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Motivation
■ Energy budget of the Universe

Baryons
4.6%

Dark Matter
23%

Dark Energy
72%

■ 95% of the Universe is made of dark object.
■ It should be stressed that there remains a mystery in the visible 
sector as well. Where did antibaryons go?
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BAU
 Baryon Asymmetry of the Universe (BAU)

KM phase is not sufficient

×
×

phase transition is not 1st order

(1) Baryon(B) violation
(2) C violation

CP violation
(3) out of equilibrium

Sakharov’s conditions  (‘67)

○ sphaleron process
SM case

○ chiral gauge interaction

Extensions of the SM
MSSM, 2HDM, singlet-extended MSSM etc.

Today, we discuss the MSSM baryogenesis (BG).

nB

nγ
=

nb − nb̄

nγ
= (4.7− 6.5)× 10−10 (95% C.L.)

(PDG 08)



Tension in the MSSM BG
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■ The LEP data put a strong constraint on the light Higgs boson.

■ From the EWPT point of view, the light Higgs boson is 
generically favored.

■ In the literatures,              is used
as the practical criterion for
the strong 1st order PT.

⇒ Need to reduce the uncertainties.

On the other hand,

■ We analyze the EWPT in the light Higgs boson scenario 
(mh<114.4 GeV) based on the refined sphaleron decoupling cond.

e.g. no-mixing case

■ vc/Tc>0.9 region or vc/Tc>1.1 region
are completely different.

vC

TC

>∼ 1

But,



Effective potential

The critical bubbles in the MSSM∗

Eibun Senaha

March 2, 2009

In order to evaluate the sphaleron decoupling precisely, we should also know the nucleation
temperature TN . For this purpose, we calculate the critical bubble numerically.

1 Gauge-Higgs system

We consider the gauge-Higgs system in the MSSM. The Lagrangian is reduced to

Lgauge+Higgs = −1

4
F a

µνF
aµν − 1

4
Bµν

µν +
∑

i=d,u

(DµΦi)
†DµΦi − Veff(Φd, Φu), (1.1)

where

DµΦd =

(
∂µ + ig2

τa

2
Aa

µ − i
g1

2
Bµ

)
Φd, DµΦu =

(
∂µ + ig2

τa

2
Aa

µ + i
g1

2
Bµ

)
Φu. (1.2)

Veff is composed of the tree-level and one-loop effective potentials:

Veff(Φd, Φu) = V0(Φd, Φu) + ∆V (Φd, Φu; T ), (1.3)

where the tree-level part is

V0(Φd, Φu) = m2
1Φ

†
dΦd + m2

2Φ
†
uΦu − (m2

3εijΦ
i
dΦ

j
u + h.c.)

+
g2
2 + g2

1

8
(Φ†

dΦd − Φ†
uΦu)

2 +
g2
2

2
(Φ†

dΦu)(Φ
†
uΦd), (1.4)

and one-loop part is

∆V (Φd, Φu; T ) =
∑

A

cA

[
F0(m̄

2
A) +

T 4

2π2
IB,F

(
m̄2

A

T 2

)]
. (1.5)

where

F0(m
2) =

m4

64π2

(
ln

m2

M2
− 3

2

)
, IB,F (a2) =

∫ ∞

0

dx x2 ln
(
1 ∓ e−

√
x2+a2

)
. (1.6)

The classical Higgs fields are parameterized as

Φd(x) =
eiθd(x)

√
2

(
ρd(x)

0

)
, Φu =

ei(θu(x)+ρ)

√
2

(
0

ρu(x)

)
, (1.7)

As we will see in the following, θ ≡ θd + θu is the gauge-invariant physical direction. In
orthogonal to this, we can identify that θ̄ ≡ θd − θu is the unphysical direction which is
associated with the NG modes.
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1-loop:

Tree:

■ The gauge bosons and 3rd generation of quarks/squarks are 
taken into account.

Fitting function:

■ The fitting function is used in our numerical analysis.

■ To discuss the PT we use the effective potential.

ĨB,F (a2) = e−a
N∑

n=0

cb,f
n an, |ĨB,F − IB,F | < 10−6 (N = 40).



