Electroweak phase transition in the light Higgs boson scenario

Eibun Senaha (National Central Univ.) May. 21, 2009@PPP8, NCKU, Tainan

in collaboration with Koichi Funakubo (Saga U, Japan)

Ref. arXiv:0905.2022

Outline

- Motivation
 Baryon Asymmetry of the Universe (BAU)
- Electroweak baryogenesis in the light Higgs boson scenario of the MSSM
 - Sphaleron decoupling condition
 - Electroweak phase transition (EWPT)
 - Critical bubble

Summary

Motivation

Energy budget of the Universe

95% of the Universe is made of dark object.
It should be stressed that there remains a mystery in the visible sector as well. Where did antibaryons go?

95% of the Universe is made of dark object.
It should be stressed that there remains a mystery in the visible sector as well. Where did antibaryons go?

BAU

Saryon Asymmetry of the Universe (BAU)

 $\frac{n_B}{n_{\gamma}} = \frac{n_b - n_{\bar{b}}}{n_{\gamma}} = (4.7 - 6.5) \times 10^{-10} \quad (95\% \text{ C.L.})$ (PDG 08)

Sakharov's conditions ('67)SM case(1) Baryon(B) violationO sphaleron process(2) C violationO chiral gauge interactionCP violationX KM phase is not sufficient(3) out of equilibriumX phase transition is not 1st order

Extensions of the SM MSSM, 2HDM, singlet-extended MSSM etc. Today, we discuss the MSSM baryogenesis (BG).

Tension in the MSSM BG

 From the EWPT point of view, the light Higgs boson is generically favored.

The LEP data put a strong constraint on the light Higgs boson.

On the other hand,

• In the literatures, $\frac{v_C}{T_C} \gtrsim 1$ is used as the practical criterion for the strong 1st order PT.

But,

• $v_c/T_c>0.9$ region or $v_c/T_c>1.1$ region are completely different.

 \Rightarrow Need to reduce the uncertainties.

• We analyze the EWPT in the light Higgs boson scenario $(m_h < 114.4 \text{ GeV})$ based on the refined sphaleron decoupling cond.

Effective potential

To discuss the PT we use the effective potential.
The gauge bosons and 3rd generation of quarks/squarks are taken into account.

$$V_{\text{eff}}(\Phi_d, \Phi_u) = V_0(\Phi_d, \Phi_u) + \Delta V(\Phi_d, \Phi_u; T),$$

Tree: $V_0(\Phi_d, \Phi_u) = m_1^2 \Phi_d^{\dagger} \Phi_d + m_2^2 \Phi_u^{\dagger} \Phi_u - (m_3^2 \epsilon_{ij} \Phi_d^i \Phi_u^j + \text{h.c.}) + \frac{g_2^2 + g_1^2}{8} (\Phi_d^{\dagger} \Phi_d - \Phi_u^{\dagger} \Phi_u)^2 + \frac{g_2^2}{2} (\Phi_d^{\dagger} \Phi_u) (\Phi_u^{\dagger} \Phi_d),$
1-loop: $\Delta V(\Phi_d, \Phi_u; T) = \sum_A c_A \left[F_0(\bar{m}_A^2) + \frac{T^4}{2\pi^2} I_{B,F}\left(\frac{\bar{m}_A^2}{T^2}\right) \right]$
 $F_0(m^2) = \frac{m^4}{64\pi^2} \left(\ln \frac{m^2}{M^2} - \frac{3}{2} \right), \quad I_{B,F}(a^2) = \int_0^\infty dx \; x^2 \ln \left(1 \mp e^{-\sqrt{x^2 + a^2}} \right)$

Fitting function:

$$\tilde{I}_{B,F}(a^2) = e^{-a} \sum_{n=0}^{N} c_n^{b,f} a^n$$
, $|\tilde{I}_{B,F} - I_{B,F}| < 10^{-6} (N = 40)$.
he fitting function is used in our numerical analysis

Mechanism of EWBG

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 ('85)]

The EWPT must be a first order with expanding bubble walls. outline

H:Hubble constant V_{wall} $\Gamma_{sph}^{(b)} < H$ f, \bar{f} broken phase f, \bar{f} f, \bar{f} f, \bar{f}

Due to *CP* violation at the phase boundary, asymmetries of particle number densities occur.

