NEUTRINO MASSES, DARK MATTER AND BARYON ASYMMETRY OF THE UNIVERSE

Takehiko Asaka (Niigata Univ.)

@PPP8, May 20-23, 2009, NCKU, Taiwan

2009/5/21(Thu)

Takehiko Asaka (Niigata Univ.)

INTRODUCTION NEUTRINO MASSES AND RIGHT-HANDED (RH) NEUTRINOS

2009/5/21(Thu)

Neutrino oscillation experiments

Neutrino mass scales

- **Atmospheric:** $\Delta m_{\rm atm}^2 \simeq 2.5 \times 10^{-3} \, {\rm eV}^2$
 - Atmospheric neutrino exps. (..., SuperK)
 - Long-baseline accelerator exps. (K2K, MINOS)
- **Solar:** $\Delta m_{sol}^2 \simeq 8.0 \times 10^{-5} \,\mathrm{eV}^2$
 - Solar neutrino exps. (..., SuperK, SNO)
 - Reactor exp. (KamLand)

Need for physics beyond the Minimal Standard Model

Right-handed (RH) neutrinos

Three RH neutrinos
$$N_1, N_2, N_3$$

$$\delta L = i \overline{N_I} \partial_\mu \gamma^\mu N_I - F_{\alpha I} \overline{L_\alpha} N_I \Phi - \frac{M_I}{2} \overline{N_I} N_I^c + \text{h.c.} \qquad I = 1, 2, 3$$

$$\alpha = e, \mu, \tau$$

- Neutrino masses □ Dirac: $M_D = F\langle \Phi \rangle$ and Majorana: $M_M = diag(M_1, M_2, M_3)$ □ We assume $|[M_D]_{\alpha I}| \ll M_I$ ↓ Seesaw mechanism $M_v = -M_D^T \frac{1}{M_M} M_D$
- Key question:
 - "Where is the scale of Majorana mass?"

Convenstional seesaw scenario:

Neutrino Yukawa couplings are comparable to those of quarks and charged leptons

M_M >> 100GeV

$$M_M \simeq 6 \times 10^{14} \,\text{GeV} \,F^2 \left(\frac{2.5 \times 10^{-3} \,\text{eV}^2}{m_v^2}\right)^2 \qquad m_v \simeq \frac{M_D^2}{M_M}$$

Explain naturally smallness of neutrino masses via seesaw [Minkowski, Yanagida: Gell-Mann, Ramond, Slansky]

Decays of RH neutrinos can account for baryon asymmetry through leptogenesis [Fukugita, Yanagida]

Realize in GUT models

D Physics of RH neutrinos cannot be tested by direct exp.

Takehiko Asaka (Niigata Univ.) 2009/5/21 (Thu)

 γ

No new mass scale is introduced

$M_{M} < 100 \text{GeV}$ $F = 4 \times 10^{-7} \left(\frac{M_{M}}{100 \text{GeV}}\right)^{1/2} \left(\frac{m_{\nu}^{2}}{2.5 \times 10^{-32}} \text{eV}\right)^{1/4} \qquad m_{\nu} \simeq \frac{M_{D}^{2}}{M_{M}}$

Provide a dark-matter candidate

Oscillations of RH neutrinos can account for baryon asymmetry of the universe [Akhmedov, Rubakov, Smirnov]

Potentially, physics of RH neutrinos can be tested by experiments

Roles of three RH neutrinos

One RH neutrino N_1 □ Candidate of Dark Matter

Other two RH neutrinos N_2 , N_3 **Explain neutrino oscillation data via seesaw mechanism Explain BAU via sterile neutrino oscillation**

In this talk,

we show the connection between BAU and low energy CPV in neutrino oscillation

Takehiko Asaka (Niigata Univ.)