Light Higgs boson scenario (LHS)

moment. The rotated Higgs doublets are cast into the form

Φ′
d =







1√
2
(v0 + h′

d + iG0)

G−





 , Φ′
u =







H+

1√
2
(h′

u + iA)





 , (11)

where v0 =
√

v2
d + v2

u ! 246 GeV, A is the CP -odd Higgs boson, H+ is the charged Higgs

boson and (G0, G±) are the NG-bosons. h′
d and h′

u are related to the physical CP -even

Higgs bosons (h, H) via







h′
d

h′
u





 =







cos(β − α) sin(β − α)

− sin(β − α) cos(β − α)













H

h





 , (12)

where α is a mixing angle between hd and hu. It should be noticed that only h′
d possesses

the Higgs VEV in the rotated basis, and we can identify it the SM-like Higgs boson, i.e.,

h′
d = hSM.

At the tree level, the Higgs boson couplings to Z boson normalized to the corresponding

SM values are respectively given by

ghZZ

ghSMZZ
= sin(β − α),

gHZZ

ghSMZZ
= cos(β − α), (13)

ghZA

ghSMZG0

= cos(β − α),
gHZA

ghSMZG0

= sin(β − α). (14)

From Eqs. (11), (12), (13) and (14), one can see that h → hSM, ghZZ → ghSMZZ and ghZA → 0

for sin(β − α) → 1 and H → hSM, gHZZ → ghSMZZ and gHZA → 0 for cos(β − α) → 1.

The former case (“decoupling limit”) is realized by taking mZ $ mA and the latter one

(“antidecoupling limit”) is possible for mA ∼ mZ , which corresponds to the LHS. Depending

on the theory parameters, some of the above four Higgs boson couplings can be small enough

to avoid the LEP exclusion limits. In the LHS, for example, h can be as light as about 100

GeV for ghZZ/ghSMZZ ! 0.5. However, from the sum rules among the Higgs boson couplings,

i.e., (g2
hZZ + g2

HZZ)/g2
hSMZZ = (g2

hZA + g2
HZA)/g2

hSMZG0 = 1, not all Higgs bosons are allowed

to be light. If the Higgs boson is the SM-like, the mass of it should be larger than 114.4 GeV

since its coupling to the Z boson becomes the SM value. We will discuss the experimental

constraints in more detail in Sec. VII.

Finally we comment on the CP -violating case. Although CP is conserved in the tree-level

Higgs sector, it can be broken by the radiative corrections such as the top/stop loops. The

realization of the maximal CP violation is called CPX scenario [19, 20]. In this scenario, it is

6
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Higgs fields in the rotated basis:

Higgs couplings:

h′
d = hSMwhere
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mh < 114.4 GeV

(iτ 2Φ′∗
d Φ′

u)
T = O(β)(iτ 2Φ∗

d Φu)T

LHS: cos(β − α)→ 1, H → hSM, mA ∼ mZ

Decoupling lim: sin(β − α)→ 1, h→ hSM, mA $ mZ .

ξ =
gφZZ

ghSMZZ



Mechanism of EWBG

 Due to CP violation at the phase 
boundary, asymmetries of particle 
number densities occur.

 They diffuse into symmetric phase.

 Left-handed particle number densities are 
converted into B via sphaleron process.

 Sphaleron process is decoupled after the 
PT.

 B is frozen.

H:Hubble constant

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 (‘85) ]

■ The EWPT must be a first order with expanding bubble walls. 
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Phase transition
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■ The PT must be 1st order to realize out of equilibrium.

■ At Tc, the potential has two 
degenerate minima.

e.g. 1dim

■ Light stop plays a crucial role in 
strengthening the 1st order PT. 

Xt = At − µ cot βm2
q̃ ! m2

t̃R
, X2

t ,

[Carena, Quiros, Wagner,PLB380 (‘96) 81]

To be consistent with the LEP bound on mH and ρ-parameter, we should
take

m̄2
t̃1

= m2
t̃R

+
y2

t sin2 β

2

(
1− X2

t

m2
q̃

)
v2 +O(g2)

Et̃1 !
y3

t sin3 β

4
√

2π

(
1− X2

t

m2
q̃

)3/2c.f. High T expansion:

lighter stop mass  ⇒

Veff ! −(ESM + Et̃1)Tv3

■ order parameters = Higgs VEVs

large effect!~ 0.01
~ 0.06 (Xt=0)
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Sphaleron

Energy

sphaleron

instanton

Ncs0-1 1

Esph

∆B = 3∆NCS NCS =
g2
2

32π2

∫
d3x εijkTr

[
FijAk −

2

3
g2AiAjAk

]

∆B != 0
Instanton: quantum tunneling
Sphaleron: thermal fluctuation

■ A static saddle point solution w/ finite energy of the gauge-Higgs 
system. [N.S. Manton, PRD28 (’83) 2019]

B violation:

Vacuum transition rates:

no proton decay
■ B violating process is active at finite T but is suppressed at T=0.