- They diffuse into symmetric phase.
 - Left-handed particle number densities are converted into *B* via sphaleron process.
- Sphaleron process is decoupled after the PT.
- \sim *B* is frozen.

Mechanism of EWBG

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 ('85)]

The EWPT must be a first order with expanding bubble walls.

outline

- Due to *CP* violation at the phase boundary, asymmetries of particle number densities occur.
- They diffuse into symmetric phase.
- Left-handed particle number densities are 3 converted into B via sphaleron process.
- Sphaleron process is decoupled after the ~ PT.
- B is frozen.

Mechanism of EWBG

[Kuzmin, Rubakov, Shaposhnikov, PLB155,36 ('85)]

The EWPT must be a first order with expanding bubble walls.

outline

- Due to *CP* violation at the phase boundary, asymmetries of particle number densities occur.
- They diffuse into symmetric phase.
- Left-handed particle number densities are converted into *B* via sphaleron process.

Sphaleron process is decoupled after the PT.

 \sim B is frozen.

Phase transition

The PT must be 1st order to realize out of equilibrium.
Veff

order parameters = Higgs VEVs
At T_c, the potential has two degenerate minima.

• Light stop plays a crucial role in strengthening the 1st order PT.

[Carena, Quiros, Wagner, PLB380 ('96) 81]

To be consistent with the LEP bound on m_H and ρ -parameter, we should take $m_{\tilde{q}}^2 \gg m_{\tilde{t}_R}^2, X_t^2, \quad X_t = A_t - \mu \cot \beta$

lighter stop mass $\Rightarrow \bar{m}_{\tilde{t}_1}^2 = m_{\tilde{t}_R}^2 + \frac{y_t^2 \sin^2 \beta}{2} \left(1 - \frac{X_t^2}{m_{\tilde{q}}^2}\right) v^2 + \mathcal{O}(g^2)$

c.f. High T expansion: $V_{\text{eff}} \ni -(E_{\text{SM}} + E_{\tilde{t}_1})Tv^3 \quad E_{\tilde{t}_1} \simeq \frac{y_t^3 \sin^3 \beta}{4\sqrt{2}\pi} \left(1 - \frac{X_t^2}{m_{\tilde{q}}^2}\right)^{3/2} \sim 0.06 \text{ (Xt=0)}$ $\sim 0.01 \quad \text{large effect!}$

Phase transition

The PT must be 1st order to realize out of equilibrium. $V_{\rm eff}$

order parameters = Higgs VEVs • At T_c , the potential has two degenerate minima.

 Light stop plays a crucial role in strengthening the 1st order PT.

[Carena, Quiros, Wagner, PLB380 ('96) 81]

To be consistent with the LEP bound on m_H and ρ -parameter, we should take $m_{\tilde{q}}^2 \gg m_{\tilde{t}_B}^2, X_t^2, \quad X_t = A_t - \mu \cot \beta$ lighter stop mass $\Rightarrow \bar{m}_{\tilde{t}_1}^2 = \underbrace{m_{\tilde{t}_R}^2}_{0 (m_{\tilde{t}_1} < m_t)} + \underbrace{\frac{y_t^2 \sin^2 \beta}{2} \left(1 - \frac{X_t^2}{m_{\tilde{q}}^2}\right) v^2 + \mathcal{O}(g^2)}_{0 (m_{\tilde{t}_1} < m_t)}$ $\begin{array}{l} \text{figh T expansion:}\\ V_{\text{eff}} \ni -(E_{\text{SM}} + E_{\tilde{t}_1})Tv^3 \quad E_{\tilde{t}_1} \simeq \frac{y_t^3 \sin^3 \beta}{4\sqrt{2}\pi} \left(1 - \frac{X_t^2}{m_{\tilde{q}}^2}\right)^{3/2} \sim 0.06 \text{ (Xt=0)}\\ \text{large effect!} \end{array}$ c.f. High T expansion:

Sphaleron

A static saddle point solution w/ finite energy of the gauge-Higgs [N.S. Manton, PRD28 ('83) 2019]

B violation:

$$B = 3\Delta N_{CS} \qquad N_{CS} = \frac{g_2^2}{32\pi^2} \int d^3x \ \epsilon_{ijk} \operatorname{Tr} \left[F_{ij}A_k - \frac{2}{3}g_2A_iA_jA_k \right]$$

 $\Delta B \neq 0$

Instanton: quantum tunneling

Sphaleron: thermal fluctuation

Vacuum transition rates:

In the symmetric phase : $\sim \kappa (\alpha_W T)^4$, $\alpha_W = g_2^2/(4\pi)$ In the broken phase : $\sim T^3 e^{-E_{\rm sph}/T}$.

At T = 0: $\sim e^{-S_{\text{instanton}}} = e^{-8\pi^2/g_2^2} \ll 1$ no proton decay **B** violating process is active at finite T but is suppressed at T=0.

Sphaleron decoupling condition

 To avoid the washout of the generated BAU, the sphaleron process must be decoupled after the PT.
 Hubble constant

$$-\frac{1}{B}\frac{dB}{dt} \simeq \frac{13\cdot 3}{4\cdot 32\pi^2} \frac{\omega_-}{\alpha_W^3} \kappa \mathcal{N}_{\rm tr} \mathcal{N}_{\rm rot} e^{-E_{\rm sph}/T} < H(T) \simeq 1.66\sqrt{g_*}T^2/m_{\rm P}$$

 $E_{\rm sph}$: sphaleron energy, $\mathcal{N}_{\rm tr}, \mathcal{N}_{\rm rot}$: zero mode factors ω_{-} : negative mode, $\kappa = \mathcal{O}(1)$.

If we denote $E_{\rm sph} = 4\pi v \mathcal{E}/g_2$

$$\frac{v}{T} > \frac{g_2}{4\pi \mathcal{E}} \left[42.97 + \ln(\kappa \mathcal{N}_{tr} \mathcal{N}_{rot}) + \ln\left(\frac{\omega}{m_W}\right) - \frac{1}{2}\ln\left(\frac{g_*}{106.75}\right) - 2\ln\left(\frac{T}{100 \text{ GeV}}\right) \right]$$

In the SM:

 $\mathcal{E} = 2.00, \ \mathcal{N}_{tr}\mathcal{N}_{rot} = 80.13, \ \omega_{-}^{2} = 2.3m_{W}^{2}, \ \kappa = 1, \ T = 100 \ \text{GeV}, \ \lambda = g_{2}^{2}.$ $\frac{v}{T} > 0.026 \times (42.97 + 4.38 + 0.416) = 1.24$ 10% correction

MSSM case

• Effects of *T* and zero modes

I: based on $V_{\text{eff}}(T=0)$ without the zero modes II: based on $V_{\text{eff}}(T=0)$ with the zero modes III: based on $V_{\text{eff}}(T\neq 0)$ with the zero modes

For the typical parameter set

	Ι	II	III
ε	1.89	1.89	1.77
$\mathcal{N}_{ ext{tr}}$		7.36	6.65
$\mathcal{N}_{ m rot}$		10.84	12.27
$v_N/T_N >$	1.17	1.29	1.38

Zero mode factors cannot be neglected. *T*-dependence must be taken into account.

