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Free Parameters and problems in SM
• There are 27(+2) free parameters in SM

4 : α1 , α2, α3, G

+2 : MW , mH

+6 + 6 : me, mµ, mτ ,mν1
, mν2

, mν3
, mu, mc, mt, md, ms, mb

+1 + 4 + 4 : θQCD, UCKM , UPMNS

(+2) : Majorana phases

Roughly speaking, the first class involves gauge interaction and how the
symmetries are broken. The second classes will be referred as general flavor
physics.

• The ultima goal of HEP theorist is to reduce the number of free parameters.
For example,
• GUT makes three couplings to one
• flavor symmetry to reduce the 21(+2) flavor parameters to only few
• ... etc

• There are also tension or hierarchy among these fundamental constants in each
group:
• 1/

√
G≫MW , mH

• mt ≫ mq ,ml ≫ mν , θ12CKM ≫ θ23CKM ≫ θ13CKM
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Resolutions proposed to understand the flavor physics

In the past few decades, a few ways have been proposed to either reduce the number of
free parameters or to explain the hierarchy.

• three copies of fermion family with exactly the same quantum numbers
⇒ PREON model

• Larger symmetry group G ⊃ SU(3)c × SU(2)L × U(1)Y ×Hflavor

e.g. SU(8), SO(10 + 4k), E8 etc.

• Pattern in the fermion mass matrices
By guessing/ phenomenological fit: Structure zeros
By higher scale symmetry: Froggatt-Nielsen

• Statistics
• Giving up the explanation: Landscape
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A New Paradigm for studying the flavor physics

Recent development of extra-dimensional model provides a new way to look at the flavor
problem.

Flavor Problem ⇔ Geometry in extra
dimension
Split fermion model as an example:

• Linear displacement between left-handed and right-handed fermions in the fifth
dimension becomes exponentially suppressed 4D Yukawa.

• A realistic configuration to fit quark masses and mixingsQ1 Q2Q3U1 U2U3 D1D2 D3

�5 0 5 10 15 20 25
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RS Model is one of the promising candidates

• Randall-Sundrum can explain the hierarchy in the first class.

EW ∼ ke−krcπ

with krc ∼ 11.7, where k is the 5D curvature ∼Mplanck and rc is the radius of the
compactified fifth dimension.

• Due to the special profile of bulk fermion in RS, the second hierarchy can be
achieved without fine tuning in Yukawa couplings.

• The number of free parameters ( in flavor sector ) is smaller than in SM
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Introduction to the Randall-Sundrum Model

• There are more than 4 dim. Indeed RS assumes a 1+4 dim with a warp or
conformal metric, AdS

• 5D interval (S1/Z2)is given by

ds2 = GABdx
AdxB = e−2krc|φ|ηµνdx

µdxν − r2cdφ
2

• Two branes are localizes at φ = 0(UV) and φ = π(IR)

• The metric is, −π ≤ φ ≤ π, σ ≡ krc|φ|

GAB =

(

e−2σηµν 0

0 −r2c

)

, GAB =

(

e+2σηµν 0

0 − 1
r2

c

)
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Fermions in 5D Bulk

• 5D fermions are 4-component spinors, i.e. vector-like fermions

Ψ(xµ, y) =

(

ψR(xµ, y)

ψL(xµ, y)

)

• the Dirac matrices in 5D are γM = (γµ, iγ5)

• Project out the L(R) chiral state by boundary conditions or orbifold parities, i.e. how
the field transforms under Z2 : y → −y

(

ψR(xµ, y)

ψL(xµ, y)

)

→ ±
(

ψR(xµ,−y)
−ψL(xµ,−y)

)

• 5D action for fermions is

∫

d4xdφ
√
GEA

a Ψ̄γaDAΨ −m sgn(φ)Ψ̄Ψ

where EA
a = diag(eσ , eσ , eσ , eσ , 1/rc), and we define a dimensionless ν ≡ m/k
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Profiles of bulk fermions
• Do the usual KK decomposition:

ΨL,R(x, φ) =
e

3

2
σ

√
rc

∑

n

ΨL,R
n (x)φ̂L,R

n (φ) , 〈φ̂n|φ̂m〉 = δm,n

• The RH chiral zero mode lives near the UV(IR) brane if ν > 1/2(ν < 1/2)
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The thick red lines are the zero mode wave function of RH chiral fermion and t is
the comformal variable

t ≡ e−krc(π−φ)
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Fermion Masses in RS

• The coefficients νL,R control the zero modes peak at either UV or IR

• Localize the Higgs at the IR brane

• Have the zero modes of the SM chiral fermions localized near UV brane then the
overlap after SSB will be very small

• No need to fine tune Yukawa’s
• Quark masses are naturally small

• If all the fermions both LH doublets and RH singlets are localized near UV then top
quark comes out too light

• RH top quark or (tL, bL) must not too far from IR brane
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Quark Masses in RS
• The quark masses are given by