In the symmetric phase : ∼ κ(αW T )4, αW = g2
2/(4π)

In the broken phase : ∼ T 3e−Esph/T .

At T = 0 : ∼ e−Sinstanton = e−8π2/g2
2 " 1



Sphaleron decoupling condition

v

T
>

g2

4πE

[
42.97 + ln(κNtrNrot) + ln

(
ω−
mW

)
− 1

2
ln

(
g∗

106.75

)
− 2 ln

(
T

100 GeV

)]

In the SM:

v

T
> 0.026× (42.97 + 4.38 + 0.416) = 1.24

10% correction

Hubble constant
− 1

B

dB

dt
" 13 · 3

4 · 32π2

ω−
α3

W

κNtrNrote
−Esph/T < H(T ) " 1.66

√
g∗T

2/mP

■ To avoid the washout of the generated BAU, the sphaleron 
process must be decoupled after the PT.

Esph : sphaleron energy, Ntr,Nrot : zero mode factors

ω− : negative mode, κ = O(1).

If we denote Esph = 4πvE/g2

E = 2.00, NtrNrot = 80.13, ω2
− = 2.3m2

W , κ = 1, T = 100 GeV, λ = g2
2.



MSSM case

For the typical parameter set

I: based on Veff(T = 0) without the zero modes
II: based on Veff(T = 0) with the zero modes
III: based on Veff(T != 0) with the zero modes

I II III

E 1.89 1.89 1.77

Ntr — 7.36 6.65

Nrot — 10.84 12.27

vN/TN > 1.17 1.29 1.38

■ Zero mode factors cannot be neglected.
■ T-dependence must be taken into account.
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■ Effects of T and zero modes



Experimental constraints

■ ρ-parameter:

■ Higgs bounds@ [PLB565, 61 (2003)]

■ Lower bounds for SUSY particles:
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■ B physics observables:

In the LHS, H is mostly responsible for the electroweak symmetry breaking since 〈H〉 #

v0. Thus the Higgs potential that we examine may be approximately cast into the form

V (〈H〉T ).

In order to avoid the washout of the generated BAU after the phase transition, the

sphaleron process must be decoupled. This condition is reduced to

vC/TC >∼ 1. (10)

From the argument by using the high temperature expansion of V , one can see that

vC/TC can be enhanced when the coefficient of the cubic term with a negative coefficient

(denoted ∆E) gets larger and/or the quartic term does smaller. The latter implies that

the light H is favored. The former can be realized by the additional contributions from the

bosons. In fact, the effect of the light stop t̃1 on ∆E is sizable due to the large top Yukawa

coupling and the number of degrees of freedom, i.e., 6. In the high temperature expansion,

it follows that

∆Et̃1 #
1

6π

NCm3
t

v3
0

(

1 − |Xt|2

m2
q̃

)3/2

, (11)

for mq̃ & m2
t̃R

= 0, where Xt = At − µ/ tan β. The high temperature expansion makes it

easy to see how the first order phase transition is strengthen analytically. It is, however,

untrustworthy to use this approximation when the masses of the particles in loops are larger

than TC . Therefore we will adopt the alternative method. (funakubo-san’s method)

IV. THE EXPERIMENTAL CONSTRAINTS

Here we present the experimental constraints that we impose in the numerical calculation.

