Dark Matter and Collider Phenomenology of UED

Chuan-Ren Chen
(IPMU, U. of Tokyo)

5/22/09 @ ppp8, NCKU

In collaboration with M. Nojiri, SC Park, J. Shu and M. Takeuchi

Outline

Motivation
Model
Cosmic-ray
Collider

Summary

Motivation

Dark Matter

 DataBSM should include DM;
Supersymmetry, Extra-Dimension, Little Higgs, ...
LHC will/may produce DM, and discover it: mass, spin, ...

Cosmic-ray exp. may detect it, too!!
anni/decay $\longrightarrow e^{ \pm}, \bar{p}, \gamma, \ldots$
PAMELA, PPB-BETS, ATIC, HESS, FERMI

Cosmic-rays from Dark Matter (annihilation, decay) DM (+ DM) \rightarrow hadrons, leptons \rightarrow photon, electron, positron, antiproton,...

Cosmic-rays

* photon propagate straightly
* charged particles are affected by galactic magnetic field

$$
\frac{\partial \Phi}{\partial t}=\nabla \cdot[K(r, E) \nabla \Phi]+\frac{\partial}{E}[b(E) \Phi]+q(r, E)
$$

* high energy positrons/electrons loss energy quickly
* measuring background precisely is important, i.e. primary and secondary cosmic-ray from astrophysical sources.
* However, the uncertainty is still big.

PAMELA

0. Adriani et al, 0810.4995

data taken from
 06/2006-02/2008

151672 electrons
9430 positrons
in $1.5 \mathrm{GeV}-100 \mathrm{GeV}$
dark matter ??
astrophysics source ??

PAMELA

0. Adriani et al, 0810.4994 antiproton ratio

consistent with the prediction of secondary production NO primary source or is very suppressed!

ATIC/PPB-BET

S. Torii et al, 0809.0760

electron + positron

balloon experiments, in Antarctic 84 events $>100 \mathrm{GeV}$ from PPB-BETS 210 events, 300 ~ 800 GeV, ATIC
agree with each other sharp drop-off at

- 600 GeV

Primary source?

What We have learned from these data

There exist primary sources of electrons and positrons, however, the antiproton flux is suppressed.

If Dark Matter is responsible for the cosmic-ray data Dark Matters prefer to anni/decay to charged lepton!!

It is interesting to see how Dark Matter can explain the data!

Model

Universal Extra Dimensions (UED) T. Appelquist, H-C Cheng, B. A. Dobrescu, hep-ph/0012100

$$
\begin{align*}
\mathcal{L}\left(x^{\mu}\right)= & \int \mathrm{d}^{D} y\left\{-\sum_{i=1}^{3} \frac{1}{2 \hat{g}_{i}^{2}} \operatorname{Tr}\left[F_{i}^{A B}\left(x^{\mu}, y^{a}\right) F_{i A B}\left(x^{\mu}, y^{a}\right)\right]+\begin{array}{c}
\text { An acrobat can only move } \\
\text { in one dimension along a } \\
\text { rope.. }
\end{array}\right. \\
& +\left|\left(D_{\mu}+D_{3+a}\right) H\left(x^{\mu}, y^{a}\right)\right|^{2}+\mu^{2} H^{*}\left(x^{\mu}, y^{a}\right) H\left(x^{\mu}, y^{a}\right)-\lambda\left[H^{*}\left(x^{\mu}, y^{a}\right) H\left(x^{\mu}, y^{a}\right)\right]^{2}+ \\
& +i(\bar{Q}, \bar{u}, \bar{d}, \bar{L}, \bar{e})\left(x^{\mu}, y^{a}\right)\left(\Gamma^{\mu} D_{\mu}+\Gamma^{3+a} D_{3+a}\right)(Q, u, d, L, e)\left(x^{\mu}, y^{a}\right)+ \\
& {\left[\bar{Q}\left(x^{\mu}, y^{a}\right)\left(\hat{\lambda}_{u} u\left(x^{\mu}, y^{a}\right) i \sigma_{2} H^{*}\left(x^{\mu}, y^{a}\right)+\hat{\lambda}_{d} d\left(x^{\mu}, y^{a}\right) H\left(x^{\mu}, y^{a}\right)\right)+\text { H.c. }\right]+} \\
& {\left[\bar{L}\left(x^{\mu}, y^{a}\right) \hat{\lambda}_{e} e\left(x^{\mu}, y^{a}\right) H\left(x^{\mu}, y^{a}\right)+\text { H.c. }\right] . } \tag{3}
\end{align*}
$$

...but a flea can move in two dimensions.
$\psi\left(x^{\mu}, y\right)=\frac{1}{\sqrt{\pi R}}\left[\psi^{\mathrm{SM}}\left(x^{\mu}\right)+\sqrt{2} \sum_{n=1}^{\infty} P_{L} \psi_{L, n}\left(x^{\mu}\right) \cos \left(\frac{n y}{R}\right)+P_{R} \psi_{R, n}\left(x^{\mu}\right) \sin \left(\frac{n y}{R}\right)\right]$.

