MSSM confronts the precision electroweak data and muon g-2

Daisuke Nomura (KEK, JSPS Research Fellow)

- I. Introduction
- II. Muon g-2 vs MSSM
- III. EW data vs MSSM
- IV. Summary

In collaboration with **G.-C. Cho** (Ochanomizu), **K. Hagiwara** (KEK/Sokendai) and **Yu Matsumoto** (KEK).

Introduction

Muon g-2:

✓ Powerful probe for New Physics at TeV scale.

✓ 3.4σ deviation between exp. and theory (SM) reported ⇒ Signal of new physics?

Electroweak (EW) precision data:

- ✓ Useful probe for New Physics
- ✓ Only a few years ago final LEP data appeared (hep-ex/0509008)

A natural question:

Suppose that the MSSM is responsible for the muon g - 2 anomaly. Where is the SUSY parameter region favored by the final LEP EW data?

— Important question to study BEFORE the LHC

PPP8, May 22, 2009

Daisuke Nomura

Standard	Model	Prediction	for	Muon	g-2
----------	-------	------------	-----	------	-----

QED contribution	11 658 471.809 (0.016) $\times 10^{-10}$	Kinoshita & Nio
EW contrib.	15.4 (0.2) $\times 10^{-10}$	Czarnecki et al
Hadronic contrib.		
LO hadronic	689.4 (4.5) ×10 ⁻¹⁰	HMNT
NLO hadronic	$-9.8~(0.1)~ imes 10^{-10}$	HMNT
light-by-light	13.6 (2.5) $\times 10^{-10}$	Melnikov & Vainshtein
Theory TOTAL	11 659 180.4 (5.1) $\times 10^{-10}$	
Experiment	11 659 208.0 (6.3) $\times 10^{-10}$	world avg. (2006)

$$\delta a_\mu \equiv a_\mu^{
m exp} - a_\mu^{
m SM} = (27.6 \pm 8.1) imes 10^{-10}: 3.4\sigma$$
 discrepancy

n.b.: hadronic contributions:

SUSY Contributions to Muon g-2Suppose that the 3.4 σ deviation is due to SUSY...

Leading SUSY contributions in the m_Z/m_{SUSY} expansion:

In most cases, the $\tilde{\chi}^{\pm}$ - $\tilde{\nu}$ diagram (a) and/or the \tilde{B} - $\tilde{\mu}_{L/R}$ diagram (b) dominate. (Lopez-Nanopoulos-Wang, Chattopadhyay-Nath, Moroi, ...)

m_℃ (GeV)

MSSM Contributions to Muon g-2

Muon g - 2 at MSSM sample points

No.	aneta	μ	M_2	$m_{ ilde{E}}$	(a)	(b)	(c)	(d)	(e)	(a)-(e)	total	pull
1	10	200	150	300	29.6	1.1	0.7	-2.9	-1.3	27.2	25.0	-0.3
2	10	200	450	120	27.5	8.8	3.3	-7.1	-6.7	25.9	25.9	-0.2
3	10	800	150	200	14.3	16.2	0.6	-2.7	-1.3	27.1	27.1	-0.1
4	10	800	500	150	6.9	21.3	1.0	-2.5	-2.1	24.7	24.3	-0.4
5	50	800	150	550	26.9	2.4	0.5	-2.6	-1.0	26.3	26.0	-0.2
6	50	800	900	280	18.0	18.0	2.5	-5.9	-5.1	27.7	27.6	0.0

The chargino diagram (a) and/or the Bino-smuon $_{L,R}$ diagram (b) dominate in all the sample points.

PPP8, May 22, 2009

Daisuke Nomura

Selected SUSY models and muon g-2Selected SUSY Models

	aneta	μ	$m_{ ilde{\mu}_L}$	$m_{ ilde{\mu}_R}$	A_{μ}	M_1	M_2
SG 1 (mSUGRA, $\tan \beta = 10$)	10	396	181	116	-445	103	193
SG 2 (mSUGRA, high $\tan\beta$)	50	762	585	465	-145	277	510
GM1 (Gauge Med., high $\tan\beta$)	42	504	441	214	25	181	339
GM 2 (Gauge Med., $ aneta \sim 10$)	15	300	257	120	-39	169	327
MM1 (Mirage Med., $\alpha > 0$)	10	430	188	255	-465	170	258
MM2 (Mirage Med., $\alpha < 0$)	10	-572	253	108	245	-99	-248
MM3 (Mirage Med., $M_2 < M_1$)	10	534	200	237	509	224	173

Muon g-2 in the Selected SUSY Models

	(a)	(b)	(c)	(d)	(e)	(a)-(e)	total	pull
SG1	25.7	21.5	1.5	-5.2	-5.4	38.1	37.6	1.2
SG 2	20.0	4.8	1.0	-3.4	-2.8	19.5	19.4	-1.0
GM 1	34.6	11.7	1.4	-5.3	-9.2	33.2	33.0	0.7
GM 2	27.1	10.6	1.6	-5.0	-9.0	25.3	24.8	-0.3
MM1	19.4	7.2	1.4	-4.5	-1.9	21.7	21.7	-0.7
MM2	13.2	18.8	0.7	-2.7	-4.2	25.8	24.7	-0.4
MM3	19.6	7.9	1.1	-3.8	-1.8	23.0	23.1	-0.5