When the masses of the three neutral Higgs boson (Hi) are smaller than 114.4 GeV and/or

the sum of two of them are smaller than about 195 GeV, we require

g2
HiZZ × Br(Hi → ff̄) < FHiZ(mHi),

g2
HiHjZ × Br(Hi → ff̄) × Br(Hj → ff̄) < FHiHj(mHi + mHj), (12)

where f = b, τ . FHiZ and FHiHj are the 95% C.L. upper limits from the LEP experiments [7,

8].
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We also consider the constraint on the ρ parameter which is a measure of the SU(2)

symmetry breaking. ∆ρ = ∆q̃ρ + ∆Hρ < 0.002 is imposed in our calculation, where ∆q̃ρ

and ∆Hρ are the contributions of squarks and the physical Higgs bosons, respectively. It is

turns out that as long as we take mt̃R ! mq̃, ∆q̃ρ would not exceed the current upper bound

even for mt̃1 ! mb̃1
due to the suppressed couplings in the loop. In almost region in our

numerical calculation, the mass difference between one of the neutral Higgs bosons and the

charged Higgs bosons is small, which implies the custodial SU(2) symmetry approximately

exists, we then have ∆Hρ " 0.

The experimental lower bounds on the SUSY particles are taken into account, especially

for the lightest stop and the chargino (χ±
1 ), we impose mt̃1 > 95.7 GeV, mχ±

1
> 94 GeV [6].

The other SUSY particles are assumed to be heavy enough.

Currently, the enormous data of the B physics observables are available, especially Bu →

τντ , B → Xsγ and Bs → µ+µ− are relevant for the LHS. The averaged experimental values

of those processes are reported by HFAG [10]:

Br(Bu → τντ )exp = 1.41+0.43
−0.42 × 10−4, (13)

Br(B → Xsγ)exp = (3.52 ± 0.23 ± 0.09) × 10−4, (14)

Br(Bs → µ+µ−)exp < 0.23 × 10−7. (15)

As mentioned in Introduction, the first two modes can give the severe constraints for the light

charged Higgs bosons and last one could be important for the light neutral Higgs bosons.

At the tree level, the ratio of the two branching ratios of Br(Bu → τντ )MSSM/SM is given by

Br(Bu → τντ )MSSM

Br(Bu → τντ )SM
=

(

1 − tan2 β
m2

Bu

m2
H±

)2

≡ rH . (16)

From the latest data: |Vub| = (3.95 ± 0.35) × 10−3, fB = 200 ± 20 MeV which are involved

in Br(Bu → τντ )SM, it follows that rH = 1.28 ± 0.52. We will take the 95% C.L. interval

range of rH .

6

e.g. Higgsstrahlung

e.g. chargino mass > 94 GeV

∆ρ ≡ ΠT
ZZ(0)

m2
Z

− ΠT
WW (0)

m2
W

< 0.002



Allowed region
■ The allowed region is highly constrained by the experimental
 data.

The sphaleron process is not 
decoupled at Tc.

Loophole:
⇒ The PT begins to proceed 
with bubble wall at below Tc.

We need to know the critical bubbles. 

vC

TC
=

107.10 GeV

116.27 GeV
= 0.92

supercooling

Maximal v/T:
mq̃ = 1200 GeV, mt̃R ! 0, At = Ab = −300 GeV.

tan β = 10.1, mH± = 127.4 GeV



Critical bubble

− 1

ξ2

(
ξ2dh2

dξ
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+ h2

(
h2

1 cos2 β

h2
1 cos2 β + h2

2 sin2 β

dθ

dξ

)2

+
1

v3 sin β

∂Veff

∂ρu
= 0, (1.28)

− 1

ξ2

d

dξ

(
ξ2h2

1h
2
2

h2
1 cos2 β + h2

2 sin2 β

dθ

dξ

)
+

1

v4 sin2 β cos2 β

∂Veff

∂θ
= 0, (1.29)

with the boundary conditions:

lim
ξ→∞

h1(ξ) = 0, lim
ξ→∞

h2(ξ) = 0, lim
ξ→∞

θ(ξ) = 0, (1.30)

and

dh1(ξ)

dξ

∣∣∣∣
ξ=0

= 0,
dh2(ξ)

dξ

∣∣∣∣
ξ=0

= 0,
dθ(ξ)

dξ

∣∣∣∣
ξ=0

= 0. (1.31)

2 CP-conserving case

In the CP-coserving case the energy functional is reduced to

E = 4π

∫ ∞

0

dr r2

[
1

2

{(
dρd

dr

)2

+

(
dρu

dr

)2}
+ Veff(ρd, ρu; T )

]
. (2.1)

The EOM for ρd and ρu are given by
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r2

d

dr
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r2dρd

dr
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+

∂Veff

∂ρd
= 0, (2.2)
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dr

(
r2dρu
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∂Veff

∂ρu
= 0. (2.3)

