Searches for New Phenomena and the Standard Model Higgs Boson at CDF

Song-Ming Wang Academia Sinica

May 21st 2009

Outline

•Introduction

•Results from searches :

•Supersymmetry

•Non-Supersymmetry

•New Heavy Resonances

•New Fermions

•Higgs Boson

•Summary

Standard Model is GREAT but NOT ENOUGH !

- •SM withstood rigorous experimental tests over past ~30 years
- •All predicted particles are discovered except the Higgs boson
- •Yet many questions SM does not answer:
 - •Large separation between Electroweak and Planck scale
 - •No accounting of Gravity
 - •Large asymmetry between particles and anti-particles
 - •What is the source of dark matter
- •Extension or modification of SM is inevitable
- •Strong interest in HEP community to search for the last SM predicted particle and signs of physics beyond the SM.

Search Strategies

- •SM Higgs boson or possible new physics are expected to be produced at very small rate compare to most SM processes
- •Need to device strategies to conduct searches :

Tevatron : *Still Running and Running and...*

Google Maps

•Delivered ~6.5 fb⁻¹ per experiment (~1.8 fb⁻¹ in 2008)

•CDF/D0 : ~5.5 fb⁻¹

•Current rate : 50-60 pb⁻¹ per week

•Peak lumi : ~300-350e30 cm²s⁻¹

• Present results using data samples with $\int L = -2 - 3.6 \text{ fb}^{-1}$

CDF Experiment

CDF collaboration :
~600 scientists from 14 countries
CDF detector :
A general multi-purpose detector
Consists of silicon tracker, central tracker, solenoid, calorimeter, muon chambers
Operating well, collecting data at ~80-90% efficiency

May 21st 2009

Search for Supersymmetry (SUSY)

- •An extensions to the SM
- •Postulate symmetry between boson and fermions
- •Every SM particle has a SUSY partner with same quantum numbers except spin (differ by 1/2)

 $e, v, u, d, ...(spin 1/2) \Rightarrow \tilde{e}, \tilde{v}, \tilde{u}, \tilde{d}, ... (spin 0)$ $\gamma, W^{\pm}, Z^{0}, g, ...(spin 1) \Rightarrow \tilde{\chi}^{0}_{1,2,3,4}, \tilde{\chi}^{\pm}_{1,2}, \tilde{g} (spin 1/2)$

Search for Chargino & Neutralino Production (I)

- • $\tilde{\chi}_2^{\ 0}, \tilde{\chi}_1^{\ \pm}$ are some of the lightest SUSY particles \Rightarrow may have relatively large production rate
- Pair production may lead to multiple leptons and large missing transverse energy (MET) in final state (R-parity conservation)
- •Search for $\tilde{\chi}_2^{\ 0} \tilde{\chi}_1^{\ \pm}$ production in final state with 3 charged leptons and large MET
 - •Require 2 isolated leptons (e or μ)
 - •Additional isolated e/μ or track
 - •Allow acceptance for τ in leptonic decay or single prong hadronic decay

•DY, Di-bosons, jets faking leptons, conversions

 $\widetilde{\chi}_1^{\ 0}$: LSP

 $\widetilde{\chi}_1^0$

- •Data consistent with predicted background
 - •Ndata=7
 - •Nexpect=6.4

- •Limits depend on relative neutralinoslepton masses
 - $m(\widetilde{\chi}_2^{\ 0})$ >m(slepton) : increases branching ratio to e/μ
 - $m(\tilde{\chi}_2^{0}) \approx m(\text{slepton})$: reduce acceptance to low Pt leptons

•Exclude chargino mass below 145 GeV for $m_0=60$ GeV

Searches for New Phenomena & the SM Higgs Boson at CDF

Search for Chargino & Neutralino Production (II)

 χ_2^0

W*

- •Search in parameter space where:
 - $m(\tilde{\chi}_{2}^{0}) > m(Z^{0}) + m(\tilde{\chi}_{1}^{0})$
 - $m(\tilde{\chi}_{1}^{\pm}) > m(W^{\pm}) + m(\tilde{\chi}_{1}^{0})$
- •Assume $\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm}$ decay to on shell Z,W
- •Consider decay channels:
 - • $Z \rightarrow e^+e^-$, $W \rightarrow qq'$
- Final state signature:
 - $e^+e^-(\text{from } Z) + 2\text{jets} + \text{MET}$
- Set upper limit on $\sigma(\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm} \rightarrow WZ\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}) \text{ at } \sim 1\text{pb}$