〈

Mf
ij

〉

=
λf
5,ijvW

krcπ
f0

L(π, νL
fi

)f0
R(π, νR

fj
)

where the label f denotes up-type or down-type quark species, vW = 174 GeV,
and

f0
L,R(φ, νL,R) =

√

krcπ(1 ∓ 2νL,R)

ekrcπ(1∓2νL,R) − 1
exp

[

krcφ(1/2 ∓ νL,R)
]

where the upper(lower) sign applies to the LH(RH) zero mode

• The Yukawa couplings λij are not necessarily symmetric in i, j

• fL,R shows that the masses are controlled by values of νL,R

• The task is find configurations that fit the CKM matrix

• Bonus: both LH and RH rotations are given for each solution

• In SM, only the LH rotations are detectable. VCKM = V u†
L V d

L
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General Configurations

• In general quark mass matrices are not symmetrical in RS. Several configurations
found. For example,

νQ = {0.634, 0.556, 0.256}
νU = {−0.664,−0.536, 0.185}
νD = {−0.641,−0.572,−0.616}

• The u and d quark mass matrices (at TeV scale)

〈|Mu|〉 =







0.000897 0.049 0.767

0.010 0.554 8.69

0.166 9.06 142.19






, 〈|Md|〉 =







0.0019 0.017 0.0044

0.022 0.196 0.050

0.352 3.209 0.813







(in GeV ), where we have used kekrcπ = 1.5TeV
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RS Quark Masses

• The CKM matrix elements for the above

|V L
us| = 0.16(14) , |V L

ub| = 0.009(11) , |V L
cb | = 0.079(74)

|V R
us| = 0.42(24) , |V R

ub| = 0.12(10) , |V R
cb | = 0.89(13)

• Note the RH rotations are larger than the LH ones

• Appears to be true from the numerical searches we found

• How to test it?
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Symmetrical Mass Matrices in RS

• Most of the “constructions” starts from conjecture assuming that they are
symmetrical

• Put zeros ( 1 to 3 ) in appropriate places to fit CKM and the observed mass
hierarchies

• Can RS accomodates these without fine tuning the Yukawa couplings?

• One ONE texture zero patterns are allowed.

• By construction UL = UR
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All is not well

• The main problem is that the new KK modes will modify EWPT

• Ths S, T parameters will receive tree level corrections

• It’s known that ρ = 1 is protected by a custodial SU(2) symmetry

• Promote that to a bulk gauge symmetry

• Tree level KK gauge effects are suppressed

• The gauge symmetry is now SU(2)L × SU(2)R × U(1)X

• Take X = B − L
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Custodial RS model

• Break SU(2)R → U(1)R by orbifold B.C.

UV IR

W̃ 1,2
µ − +

other Gauge Fields + +

• U(1)R × U(1)X → U(1)Y by VEV on UV brane. We have a Z′ and Bµ

Z′
µ =

g5W̃ 3
µ − g′5B̃µ

√

g25 + g′25

and

Bµ =
g′5W̃

3
µ + g5B̃µ

√

g25 + g′25

• Bµ is the SM hypercharge gauge boson and broken with SU(2)L on the IR brane
by Higgs (a bi-doublet)
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Quark Representation

• Zero modes have parity (++)

• Usual assignment doesn’t work

SU(2)L SU(2)R
(

tL
bL

) (

tR
bR

)

because tR is a zero mode and SU(2)R is broken on UV

• dR and tR must have their own (−+) partners

SU(2)L SU(2)R SU(2)R
(

tL
bL

) (

TR

bR

) (

tR
BR

)

• They don’t affect the quark mass matrix
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FCNC in the minimal Constrained RS model
• Besides the direct production of the KK Z ( ≥ 2.5 TeV ) is tree level FCNC

• FCNC Z − ZKK and Z − Z′
KK mixing

�XKK Z

f

f̄ < H > < H >

• KK- fermion mixings

�
fKK

α fKK
α

Z

fi fj

< H > < H >

• Going to the mass basis the unitarity is broken → FCNC
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t → Z + jets

• The BR is:

Br(t→ Zc(u))

=
2

cos2 θW

(

|QZ(tL)κ̂L
tc(u)|2 + |QZ(tR)κ̂R

tc(u)|2
)

(

1 − xt

1 − yt

)2 ( 1 + 2xt

1 + 2yt

)

yt

xt

= 1.8677 ×
(

|QZ(tL)κ̂L
tc(u)|2 + |QZ(tR)κ̂R

tc(u)|2
)

• LH and RH decays are different because κR > κL in the configs we found

• Br(tR → Z + c(u)R) < Br(tL → Z + c(u)L) by ∼ 2 − 10

• The BR is ∼ 10−5 c.f. SM ∼ 10−13

• Compare the decays in tt̄ vs single tW channels.
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Conclusions

• We have found that the RS model can accommodate good quark mass matrices
without fine tuning Yukawa

• It is possible to accommodate symmetrical mass matrices if there is one and no
more texture zero

• For asymmetrical configurations UR > UL

• Tree level FCNC best probed in t→ Z + jets

• BR is ∼ 10−5 makes it very interesting at the LHC

• Predicts that LH decays are dominant.
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