BARYOGENESIS VIA STERILE NEUTRINO OSCILLATION

Akhmedov, Rubakov, Smirnov '98 TA, Shaposhnikov '05

2009/5/21(Thu)

Baryon asymmetry of the universe (BAU)

$$\frac{n_B}{s}\Big|_{obs} = (8.81 \pm 0.23) \times 10^{-11}$$

Baryon Number B= (# of baryons) - (# of anti-baryons) \mathcal{N}_B : baryon number density

S : entropy density

Sakharov's conditions (1967)

- (1) Baryon number B is violated
- (2) C and CP symmetries are violated
- (3) Out of thermal equilibrium

[WMAP 5years]

Strumia 06

Baryogenesis in the MSM

B and L violations

B+L) violation due to sphaleron for T>100GeV

CP violation

1 CP phase in the quark-mixing (CKM) matrix

 $CPV \propto J_{CP}(m_t^2 - m_c^2)(m_t^2 - m_u^2)(m_c^2 - m_u^2)(m_b^2 - m_s^2)(m_b^2 - m_d^2)(m_s^2 - m_d^2) / T_{EW}^1 \sim 10^{-1}$

\rightarrow too small

Out of equilibrium

[Kajantie, Laine, Rummukainen, Shaposhnikov]

- **Strong 1st order phase transition if** $M_H < 72 \text{GeV}$
 - **but** $M_H > 114.4 \text{GeV} (\text{exp.})$
- \rightarrow not satisfied

We have to go beyond the MSM !!

Baryogenesis in the vMSM

B and L violations

- **G** (B+L) violation due to sphaleron
- □ L violation due to Majorana masses
 Majorana masses < 100 GeV
 → negligible for T>100 GeV

$$L = -\frac{M_I}{2}\overline{N_I}N_I^c + \text{h.c.}$$

C and CP violations

- **1** CP phase in quark sector
- **G** 6 CP phases in lepton sector,

which can induce large CPV effects

11

Baryogenesis conditions

Out of equilibrium

- No 1st order EW phase transition as in the MSM
- But, sterile neutrinos can be out of equilibrium
 - if Yukawa couplings are small enough
 - $\bullet\, To$ ensure this condition up to T ${\sim}\, 100 GeV$

<u>Conclusion</u>: The vMSM can potentially realize all three conditions for baryogenesis

Akhmedov, Rubakov, Smirnov '98

- Idea: Sterile neutrino oscillation is a source of BAU
- Sterile neutrinos are created and oscillate with CPV
- The total lepton number is zero but is distributed between active and sterile neutrinos
- The asymmetry of active neutrinos is transferred into baryon asymmetry by sphaleron effects

First step: at F² order

 Initially, N2 and N3 are absent
 N2 and N3 are produced Lα via scatterings

N2 and N3 oscillate N2 N3

Medium effects

Osc. Starts at $T_L \approx (M_P \Delta M_{32}^2)^{1/3}$

Second step: at F⁴ order [TA, Shaposhnikov]

Active flavor asymmetries are generated

 $\Delta L_e \neq 0 \ \Delta L_\mu \neq 0 \ \Delta L_\tau \neq 0$ $\Delta L_{tot} = \Delta L_e + \Delta L_\mu + \Delta L_\tau = 0$ $\Delta N_{tot} = 0 \ \Delta N_I = 0$

15

Evolution rates of L_{α} and L_{α} are different due to CPV in

Final step: at F⁶ order

 Total asymmetries in active and sterile sectors are generated.

 $\Delta L_{\text{tot}} \neq 0 \ \Delta N_{\text{tot}} \neq 0$ $\Delta L_{\text{tot}} + \Delta N_{\text{tot}} = 0$

Evolution rates of N_I and $\overline{N_I}$ are different and CPV in

Key points

Baryogenesis via sterile neutrino osc.

Evolution of each asymmetries

Figure 5: Evolution of asymmetries in terms of $z = T_L/T$. Here we take $M_3 = 3$ GeV, $\Delta M_{32}^2/M_3^2 = 10^{-8}$, $\xi = +1$, $\sin \theta_{13} = 0.2$, $\phi = 0$, $\omega = \pi/4$ and $\delta = 3\pi/2$.

