Measurements of Neutrino-Electron Scattering Cross-Section with CsI(TI) Scintillating Crystal Detector at the Kuo-Sheng Reactor Neutrino Laboratory

Muhammed Deniz^{1,2}

1: IoP, Academia Sinica, Taiwan 2: METU, Ankara, Turkey

On behalf of TEXONO Collaboration

The Eight Particle Physics Phenomenology Workshop (PPP8)

NCKU, Tainan, 20-23 MAY 2009

OUTLINE

- TEXONO Physics Program
- $\overline{v}_{e} e^{-}$ Scattering Motivation
- TEXONO Experiment CsI(TI) Array
- Event Selection & Data Analysis Outline
- Background Understanding & Suppression
- Preliminary Results
- Plans & Summary

TEXONO Physics Program

- TEXONO Collaboration : Taiwan(AS, INER, KSNPS, NTU), China(IHEP, CIAE, THU, NJU), Turkey(METU), India(BHU)
- Program : Low Energy Neutrino & Astroparticle Physics

- [1] Magnetic Moment Search at $\sim 10 \text{ keV} \rightarrow \text{PRL 2003}$, PRD 2007
- [2] $\sin^2 \theta_W$ measurement at ~ MeV range \rightarrow This Talk Preliminary Results [3] $v_e N$ Coherent Scattering & WIMP Search at sub keV range

$\mathbf{\bar{v}}_{e}$ – $e^{\scriptscriptstyle -}$ Scattering

 $(R_{CC}:R_{NC}:R_{Int})$

 $R_{SM}(\nu_{e}e) \rightarrow (1.83:0.17:0.99)$

A basic SM process with CC, NC & Interference

Not well-studied in reactor energy range ~
MeV

Experimental Approach -- CsI(TI) Crystal Scintillator Array:

- $\textcircled{\mbox{o}}$ proton free target (suppress $\overline{v_e}\mbox{-}p$ background)
- scale to ϑ (tons) design possible
- good energy resolution, alpha & gamma
 PSD
- allows measure energy, position, multiplicity

more information for background understanding & suppression

• focus at >3 MeV recoil energy range \rightarrow less ambient background & reactor ∇_{e} spectra well known.

$$\delta[\sin^2 \theta_{\rm W}] \sim \left\{ \begin{array}{c} 0.14 \cdot \ \delta[\xi(\bar{\nu}_{\rm e}e)] \\ 0.32 \cdot \ \delta[\xi(\nu_{\rm e}e)] \end{array} \right\} \xi = \frac{R_{expt}(\nu)}{R_{\rm SM}(\nu)}$$

Kou-Sheng Reactor Power Plant

Kuo-Sheng Nuclear Power Station : Reactor Building

KS NPS -II : 2 cores × 2.9 GW

Total flux about 6.4x10¹² cm⁻²s⁻¹

KS v Lab: 28m from core #1

30 mwe overburden

Kuo-Sheng Reactor Neutrino Laboratory

Inner Target Volume & Shielding

CsI (TI) Array : Basic Performance

Event Selection

Reactor OFF $\underset{0}{\mathsf{R}_{\mathsf{exp}}}_{\mathsf{day}}^{\mathsf{day}^{-1}} \mathsf{kg}^{-1} [\mathsf{10keV}]^{-1}$ 4 Ω $\mathbb{R}_{exp}^{exp}(day^{-1}kg^{-1}[10keV]^{-1})$ ····· CRV-Tag All Vetos ¹³⁷Cs ⁶³Cu 2 208-10 13 5 7 9 15 3 11 Energy (MeV) 1 -1 10 --- Raw Data --- CRV -2 10 MHV ---- PSD -3 Z-Pos Cut 10 -4 102000 3000 4000 5000 1000 6000 7000 8000 0 Energy (keV)

CUTS (3 - 8 MeV)	Efficiencies DAQ Live Time Eff. 88.78%		
CRV	92.7 % 99.9 % ~100 % 80% 77.1 %		
MHV			
PSD			
Z-pos			
Total			

$$\frac{S}{B} \cong \frac{1}{15}$$
 at 3 MeV

Background Understanding: Due to ²⁰⁸TI and Cosmic I nefficiency

Background Prediction via PAIR PRODUCTION

Residual Background Understanding & Suppression Idea -- Use Multiple Crystal Hit (MH) spectra to predict Single Crystal Hit (SH) Background to the neutrino events Two Background Sources : Cosmic Rays and ²⁰⁸TI $\frac{MH_{non\ cos}}{MH_{tot}})_{ON,OFF} = 1 - \varepsilon = \left(\frac{SH\left[\nu BKG\left(\cos\right)\right]}{SH_{tot}}\right)_{ON,OFF}$ **Cosmic Ray** (3-8 MeV) SH[vBKG(2614 + 583)] SH[2614 + 583(MC)]208**TI** MH[2614;583(data)] MH[2614;583(MC)](3-3.5 MeV) ε_{CRV} ~ 93 % **BKG(SH)** Sources combined **BKG(SH)** from three measurements: Direct Reactor OFF(SH) spectra Energy (MeV) Tl-208/Cu cosmic Predicted BKG(SH) from OFF(MH) ~ 35% Tl 3.0 - 3.5~ 65% (γ,γ) Predicted BKG(SH) from ON(MH) 3.5 - 6.5~ 100%

v = ON(SH) - BKG(SH)