Introduction to EW Precision Study

LEP-I experiments ('89 - '95): The Z-boson properties were studied in great detail using 17 millions of Z boson decays. (Final report appeared 'recently': hep-ex/0509008)

To confront the EW precision data with theory, the S, T, U parameters are useful (Peskin & Takeuchi).

$$\gamma \sim \gamma = i e^2 \Pi_{QQ} g^{\mu\nu} + \cdots$$
 $\alpha S \equiv 4e^2 [\Pi'_{33}(0) - \Pi'_{3Q}(0)],$

$$Z \cdots \qquad \gamma = i \frac{e^2}{cs} (\Pi_{3Q} - s^2 \Pi_{QQ}) g^{\mu\nu} + \cdots \qquad \alpha T \equiv \frac{e^2}{s^2 c^2 m_Z^2} [\Pi_{11}(0) - \Pi_{33}(0)],$$

$$Z \cdots \qquad Z = i \frac{e^2}{c^2 s^2} (\Pi_{33} - 2s^2 \Pi_{3Q} + s^4 \Pi_{QQ}) g^{\mu\nu} + \cdots \qquad \alpha U \equiv 4e^2 [\Pi'_{11}(0) - \Pi'_{33}(0)].$$

$$W \cdots \qquad W = i \frac{e^2}{s^2} \Pi_{11} g^{\mu\nu} + \cdots \qquad \alpha U \equiv 4e^2 [\Pi'_{11}(0) - \Pi'_{33}(0)].$$

In this talk, we use an improved version, S_Z , T_Z and M_W (Hagiwara, Haidt, Kim & Matsumoto).

S_Z - T_Z Plane Analysis

1. Calculate $\mathcal{O}_i^{\text{th}}(\Delta S_Z, \Delta T_Z, \ldots)$, where \mathcal{O}_i are EW precision observables $(\Gamma_Z, \sigma_h^0, A_f, \ldots)$.

2. Construct the χ^2 function as

$$\chi^{2} = \sum_{i,j} \left(\mathcal{O}_{i}^{\mathrm{th}}(\Delta S_{Z}, \Delta T_{Z}, \ldots) - \mathcal{O}_{i}^{\mathrm{exp}} \right) \xrightarrow{\overset{\sim}{\triangleleft}}_{\overset{\sim}{\downarrow}} \chi^{2} = \sum_{i,j} \left(\mathcal{O}_{i}^{\mathrm{th}}(\Delta S_{Z}, \Delta T_{Z}, \ldots) - \mathcal{O}_{j}^{\mathrm{exp}} \right) \xrightarrow{\overset{\sim}{\downarrow}}_{\overset{\sim}{\downarrow}} \chi^{2}$$

where V is the covariance matrix, $V_{ij} = (\delta \mathcal{O}_i^{\exp})(\delta \mathcal{O}_j^{\exp})\rho_{ij}$.

3. Find the minimum of χ^2 with respect to ΔS_Z , ΔT_Z etc. Draw the contours $\chi^2 - \chi^2_{\min} = \text{const}$ if necessary.

Electroweak Precision Data vs MSSM, (I) S_Z - T_Z plane analysis

Using the final LEP EW precision data, we can give a constraint on MSSM contributions to S_Z and T_Z .

Our Results:

The SM with $m_H \sim 100$ GeV gives a good description.
 In the MSSM, light sfermions tend to be disfavored.

Cho-Hagiwara-Matsumoto-DN, in preparation

EW Precision Data vs MSSM, (II) S_Z - T_Z plane analysis

Using the final LEP EW precision data, we can give a constraint on MSSM contributions to S_Z and T_Z .

Our Results:

✓ All the sample points are within or close to the 1- σ favored region.

Cho-Hagiwara-Matsumoto-DN, in preparation

EW Precision Data vs MSSM (III), M_W

In our framework, M_W is a calculable quantity, which can be compared to the data.

Our Results:

 \checkmark Light squarks and sleptons tend to make the fit better.

✓ Inos do not give contributions to Δm_W very much.

✓ The MSSM with O(100) GeV SUSY masses gives a good description.

Cho-Hagiwara-Matsumoto-DN, in preparation

But this is not the full story...

Problem in Jet Asymmetry Data?

The value of the effective mixing angle \bar{s}^2 determined only from leptonic asymmetry data and that determined only from jet asym. data do not agree very well \implies problem in jet asym. data (or in the analysis of them)?

EW Precision Data vs MSSM, (IV) fit without jet asymm. data

If we do not use the jet asymmetry data, the favored range shifts to the left. (Negative ΔS_Z is favored.) \checkmark Light sleptons are favored.

Cho-Hagiwara-Matsumoto-DN, in preparation

Summary

We have studied the favored parameter region of MSSM using the results of the muon g-2 and the EW precision data.

From muon g - 2: when $\tan \beta = 10$, the slepton mass of a few hundred GeV is favored. When $\tan \beta = 50$, the sleptons as heavy as 1 TeV are allowed within 1- σ .

From EW precision data: SUSY particles of a few hundred GeV are OK.

In well-studied models like mSUGRA, Gauge Med. and Mirage Med. there still is some parameter region favored from muon g-2 and EW precision data.

If we leave out the jet asymmetry data, light sleptons become more favored, which is favored from muon g-2 as well.