Figure 6: Evolution of asymmetries in terms of $z = T_L/T$. Here we take $M_3 = 3$ GeV, $\Delta M_{32}^2/M_3^2 = 10^{-8}$, $\xi = +1$, $\sin \theta_{13} = 0.2$, $\phi = 0$, $\omega = \pi/4$ and $\delta = 3\pi/2$.

$$T_L \approx (M_P \Delta M_{32}^2)^{1/3}$$

Evolution of asymmetries

Shaleron converts ΔL partially into baryon asymmetry

Kuzmin, Rubakov, Shaposhnikov

Takehiko Asaka (Niigata Univ.)

BAU AND LOW-ENERGY NEUTRINO PARAMETERS

TA, H. Ishida (in preparation)

2009/5/21(Thu)

20

The vMSM

- **RH neutrinos** N_1, N_2, N_3 with $M_I < 100 \text{GeV}$ $\delta L = i \overline{N_I} \partial_\mu \gamma^\mu N_I - F_{\alpha I} \overline{L_\alpha} N_I \Phi - \frac{M_I}{2} \overline{N_I} N_I^c + \text{h.c.}$
- Roles
 - One RH neutrino N1
 - Candidate of Dark Matter
 - Yukawa couplings are highly suppressed

Dother two RH neutrinos N2, N3

- Neutrino oscillation data
- Baryogenesis via sterile neutrino oscillation

Relation between BAU and v osc. data???

Neutrino Yukawa Matrix for N2,N3

Takehiko Asaka (Niigata Univ.)2009/5/21 (Thu)

22

Kinetic equations in ARS

Sterile neutrinos:

Akhmedov, Rubakov, Smirnov '98

 ρ_{NN} : density matrix (2 x 2 matrix) for N2 and N3 its diagonal elements are occupation numbers

$$i\frac{d\rho_{NN}}{dt} = \left[H_{NN}^{0} + V_{N}, \rho_{NN}\right] - \frac{i}{2}\left\{\Gamma_{NN}^{d}, \rho_{NN} - \rho_{NN}^{eq}\right\}$$

Effective potential and destruction rate

$$V_{N} = \frac{T}{8} F^{\dagger} F \qquad \Gamma_{NN}^{d} = 0.04 \ V_{N} \qquad \frac{N \ ' \ L \ '_{1} N}{F} F^{\dagger}$$

$$F^{\dagger} F = D_{N}^{1/2} \Omega^{\dagger} D_{\nu} \Omega D_{N}^{1/2} \iff \text{independent on } U_{MNS}$$
Produced BAU is insensitive to
low-energy neutrino parameters !

Baryogenesis via sterile neutrino osc.

TA, Shaposhnikov '05

Include the new effects

Exchange of asymmetries between sterile neutrinos and active neutrinos (+ charged leptons)

Kinetic equations in AS

TA, Shaposhnikov '05

Sterile neutrinos:

$$i\frac{d\rho_{NN}}{dt} = \left[H_{NN}^{0} + V_{N}, \rho_{NN}\right] - \frac{i}{2}\left\{\Gamma_{NN}^{d}, \rho_{NN} - \rho_{NN}^{eq}\right\} + \frac{i\sin\phi}{4}T \cdot F^{\dagger}(\rho_{LL} - \rho_{LL}^{eq})F$$

Active neutrinos:

$$i\frac{d\rho_{LL}^{diag}}{dt} = [H_{LL}^0 + V_L, \rho_{LL}^{diag}] - \frac{i}{2} \{\Gamma_{LL}^d, \rho_{LL}^{diag} - \rho_{LL}^{eq}\} + \frac{i\sin\phi}{4} T \cdot F(\rho_{NN} - \rho_{NN}^{eq})F^{\dagger}$$

Does depend on MNS matrix ! → sensitive to low-energy neutrino parameters !