May 21st 2009

Search for Third Generation Squarks

- •Large mixing between the L- and R-handed weak eigenstates
 - •Stop : due to large top quark mass
 - •Sbottom : large mixing occurs at high $tan\beta$
- • \Rightarrow one of the stop and sbottom quarks can be light
- Stop & sbottom can be pair produced at Tevatron
- •Or produce from gluino decay:

•
$$\tilde{g} \rightarrow t\tilde{t}$$

•Rate may be very small at Tevatron, but possible at LHC

•
$$\tilde{g} \rightarrow b\tilde{b}$$

Search for Stop in Top-Like Signal

- •Search for stop pair produced
- •Assume $m(stop) \le m(t) \& m(stop) \ge m(\tilde{\chi}_1^{\pm}) + m(b)$
- •Consider decay channel:

•stop $\rightarrow b \widetilde{\chi}_{1}^{\pm} \rightarrow b l \nu \widetilde{\chi}_{1}^{0}$

- •Final state signature similar to tt-bar production in the di-lepton decay channel : *llbb*+MET
 - •Main background is tt-bar production
- •Perform search separately with b-tagged & un-tagged events
- •Reconstruct stop mass and use to discriminate against background

Searches for New Phenomena & the SM Higgs Boson at CDF

Search for Sbottom from Gluino Decay

ng Wang, PPP

iena & the SM

- •At Tevatron gluino pair production can be large
- $\tilde{g} \rightarrow \overline{b}\tilde{b}$ if $m(\tilde{g}) > m(\tilde{b}) + m(b)$
- •Assume :
 - $B(\tilde{g} \rightarrow \overline{b}\tilde{b}) = 100\%$
 - $B(\tilde{b} \rightarrow b \tilde{\chi}_1^0) = 100\% \ (\tilde{\chi}_1^0: \text{LSP})$
- Select events with large MET and ≥ 2 b-tagged jets
- •2 Neural-Nets (NN) trained to separate heavyflavor multi-jet and tt-bar from signal

Search for GMSB in Di-Photon+MET

•In Run 1 CDF observed an event with $ee\gamma\gamma$ +MET in the final state •Di-photon+MET signature is rare in SM processes •Possible SUSY scenario :

- •GMSB (Gauge Mediated Symmetry Breaking)
- \tilde{G} is LSP, $\tilde{\chi}_1^0$ is NLSP, $\tilde{\chi}_1^0 \rightarrow \tilde{G}\gamma$
- χ_1 can be long-lived

•CDF has searched for GMSB in two cases:

- $\Gamma(\tilde{\chi}_1^0) > 2$ ns (presented in PPP2007)
- $\Gamma(\tilde{\chi}_1^0) < 2$ ns (present today)

CDF Run1

Search for GMSB in Di-Photon+MET

- •Select events with 2 isolated central γ and large MET
- •Background:
 - $\gamma\gamma$, γ +jet (jet mis-Id as γ)
 - •W(\rightarrow ev) γ (e mis-Id as γ)
 - •W(\rightarrow ev)+jet (e, jet mis-Id as γ)
- Optimize cuts to reduce background
 High MET significant
 Large Ht(ΣEt(γ)+MET)
 γγ : not back-to-back
 CDF Run II Preliminary
 Expected exclusion region with γγ+ξ and 2.6 fb⁻¹ Observed exclusion region with γγ+ξ and 2.6 fb⁻¹ Observed exclusion region with γ+ξ and 2.6 fb⁻¹ Observed exclusion region with γ-ξ and 2.6

Non-Supersymmetry : New Heavy Resonance

Search for X→WW or WZ

- •Look for di-boson resonance in final state : *lqq*+MET
- W/Z hadronic decay has larger branching fraction over leptonic mode, but larger background

•W+jets, QCD multi-jet, tt-bar, Di-boson

• Selection cuts are separately optimized to search for RS Graviton, Z' and W'

Search for X→ZZ

 $\begin{array}{l} M(ee) &= 96.5 \ \text{+-1.3 GeV} \\ M(jj) &= 77.8 \ \text{+-6.5 GeV} \end{array}$

