

Dark Matter and Collider Phenomenology of UED

Chuan-Ren Chen (IPMU, U. of Tokyo)

5/22/09 @ ppp8, NCKU

In collaboration with M. Nojiri, SC Park, J. Shu and M. Takeuchi

arXiv:0903.1971 [hep-ph]

Outline

Motivation

Model

Cosmic-ray

Collider

Motivation — Park Matter Data

confidently established from observation;

WMAP5: $\Omega_{DM} = 0.228 \pm 0.013$

E. Komatsu et al, 0803.0547

BSM should include DM;

Supersymmetry, Extra-Dimension, Little Higgs, ...

LHC will/may produce PM, and discover it;

mass, spin, ...

Cosmic-ray exp. may detect it, too!!

anni/decay $\longrightarrow e^{\pm}, \bar{p}, \gamma, ...$ PAMELA, PPB-BETS, ATIC, HESS, FERMI

Cosmic-rays from Dark Matter (annihilation, decay) DM (+ DM) --> hadrons, leptons --> photon, electron, positron, antiproton,...

Cosmic-rays

- * photon propagate straightly
- * charged particles are affected by galactic magnetic field

$$\frac{\partial \Phi}{\partial t} = \nabla \cdot [K(r, E) \nabla \Phi] + \frac{\partial}{E} [b(E)\Phi] + q(r, E)$$

- * high energy positrons/electrons loss energy quickly
- * measuring background precisely is important, i.e. primary and secondary cosmic-ray from astrophysical sources.
- * However, the uncertainty is still big.

PAMELA

0. Adriani et al, 0810.4995 positron fraction

151672 electrons 9430 positrons in 1.5 GeV - 100 GeV dark matter ?? astrophysics source ??

PAMELA

0. Adriani et al, 0810.4994

consistent with the prediction of secondary production **NO** primary source or is very suppressed!

ATIC/PPB-BET

S. Torii et al, 0809.0760

electron + positron

J. Chang et al, Nature 456, 362

What We have learned from these data

There exist primary sources of electrons and positrons, however, the antiproton flux is suppressed.

If Park Matter is responsible for the cosmic-ray data

Dark Matters prefer to anni/decay to charged lepton!!

It is interesting to see how Dark Matter can explain the data!

Model Universal Extra Pinnensions
(UED) T. Appelquist, H-C Cheng, B. A.
Pobrescu, hep-ph/0012100

$$\mathcal{L}(x^{\mu}) = \int d^{D}y \left\{ -\sum_{i=1}^{3} \frac{1}{2g_{i}^{2}} \operatorname{Tr} \left[F_{i}^{AB}(x^{\mu}, y^{a}) F_{iAB}(x^{\mu}, y^{a}) \right] + An \operatorname{acrobat can only move}_{rope.} An \operatorname{acrobat can only move}$$

split-UED

 $L(\nu)$

 q_1

q

q

CRC, M. M. Nojiri, SC. Park, J. Shu and M. Takeuchi 0901.0720

 $\frac{1}{R} = 620 GeV$

PAMELA (antiproton to proton ratio)

split-UED agree with observations well

upcoming data from FERMI (gamma)

predict a bump @ E $\approx 200\,GeV$ upcoming Fermi data can check this!

Collider

LHC: p p collider

colored particles can be produced copiously

		0 1
σ	\sim	Xnh
U	\sim	Opt
		+

 $q_1 \to g_1 q \to B_1 g q$

4 jets with missing ET

 μ (GeV)

 $M_{\rm eff} > 500 \,\,{\rm GeV}, \,\, E_{\rm Tmiss} > \max(100 \,\,{\rm GeV}, 0.2M_{\rm eff}), \,\, n_{100} \ge 1, \,\, n_{50} \ge 4,$

	after standard cut	$M_{\rm eff} > 1 {\rm TeV}$	$M_{\rm eff} > 1.5 \mathrm{TeV}$
q_1q_1	0.40	0.37	0.21
$q_1 g_1$	0.30	0.18	0.049
g_1g_1	0.18	0.04	0.007

with $1 f b^{-1}$, our signal 2800 >> SM BG (< 300)

Summary

Updated cosmic-ray data of electrons/positrons show the excesses while antiproton flux is consistent with BG

Dark Matter may be responsible for these data

LKP in UED models is a good candidate, splitting kk quarks can satisfy the constraints from antiproton data

LHC pheno of split-UED is different from mUED

POUBLE CHECK LHC (mass, spin of PM), gamma-ray data, more data in higher energy NOTE: astrophysical source can explain as well, e.g. Pulsars

Fermi/HESS