Let us see how BAU depends on Dirac phase δ ! $\phi = 0$, Im $\omega = 0$

Dirac phase δ

Regions accounting for BAU

Normal hierarchy

$$M_3 = 3 \text{ GeV}$$

 $M_2^2 = M_3^2(1 - 10^{-8})$
 $\sin \theta_{13} = 0.2$

Summary

- Connection between neutrino masses and BAU is attractive and important idea
- Conventional seesaw scenario (M>10⁹GeV) [Seesaw + Leptogenesis]
 - \rightarrow Natural framework of SUSY GUT \cdots
 - \rightarrow Exp. test for RH neutrinos is impossible
- Connection can be obtained even with M<10²GeV (vMSM) [Seesaw + Baryogenesis via sterile neutrino osc.]
 - \rightarrow Such sterile neutrinos might be tested
 - \rightarrow Connection between BAU and CPV in neutrino oscillations

Inputs

Normal hierarchy of (active) neutrino masses

$$m_{3} = \sqrt{\Delta m_{atm}^{2} + \Delta m_{sol}^{2}}, m_{2} = \sqrt{\Delta m_{sol}^{2}}, m_{1} = 0 \qquad \Delta m_{atm}^{2} = 2.5 \times 10^{-3} \,\text{eV}^{2}$$

$$\theta_{23} = \pi / 4, \ \theta_{12} = \pi / 5 \qquad \sin \theta_{13} \le 0.2 \qquad \Delta m_{sol}^{2} = 8.0 \times 10^{-5} \,\text{eV}^{2}$$

$$\delta, \phi$$

$$M_{3} = 3 \text{GeV}, \ M_{2}^{2} = M_{3}^{2} (1 - 10^{-8}) \qquad F = O(10^{-8})$$
$$\Theta = O(10^{-6})$$

 $\xi = \pm 1$

Scale of Majorana mass

$$M_{\nu} = -M_{D}^{T} \frac{1}{M_{M}} M_{D} \implies F^{2} = M_{M} M_{\nu} / \langle H \rangle^{2}$$

Typical temperature TL

Sterile neutrino oscillation

Flavor mixing of sterile neutrinos is induced from thermal potential

$$V_N \propto F^{\dagger}F = D_N^{1/2} \Omega^{\dagger} D_{\nu} \Omega D_N^{1/2}$$
$$\Omega = \begin{pmatrix} 0 & 0\\ \cos \omega & -\sin \omega\\ \xi \sin \omega & \xi \cos \omega \end{pmatrix}$$
$$\omega \colon \text{complex number}$$
$$\xi = \pm 1$$

BAU vanishes when there is no sterile neutrino oscillation !

Figure 2: Baryon asymmetry in terms of the sterile neutrino mass M_3 . (the solid-red line). The horizontal dashed-green lines show the 3σ range of BAU. Here we take $\Delta M_{32}^2/M_3^2 = 10^{-8}$, $\phi = 0, \ \delta = 3\pi/2$ and $\omega = \pi/4$.

Figure 9: Baryon asymmetry in terms of the neutrino mixing angle $\sin \theta_{13}$ in the MNS matrix (the solid-red line). The horizontal dashed-green lines show the 3σ range of BAU. Here we take $M_3 = 3$ GeV, $\sin \theta_{13} = 0.2$, $\phi = 0$, $\delta = 3\pi/2$ and $\omega = \pi/4$.

Eigenvalue of Yukawa matrix

CPV in neutrino oscillation

$$P(v_{\mu} \rightarrow v_{\tau}) - P(\overline{v}_{\mu} \rightarrow \overline{v}_{\tau}) = 4J_{CP}^{\nu}A$$

$$J_{CP}^{\nu} = s_{12}s_{13}s_{23}c_{12}c_{23}c_{13}^{2} \cdot \sin \delta$$
$$A = \sin\left(\frac{\Delta m_{12}^{2}L}{2E}\right) + \sin\left(\frac{\Delta m_{23}^{2}L}{2E}\right) + \sin\left(\frac{\Delta m_{31}^{2}L}{2E}\right)$$

CPV in neutrino oscillations measure the Dirac phase δ !