Studies of Neutrino-Electron Scattering

6.5 - 8.0

~ 45% Cu

 $(\mathbf{n}, \boldsymbol{\gamma})$

~ 55%

Cross Section & Weinberg Angle Cross-Section: $R = [1.18 \pm 0.29 (stat) \pm 0.08 (sys)] \times R_{sm}$ $\sin^2 \theta_w = 0.264 \pm 0.040 (stat) \pm 0.010 (sys)$ Weinberg Angle: 0.015 9A $\chi^2 / dof = 9.9/9$ SM TEXONO 0.0125 Best-Fit 0.4 R_{expt} (day⁻¹kg⁻¹[500keV]⁻¹) Sys. Error 0.01 0.2 0.0075 0.005 gv 0.4 -0.2 0.2 -0.4 0.0025 _ I¶ I III нŦн -0.2 0 н н LSND -0.0025Sin²θ_w -0.0050 0.5 -0.00756.5 7 7.5 3 3.5 5.5Energy (MeV)

Summary Table with Other Experiments

	Experiment	Energy (MeV)	Events	Cross-Section	sin²θ _w
v _e -e-{	LAMPF [Liquid Scin.]	7 - 60	236	$[10.0 \pm 1.5 \pm 0.9]$ x E _{ve} 10 ⁻⁴⁵ cm ²	0.249 ± 0.063
	LSND [Liquid Scin.]	10 - 50	191	$[10.1 \pm 1.1 \pm 1.0] \\ x E_{ve} 10^{-45} cm^2$	0.248 ± 0.051
v _e −e-	Savannah-River [Plastic Scin.]	1.5 - 3.0 3.0 – 4.5	381 71	[0.86 ± 0.25] x σ _{V-A} [1.70 ± 0.44] x σ _{V-A}	0.29 ± 0.05
	Savannah-River Re-analysed (PRD1989, Engel&Vogel)	1.5 – 3.0 3.0 – 4.5	N/A	[1.35 ± 0.4] x σ_{SM} [2.0 ± 0.5] x σ_{SM}	N/A
	Krasnoyarsk (Fluorocarbon)	3.15 – 5.18	N/A	[4.5 ± 2.4] x 10 ⁻⁴⁶ cm ² /fission	0.22 ± 0.75
	Rovno [Si(Li)]	0.6 – 2.0	41	[1.26 ± 0.62] x 10 ⁻⁴⁴ cm ² /fission	N/A
	MUNU [CF ₄ (gas)]	0.7 – 2.0	68	1.07 ± 0.34 events day ⁻¹	N/A
	TEXONO [CsI(TI) Scin.]	3 - 8	~ 450	[1.18 ± 0.29 ± 0.08] x R _{SM}	0.264 ± 0.042

Study of Systematic Uncertainties Approach – Use non-v events for demonstration

²⁰⁸TI Peak Events 4 Count kg⁻¹day⁻¹ 3.75 3.5 3.25 3 2.75 2.5 2.25 2 25 50 75 100 150 175 200 0 125 Time (days)

²⁰⁸TI (SH) Prediction

BKG – Pred.

ON-OFF Stability < ~0.5%

- Random trigger events for DAQ & Selection Cuts
- **Stability** of **TI-208 (2614 keV)** peak events

Cosmic Induced BKG(SH) Prediction < ~1.2%

- Successfully **Predict Cosmic BKG** at **NEUTRINO FREE REGION**
- TI-208 Induced BKG(SH) Prediction <~3%
- Successfully Predict TI-208 Induced BKG(SH) >3MeV at Reactor OFF periods

Successfully **Predict TI-208** peak intensity for both

Reactor **ON/OFF** with the same tools (MC)

Interference Term

Neutrino Magnetic Moment and Charge Radius

Neutrino Magnetic Moment

$$R(ON - BKG) = R(SM) + \kappa^{2} \times R(MM \ [\mu_{v} = 10^{-10} \ \mu_{B}])$$

$$\kappa^{2} = 0.9 \pm 2.51(\text{stat}) \pm 0.71(\text{sys})$$

$$\mu_{v} < 2.4 \times 10^{-10} \times \mu_{B}$$
at 90 % C. L.

Neutrino Charge Radius

$$\sin^2 \theta_W \rightarrow \sin^2 \theta_W + (\sqrt{2}\pi\alpha / 3G_F) \left\langle r_{\overline{\nu}_e}^2 \right\rangle$$

$$\left\langle r_{\bar{\nu}_{e}}^{2} \right\rangle = \left[1.23 \pm 1.71 (stat) \pm 0.36 (sys) \right] \times 10^{-32} \ cm^{2}$$

 $\chi^2 / dof = 9.8/9$

Summary and Status

- 200 kg CsI(TI) Scintillating Crystal Array Analysis Threshold at 3 MeV
- Preliminary Results:
 - $\sigma(\bar{\nu_e} e^-)$ with $\sim 25\%$ accuracy
 - **Weinberg Angle** with $\sim 15\%$ accuracy
 - verify SM negative interference
 - μ_{ν} sensitivity $\sim 10^{-10}$
 - \square neutrino charge radius sensitivity $\sim 10^{-32}$