Non-Supersymmetry : New Fermions

4th Generation Down-Type Quark: b'

- Search for pair production of generic 4th-gen. down-type quark (b')
- •Assume B(b'→Wt)=100%
- With t \rightarrow Wb, \Rightarrow leads to WWWWbb final state
- Leptonic W decay can result in a pair of same-sign charge leptons ⇒ provide clean signature for search

•Event selection:

- •A pair of same-sign lepton (e,μ)
- • \geq 2 jets, \geq 1 b-tagged jet
- •Large MET (MET>20 GeV)
- •Dominant background:
 - •W+jets, tt-bar, DY, Diboson
- •Search for signal in jet-multiplicity distribution
 - •Expect signal has high jet-multiplicity

Number of Reconstructed Jets

Song-Ming Wang, Searches for New Phenomena & the

4th Generation Down-Type Quark: b'

95% Limits for b' (CDF Run II Prelim 2.7/fb)

- •Set 95% C.L. limit on b' mass to be m(b')>325 GeV
- •Also interpret results in the search for exotic top partners (B, T_{5/3}) in the context of composite Higgs model (R. Contino, G. Servant, JHEP 0806:026 (2008))
- •Set 95% C.L. limit on mass of B and $T_{5/3}$ to be >351 GeV

SM Higgs Boson Productions and Decays

SM Higgs Boson Search Channels at CDF

	Production	Higgs Decay	Other Decays	Signature	
Light Higgs	gg→H	Η→ττ		Di-tau	
	qq'→W*→WH	H→bb	$W \rightarrow l v$	lep+MET+2b	
	qq'→Z*→ZH	H→bb	$Z \rightarrow l^+ l^-$	<i>ll</i> + 2b	
	W/Z+H	H→bb	$Z \rightarrow vv, W \rightarrow lv$	MET+2b	
			(l not ID)		
	W/Z+H	H→bb	W,Z→qq	2q + 2b	
	W/Z+H	Η→ττ	W,Z→qq	$2\tau + 2q$	
	(VBF) qqH	Η→ττ		$2\tau+2q$ (2 forward jets)	
	ttH	H→bb	t→bW	4b	
Heavy Higgs	gg→H	H→WW*	$W \rightarrow l v$	2l + MET	
	qq'→W*→WH	H→WW*	$W \rightarrow l v$	like-sign lepton pair, or trilepton + MET	
	W/Z+H	H→WW*	W,Z all decay	2 <i>l</i> +MET	
		Song-Ming Wang	channels	+lepton(s) or jets	

Search for Higgs Boson in MET+Jets

- Search for Higgs boson produced in association with a W or Z boson
- Signature : Large MET + *b*-jets

Event Selection:

- •No identified e, μ
- •Large MET
- •2 or 3 jets (3rd jet allows e, τ from $W \rightarrow lv$)
- •≥1 b-tagged jet

Main Background:

- •QCD heavy-flavor, mis-tag
- •W/Z + heavy-flavor jets
- tt-bar
- •Di-boson

Dijet Invariant Mass, Signal Region, ST+ST

Train separate Neural-Net algorithm:

- •Discriminate :
 - •QCD from non-QCD+Higgs
 - non-QCD from Higgs

Search for Higgs Boson in MET+Jets

Search for Higgs Boson in H→W⁺W⁻

<u>Common Signature:</u> ≥2 high Pt isolated leptons and large MET

Song-Ming W

Searches for New Phenomena

Background:

- •WW (dominant for opposite-sign search), WZ, ZZ, Wγ
- W+jets (jet fake as a lepton, dominant background for same-sign search)
- tt-bar