$$
m_{X^{(n)}}^{2}=\frac{n^{2}}{R^{2}}+m_{X^{(0)}}^{2}+\delta\left(m_{X^{(n)}}^{2}\right)
$$

with exact KK-parity (a Z2 symmetry), the lightest KKodd particle (LKP) is stable

Dark Matter candidate

split-UED

SC. Park and J. Shu, 0901.0720

$$
\begin{aligned}
& S=\int d^{5} x\left(\frac{i}{2}\left(\bar{\Psi} \Gamma^{M} \partial_{M} \Psi-\partial_{M} \bar{\Psi} \Gamma^{M} \Psi\right)-\lambda \Phi(y) \bar{\Psi} \Psi\right. \\
& \lambda<\Phi(y)>=\mu \epsilon(y) \quad \Phi(-y)=-\Phi(y)
\end{aligned}
$$

quarks interact with a scalar background

$$
\Psi_{+}(x, y)=\sum_{n^{+}, n^{-}} g_{n^{+}}(|y|) \chi_{n^{+}}(x)+\epsilon(y) g_{n^{-}}(|y|) \chi_{n^{-}}(x),
$$ KK quarks receive

$$
\Psi_{-}(x, y)=\sum_{n^{+} n^{-}} \epsilon(y) f_{n^{+}}(|y|) \psi_{n^{+}}(x)+f_{n^{-}}(|y|) \psi_{n^{-}}(x),
$$ additional bulk mass

$$
m_{n}=\sqrt{\mu^{2}+k_{n}^{n^{-}}}
$$ split KK quark from other particles

$\mu \rightarrow \infty$ KK quark decoupled $\quad \mu \rightarrow 0$ mUED limit

CRC, M. M. Nojiri, SC. Park, J. Shu and M. Takeuchi 0901.0720

$$
\frac{1}{R}=620 G e V
$$

Cosmic-ray

PAMELA (positron fraction)

sharp drop-off @ $E=m$

ATIC/PPB-BETS (total flux of e - and e^{+})
 sharp drop-off © $E=m$

PAMELA (antiproton to proton ratio)

split-UED agree with observations well

upcoming data from FERMI (gamma)

predict a bump @E $\approx 200 \mathrm{GeV}$ upcoming Fermi data can check this!

Collider

LHC: p p collider

\downarrow

 colored particles can be produced copiously$\sigma \approx 8 p b$
$q_{1} \rightarrow g_{1} q \rightarrow B_{1} g q$
4 jets with missing ET

$$
M_{\text {eff }}>500 \mathrm{GeV}, E_{\text {Tmiss }}>\max \left(100 \mathrm{GeV}, 0.2 M_{\text {eff }}\right), n_{100} \geq 1, n_{50} \geq 4,
$$

	after standard cut	$M_{\text {eff }}>1 \mathrm{TeV}$	$M_{\text {eff }}>1.5 \mathrm{TeV}$
$q_{1} q_{1}$	0.40	0.37	0.21
$q_{1} g_{1}$	0.30	0.18	0.049
$g_{1} g_{1}$	0.18	0.04	0.007

with $1 \mathrm{fb}^{-1}$, our signal $2800 \gg$ SM BG (<300)

using MT2 to study the mass

 determination (signal with missing ET)$$
\begin{aligned}
& p p \rightarrow A A \rightarrow B B X X \text { missing } \\
& \left(p p \rightarrow q_{1} q_{1} \rightarrow q q g_{1} g_{1}\right)
\end{aligned} \begin{gathered}
\begin{array}{c}
\text { C. Lester and D. Summers, hep-ph/990634 } \\
\text { A. Barr, C. Lester and P. Stephens, } \\
\text { hep-ph/0304226 }
\end{array} \\
M_{T 2}=\min _{p_{T \text { miss }}=q_{T 1}+q_{T 2}}\left[\max \left\{M_{T}\left(q_{T 1}, p_{j_{1}}, m_{\text {trial }}\right), M_{T}\left(q_{T 2}, p_{j_{2}}, m_{\text {trial }}\right)\right\}\right] \text {, }
\end{gathered}
$$

Summary

Updated cosmic-ray data of electrons/positrons show the excesses while antiproton flux is consistent with BG

Dark Matter may be responsible for these data

LKP in UED models is a good candidate, splitting kk quarks can satisfy the constraints from antiproton data

LHC pheno of split-UED is different from mUED

DOUBLE CHECK
LHC (mass, spin of DM), gamma-ray data, more data in higher energy NOTE:
astrophysical source can explain as well, e.g. Pulsars

Fermi/HESS