Experimental constraints

Higgs bounds@ [PLB565, 61 (2003)]
g²_{H_iZZ} × Br(H_i → ff̄) < F_{H_iZ}(m_{H_i}),
g²_{H_iH_jZ} × Br(H_i → ff̄) × Br(H_j → ff̄) < F_{H_iH_j}(m_{H_i} + m_{H_j}),
where f = b, τ. F_{H_iZ} and F_{H_iH_j} are the 95% C.L. upper limits
Lower bounds for SUSY particles:
e.g. chargino mass > 94 GeV

ρ-parameter:

$$\Delta \rho \equiv \frac{\Pi_{ZZ}^{T}(0)}{m_{Z}^{2}} - \frac{\Pi_{WW}^{T}(0)}{m_{W}^{2}} < 0.002$$

B physics observables:

 $Br(B_u \to \tau \nu_{\tau})_{exp} = 1.41^{+0.43}_{-0.42} \times 10^{-4},$ $Br(\overline{B} \to X_s \gamma)_{exp} = (3.52 \pm 0.23 \pm 0.09) \times 10^{-4},$ $Br(B_s \to \mu^+ \mu^-)_{exp} < 0.23 \times 10^{-7}.$

e.g. Higgsstrahlung

Allowed region

The allowed region is highly constrained by the experimental data.

 $m_{\tilde{q}} = 1200 \text{ GeV}, \ m_{\tilde{t}_R} \simeq 0, \ A_t = A_b = -300 \text{ GeV}.$

Maximal v/T: tan $\beta = 10.1, m_{H^{\pm}} = 127.4 \text{ GeV}$

$$\frac{v_C}{T_C} = \frac{107.10 \text{ GeV}}{116.27 \text{ GeV}} = 0.92$$

The sphaleron process is not decoupled at Tc. Loophole: supercooling \Rightarrow The PT begins to proceed with bubble wall at below Tc.

We need to know the critical bubbles.

Critical bubble

For the EWPT to proceed, the radius of bubble must be larger than some critical size.

Higgs fields:
$$\Phi_d = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_d \\ 0 \end{pmatrix}, \quad \Phi_u = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \rho_u \end{pmatrix},$$

Energy functional:

$$E = 4\pi \int_0^\infty dr \ r^2 \left[\frac{1}{2} \left\{ \left(\frac{d\rho_d}{dr} \right)^2 + \left(\frac{d\rho_u}{dr} \right)^2 \right\} + V_{\text{eff}}(\rho_d, \rho_u; T) \right] \quad r = \sqrt{\boldsymbol{x}^2}$$

e.g. 1dim

T=Tc

250

300

200

T=TN

150

 $v \,[{\rm GeV}]$

100

50

0.

Equation of motion (EOM):

$$-\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{d\rho_d}{dr}\right) + \frac{\partial V_{\text{eff}}}{\partial\rho_d} = 0, \quad \lim_{r \to \infty} \rho_d(r) = 0, \quad \lim_{r \to \infty} \rho_u(r) = 0, \\ -\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{d\rho_u}{dr}\right) + \frac{\partial V_{\text{eff}}}{\partial\rho_u} = 0, \quad \frac{d\rho_d(r)}{dr}\Big|_{r=0} = 0, \quad \frac{d\rho_u(r)}{dr}\Big|_{r=0} = 0.$$

The EOMs are numerically solved by relaxation methods.

Bubble nucleation

Nucleation rate: $\Gamma_N(T) \simeq T^4 \left(\frac{E_{\rm cb}(T)}{2\pi T}\right)^{3/2} e^{-E_{\rm cb}(T)/T}$ [A.D. Linde, NPB216 ('82) 421] Nucleation T: $\Gamma_N(T_N)H(T_N)^{-3} = H(T_N)$

Numerical results:

$$\frac{v_N}{T_N} = \frac{116.73}{115.59} = 1.01$$

10% enhancement! But,

Sphaleron decoupling cond.@ T_N : $\mathcal{E} = 1.77, \ \mathcal{N}_{tr} = 6.65, \ \mathcal{N}_{rot} = 12.27$

• The sphaleron process is not decoupled at T_N either.