The boundary conditions for EOM are imposed in the symmetric phase as
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r→∞

ρd(r) = 0, lim
r→∞

ρu(r) = 0, (2.4)

and in the broken phase as
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dr
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r=0
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dρu(r)

dr
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r=0

= 0. (2.5)

It is convenient to parameterize the Higgs profiles (ρd, ρu) in terms of the dimensionless
quantities. We thus change variables as

ξ = vr, h1(ξ) =
ρd(r)

v cos β
, h2(ξ) =

ρu(r)

v sin β
. (2.6)

In this case, E takes the form

E = 4πv
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dξ

)2

sin2 β

}
+ Ṽeff(h1, h2; T )

]
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where Ṽeff = Veff/v4. Correspondingly, the EOM are rewritten as
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+ Veff(ρd, ρu; T )

]
. (2.1)

The EOM for ρd and ρu are given by
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r2
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dr

(
r2dρd

dr

)
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∂Veff

∂ρd
= 0, (2.2)

− 1

r2
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dr
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r2dρu
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)
+

∂Veff

∂ρu
= 0. (2.3)

The boundary conditions for EOM are imposed in the symmetric phase as

lim
r→∞

ρd(r) = 0, lim
r→∞

ρu(r) = 0, (2.4)

and in the broken phase as

dρd(r)

dr

∣∣∣∣
r=0

= 0,
dρu(r)

dr

∣∣∣∣
r=0

= 0. (2.5)

It is convenient to parameterize the Higgs profiles (ρd, ρu) in terms of the dimensionless
quantities. We thus change variables as

ξ = vr, h1(ξ) =
ρd(r)

v cos β
, h2(ξ) =

ρu(r)

v sin β
. (2.6)

In this case, E takes the form

E = 4πv

∫ ∞

0

dξ ξ2

[
1

2

{(
dh1

dξ

)2

cos2 β +

(
dh2

dξ

)2

sin2 β

}
+ Ṽeff(h1, h2; T )

]
, (2.7)

where Ṽeff = Veff/v4. Correspondingly, the EOM are rewritten as

− 1

ξ2

(
ξ2dh1

dξ

)
+

1

v3 cos β

∂Veff

∂ρd
= 0, (2.8)
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− 1
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(
ξ2dh2

dξ

)
+ h2
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h2

1 cos2 β

h2
1 cos2 β + h2

2 sin2 β

dθ

dξ

)2

+
1
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∂Veff

∂ρu
= 0, (1.28)
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(
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1h
2
2
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1
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∂Veff

∂θ
= 0, (1.29)

with the boundary conditions:
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b.c.

Higgs fields:

Energy functional:

Φd =
1√
2

(
ρd

0

)
, Φu =

1√
2

(
0
ρu

)
,

Equation of motion (EOM):

■ The EOMs are numerically solved 
by relaxation methods.
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4

r =
√

x2

■ For the EWPT to proceed, the radius of bubble must be larger
than some critical size.



Bubble nucleation

vN

TN
=

116.73

115.59
= 1.01

■ The sphaleron process is not decoupled at TN either.

10% enhancement! But,

where Ecb(T ) is the energy of the critical bubble at temperature T 2. Note that this is
a rate per unit volume. We define the nucleation temperature TN as the temperature
at which the rate of nucleation of a critical bubble within a horizon volume is equal to
the Hubble parameter at that temperature. Since the horizon scale is roughly given by
H(T )−1, the nucleation temperature is defined by3

ΓN(TN)H(TN)−3 = H(TN). (4.2)

Since the Hubble parameter at temperature T is

H(T ) =

√
8πG

3
ρ(T ) =

(
8π

3m2
P

π2

30
g∗(T )T 4

)1/2

! 1.66 g∗(T )1/2 T 2

mP
, (4.3)

where g∗(T ) is the effective massless degrees of freedom at T defined by

g∗(T ) =
∑

B

θ(T − mB(T ))gB +
7

8

∑

F

θ(T − mF (T ))gF , (4.4)

with gB and gF being intrinsic degrees of freedom of boson B and fermion F , respectively,
the definition of TN (4.2) is reduced to

(
Ecb(TN)

2πTN

)3/2

e−Ecb(TN )/TN = 7.59 g∗(TN)2 T 4
N

m4
P

, (4.5)

or
Ecb(TN)

TN
− 3

2
log

Ecb(TN)

TN
= 152.59 − 2 log g∗(TN) − 4 log

TN

100GeV
. (4.6)

A Derivatives of the effective potential

Here we summarize the first and second derivatives of the effective potential, which are
used in the tadpole conditions, the equations of motion and matrix elements in the relax-
ation algorithm.