Search for Higgs Boson in H→W⁺W⁻

•Use Neural-Net algorithm to separate Higgs signal from background

CDF Combined Search Results

•@ 115 GeV/c² : Obs (Expect) = $3.6 (3.2) \times SM$

•@ 160 GeV/c² : Obs (Expect) = 1.4 (1.6) x SM

Tevatron Combined Search Results

•@ 115 GeV/c² : Obs (Expect) = 2.5 (2.4) x SM

•Exclude mass region from 160 to 170 GeV/ c^2

Summary

- Presented several search results using data samples up to \sim 3-4 fb⁻¹
 - Many other results are not covered in this talk, can be found at :
 - <u>http://www-cdf.fnal.gov/physics/exotic/exotic.html</u>
 - <u>http://www-cdf.fnal.gov/physics/new/hdg/hdg.html</u>
- Our searches are now excluding away larger portions of parameter spaces in some new physics models.
- •CDF & D0 combined Higgs search exclude Higgs in the mass range 160-170 GeV, with data sample $\leq 4 \text{ fb}^{-1}$
- Tevatron will most likely continue to run in 2010, and (rumors) may also run in 2011.
 - May expect another \sim 2-4 fb⁻¹ by end of Run II
- Will hear more exciting results from the Tevatron and new results from LHC @ PPP2011 !

Back-Up

Search for High Mass µµ Resonance

•Di-lepton signature can explore many models :

•Z', SUSY(RPV), RS Graviton,...

•Look for resonance or enhancement in mass spectrum

•Analyze 2.3 fb⁻¹ of data

•2 μ with Pt>30 GeV

•Look for resonance in $m(\mu\mu)$ >100 GeV

•Dominant background is Drell-Yan production

Sneutrino mass limit		Z' mass limit		Graviton mass limit	
CDF II preliminary	L = 2.3 fb ⁻¹	CDF II preliminary	$L = 2.3 \text{ fb}^{-1}$	CDF II preliminary	$L = 2.3 \text{ fb}^{-1}$
$\lambda^2 \bullet BR$	Mass Limit, 95% CL (GeV/c ²)	Model	Mass Limits, 95% CL (GeV/c ²)	Graviton k/M _{Pl}	Mass Limit, 95% CL (GeV/c ²)
0.01	866	Z' (SM)	1030	0.1	921
0.005	810	Ζ' (η)	904	0.07	824
0.002	731	Ζ' (χ)	892	0.05	746
0.001	662	Ζ' (ψ)	878	0.035	651
0.0005	541	Z' (N)	861	0.025	493
0.0002	441	Z' (sec)	821	0.015	409
0.0001	397	Z' (I)	789	0.01	293

World's tightest constraints !

Search for Stop in Di-lepton Final State

- •Assume m(stop)<m(t) & m(stop)<m($\tilde{\chi}_1^{\pm}$)
 - •Undergo 3 body decay: $\tilde{t} \rightarrow b l \tilde{v} (\tilde{v}: LSP) \bar{p}$
- Final state also consists of : *llbb*+MET
- •Leptons and b-jets are softer compare to previous search
- •Search in 3 di-lepton channels (ee,eµ,µµ), no b-tagging required

Search for Heavy Top : t'

•Assume:

- t' can be strongly pair produced at Tevatron
- m(t')>m(t) and m(t')-m(b')<m(W)
 - • \Rightarrow t' \rightarrow Wq (q=d,s,b)
- •Search in the lepton+jets final state
 - $t'\bar{t}' \rightarrow WqWq \rightarrow l\nu qqqq$

• Reconstruct t' mass (M_{reco}), search for signal in M_{reco} vs H_T

• $H_T = \Sigma Et(jet) + Et(lep) + MET$

ang, PPP2009 Searches for New Phenomena & the SM Higgs Boson at CDF

Higgs Boson Search Projection

Higgs Boson Search Projection

Tevatron Projection

Search for SUSY in Delayed Photon Signature

•CDF search for heavy long lived particle decaying (inside detector) into γ •Focus on GMSB model where lifetime of $\tilde{\chi}_1^0$ (NLSP) is free parameter

- $\tilde{\chi}_1^0$ is long lived and decays into γ and \tilde{G} • γ from $\tilde{\chi}_1^0$ decay will arrive at face of detector with time delayed relative to
- promptly produced γ

- In GMSB, gravitino \Tilde{G} is LSP (escape undetected)
- If $\widetilde{\chi}_1^0$ is NLSP, then $\widetilde{\chi}_1^0 \rightarrow \gamma + \widetilde{G}$
- •Final state consists of γ+Missing E_T+X in SUSY production under GMSB
- Select events with γ +MET+jet signature :
 - • $Et(\gamma) > 30 \text{ GeV}$
 - •Et(jet) > 35 GeV
 - •MET > 40 GeV
- Arrival time of γ is measured by the timing system of the EM calorimeter

