17.5 km
- Fraction of tunnel with >1500
 Rock Overburden: >70%

Axions

 Invented to Solve "Strong CP Problem"
 Produced via QCD Phase-Transition in early Universe: i.e. Cold (non-relativistic)
 Couples to Photons & Electrons

The Strong CP Problem

$$L_{\rm QCD} = \dots + \theta \frac{g^2}{32 \pi^2} G^a{}_{\mu\nu} \tilde{G}^{a\mu\nu}$$

Because the strong interactions conserve P and CP, $\theta \le 10^{-10}$.

The Standard Model does not provide a reason for θ to be so tiny,

Laboratory & Astrophysics Bounds on Axions

Essence of Astrophysics Bounds

Constraints from Stellar Cooling at Sun (main sequence), supernovae, white dwarf, global clusters, red giants

Microwave Cavity Experiments (e.g. ADMX)

8 Excellent Analyzing Power but Limited Bandwidth

Solar Axion Experiments (e.g. CAST)

Polarization Rotation Experiments (e.g. PVLAS)

Primakoff effect reduces parallel component, perpendicular component unchanged

Rotates the plane of polarization

y

Axion-Photon Conversion Experiments

Exclusion Plot : A Y Couplings at Low Mass

Exclusion Plot : general A Ae Couplings

TEXONO : 1 kg HPGe using possible Axions emissions from Reactor

Summary & Outlook

- Missing Energy Density Problem is the most intriguing & important one in basic science.
- Some tangible leads & lines of attack already exist for Dark Matter Problem
- WIMPs & Axions are two of the most popular candidates for Cold Dark Matter, motivated independently in Particle Physics
- Wide spectrum of experimental techniques pursued
 Several anomalous results which can be CDM-induced
 Competitive sensitivities in TEXONO on direct searches
 New Underground Lab. at Sichuan soon
 Strong Potentials for Surprises in both Theory & Expts