A.1 tadpole conditions

The tadpole conditions are imposed in the vacuum at zero temperature.

〈Φd〉0 =
1√
2

(
v0d

0

)
, 〈Φu〉0 =

eiθ0

√
2

(
0

v0u

)
(A.1)

2In [3], the author only evaluated the contribution from translational zero modes which is proportional
to E3/2

cb , but not that from rotational zero modes and those from nonzero modes. He multiplied T 4 with the
prefactor on the dimensional ground. We expect a factor of T 3 comes from the 3-dimensional translational
zero modes, while the remaining factor of T may have its origin in the negative mode corresponding to
the instability of the critical bubble. Any way, this uncertainty in the prefactor will have small effect on
the estimation of the nucleation temperature, which is mainly determined by the exponent.

3One may think that only one bubble nucleated within a horizon volume cannot convert the whole
region into the broken phase. In this sense, this definition of nucleation temperature will give an upper
bound of temperature at which the phase transition begins to proceed.
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The boundary value θs is determined by finiteness of the energy functional[1]. At r = 0,
the functions satisfy the Neumann-type boundary condition because of spherical symme-
try,

∂ξh1(ξ) = 0, ∂ξh2(ξ) = 0, ∂ξθ = 0, at ξ = 0. (2.31)

3 Numerical Analysis

To numerically study solutions to the equations of motion, we change the variable ξ with
infinite range to some variable with a finite range. We adopt x defined as

1 − x = e−aξ, or ξ = −1

a
log(1 − x), (3.1)

where a is some real number which will be chosen for later convenience. This relation
maps ξ ∈ [0,∞) to x ∈ [0, 1] With this new variable, the equations of motion are rewritten
as

d2h1

dx2
=

1

1 − x

(

1 +
2

log(1 − x)

)
dh1

dx
+ h1

(
h2

2 sin2 β

H

dθ

dx

)2

+
1

a2v3 cos β(1 − x)2

∂Veff

∂ρd
,(3.2)

d2h2

dx2
=

1

1 − x

(

1 +
2

log(1 − x)

)
dh2

dx
+ h2

(
h2

1 cos2 β

H

dθ

dx

)2

+
1

a2v3 sin β(1 − x)2

∂Veff

∂ρu
,(3.3)

d2θ2

dx2
=

[
1

1 − x

(

1 +
2

log(1 − x)

)

− H

h2
1h

2
2

d

dx

(
h2

1h
2
2

H

)]
dθ

dx

+
1

a2v4 cos2 β sin2 β(1 − x)2

H

h2
1h

2
2

∂Veff

∂θ

=

[
1

1 − x

(

1 +
2

log(1 − x)

)

− 2

(
h′

1

h1
+

h′
2

h2
− h1h′

1 cos2 β + h2h′
2 sin2 β

H

)]
dθ

dx

+
1

a2v4(1 − x)2

(
1

h2
1 cos2 β

+
1

h2
2 sin2 β

)
∂Veff

∂θ
, (3.4)

where H(x) ≡ h1(x)2 cos2 β + h2(x)2 sin2 β and the prime denotes derivative with respect
to x. The energy functional is expressed as

E = 4πv
∫ 1

0
dx log2(1 − x)

{
1 − x

2a




(

dh1

dx

)2

cos2 β +

(
dh2

dx

)2

sin2 β +
h2

1h
2
2 cos2 β sin2 β

H

(
dθ

dx

)2




+
1

a3(1 − x)
Ṽeff(h1, h2, θ; T )

}

. (3.5)

4 Bubble Nucleation

According to [3], the bubble nucleation rate per unit time per unitvolume is given by

ΓN(T ) % T 4

(
Ecb(T )

2πT

)3/2

e−Ecb(T )/T , (4.1)

5
Nucleation T:

Nucleation rate:
[A.D. Linde, NPB216 (’82) 421]

Numerical results:

E = 1.77, Ntr = 6.65, Nrot = 12.27

Sphaleron decoupling cond.@TN :

ξ = vr, h1(ξ) =
ρd(r)

v cos β
, h2(ξ) =

ρu(r)

v sin β

vN

TN
> 1.38



More examples
Ab = At = −300 GeV, mt̃R = 10−4 GeV, mb̃R

= 1000 GeV,
µ = 100 GeV, M2 = 500 GeV,

Typically, vN/TN > 1.38 is needed for sphaleron decopuling.

Table 1: Examples of the 1st order PT. |Ab| = |At| = 300 GeV, mt̃R = 10−4 GeV, mb̃R
= 1000

GeV, |µ| = 100 GeV, M1 = 100 GeV, M2 = 500 GeV, δAt = δAb
= π, δµ = 0.

mq̃ (GeV) 1200 1300 1400 1500

tan β 10.11 9.87 9.75 9.57
mH± (GeV) 127.40 127.40 127.50 127.50

vC/TC
107.096

116.274
= 0.921

107.512

116.496
= 0.923

107.769

116.770
= 0.923

107.915

117.045
= 0.922

tan βC 13.803 13.640 13.597 13.455

vN/TN
116.727

115.585
= 1.010

117.155

115.798
= 1.012

117.404

116.067
= 1.012

117.531

116.339
= 1.010

tan βN 13.676 13.503 13.453 13.307
Ecb/TN 150.386 150.379 150.370 150.360

E 1.769 1.770 1.770 1.771
Ntr 6.652 6.658 6.662 6.667
Nrot 12.266 12.253 12.240 12.229

vN/TN > 1.383 1.382 1.382 1.380
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Loopholes

 TN ⇒ onset of the PT. We should know a temperature at 
which the PT ends. The sphaleron decoupling condition 
should be imposed at such a temperature.

 Higher order (2-loop) contributions must be taken into 
account. [J.R. Espinosa, NPB475, (’06) 273]

Our negative results might be circumvented.

⇒ The sphaleron decoupling cond. might be relaxed. 

 The potential can be extended in such a way that stop also has 
a nontrivial VEV. (Charge-Color-Breaking vacuum)

⇒ MSSM BG is viable. [Canena et al, NPB812,(‘09) 243] 
[N.B.] EW vacuum: metastable, CCB vacuum: global minimum 

If the refined sphaleron decoupling cond. is used, is it still viable?



Summary

 We have analyzed the strength of the 1st order EWPT in 
the light Higgs boson scenario of the MSSM.

 v/T at TN can be enhanced by about 10% compared to that 
at Tc.

 The sphaleron decoupling condition at TN is typically given 
by v/T   >1.38.

 The sphaleron process is not decoupled at both Tc and TN.



Backup



Decoupling limit
Table 1: Examples of the 1st order EWPT in the no-mixing scenario. |At| = |Ab| = |µ|/ tan β,
mt̃R = 10−4 GeV, mb̃R

= 1000 GeV, |µ| = 100 GeV, M1 = 100 GeV, M2 = 500 GeV,
Arg(At) = Arg(Ab) = Arg(µ) = 0.

mq̃ (GeV) 1700 1800 1900 2000

tan β 42.62 15.10 10.97 9.35
mH± (GeV) 1000.00 1000.00 1000.00 1000.00

vC/TC
111.461

116.993
= 0.953

111.460

117.007
= 0.953

111.483

116.994
= 0.953

111.440

117.060
= 0.952

tan βC 42.966 15.171 11.022 9.394

vN/TN
121.454

116.221
= 1.045

121.452

116.236
= 1.045

121.478

116.222
= 1.045

121.424

116.288
= 1.044

tan βN 42.955 15.168 11.019 9.392
Ecb(TN)/TN 150.366 150.370 150.364 150.360

E 1.773 1.773 1.773 1.773
Ntr 6.677 6.677 6.678 6.678
Nrot 12.211 12.210 12.210 12.209

vN/TN > 1.379 1.379 1.379 1.379

1

|At| = |Ab| = |µ|/ tan β, mt̃R = 10−4 GeV, mb̃R
= 1000 GeV,

|µ| = 100 GeV, M1 = 100 GeV, M2 = 500 GeV.

The sphaleron process is not decoupled in this case either.