 $A_b = A_t = -300 \text{ GeV}, \ m_{\tilde{t}_R} = 10^{-4} \text{ GeV}, \ m_{\tilde{b}_R} = 1000 \text{ GeV}, \ \mu = 100 \text{ GeV}, \ M_2 = 500 \text{ GeV},$

$m_{\tilde{q}} (\text{GeV})$	1200	1300	1400	1500
$\tan\beta$	10.11	9.87	9.75	9.57
$m_{H^{\pm}}$ (GeV)	127.40	127.40	127.50	127.50
$\frac{v_C/T_C}{\tan\beta_C}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{107.512}{116.496} = 0.923$ 13.640 117.155	$\frac{107.769}{116.770} = 0.923$ 13.597 117.404	$\frac{107.915}{117.045} = 0.922$ 13.455 117.531
$\begin{array}{c c} v_N/T_N \\ \tan \beta_N \end{array}$	$\begin{vmatrix} \frac{110.121}{115.585} = 1.010\\ 13.676 \end{vmatrix}$	$\frac{111.105}{115.798} = 1.012$ 13.503	$\frac{117.101}{116.067} = 1.012$ 13.453	$\frac{117.331}{116.339} = 1.010$ 13.307
$E_{\rm cb}/T_N$	150.386	150.379	150.370	150.360
E	1.769	1.770	1.770	1.771
$\mathcal{N}_{\mathrm{tr}}$	6.652	6.658	6.662	6.667
$\mathcal{N}_{\mathrm{rot}}$	12.266	12.253	12.240	12.229
$v_N/T_N >$	1.383	1.382	1.382	1.380

 $A_b = A_t = -300 \text{ GeV}, \ m_{\tilde{t}_R} = 10^{-4} \text{ GeV}, \ m_{\tilde{b}_R} = 1000 \text{ GeV}, \ \mu = 100 \text{ GeV}, \ M_2 = 500 \text{ GeV},$

$m_{\tilde{q}} (\text{GeV})$	1200	1300	1400	1500
$\tan\beta$	10.11	9.87	9.75	9.57
$m_{H^{\pm}} (\text{GeV})$	127.40	127.40	127.50	127.50
v_C/T_C	$\frac{107.096}{116.274} = 0.921$	$\frac{107.512}{116.496} = 0.923$	$\frac{107.769}{116.770} = 0.923$	$\frac{107.915}{117.045} = 0.922$
$\tan \beta_C$	13.803	13.640	13.597	13.455
v_N/T_N	$\left \begin{array}{c} \frac{116.727}{115.585} = 1.010 \\ 12.676 \end{array} \right $	$\left \begin{array}{c} \frac{117.155}{115.798} = 1.012 \\ 12.502 \end{array} \right $	$\left \begin{array}{c} \frac{117.404}{116.067} = 1.012 \\ 12.452 \end{array} \right $	$\left \begin{array}{c} \frac{117.531}{116.339} = 1.010 \\ 12.207 \end{array} \right $
$\begin{bmatrix} \tan \rho_N \\ E_{\rm ch} / T_N \end{bmatrix}$	150 386	15.505	15.455 150.370	15.307
	1 760	1 770	1 770	1 771
C	1.709	1.770	1.770	
$ \mathcal{N}_{\mathrm{tr}} $	6.652	6.658	6.662	6.667
$ $ $\mathcal{N}_{\mathrm{rot}}$	12.266	12.253	12.240	12.229
$v_N/T_N >$	1.383	1.382	1.382	1.380

 $A_b = A_t = -300 \text{ GeV}, \ m_{\tilde{t}_R} = 10^{-4} \text{ GeV}, \ m_{\tilde{b}_R} = 1000 \text{ GeV}, \ \mu = 100 \text{ GeV}, \ M_2 = 500 \text{ GeV},$

$m_{\tilde{q}} (\text{GeV})$	1200	1300	1400	1500
$\tan\beta$	10.11	9.87	9.75	9.57
$m_{H^{\pm}}$ (GeV)	127.40	127.40	127.50	127.50
v_C/T_C	$\frac{107.096}{116.274} = 0.921$	$\frac{107.512}{116.496} = 0.923$	$\frac{107.769}{116.770} = 0.923$	$\frac{107.915}{117.045} = 0.922$
$ an \beta_C$	13.803	13.640	13.597	13.455
v_N/T_N	$\frac{116.727}{115.585} = 1.010$	$\frac{117.155}{115.798} = 1.012$	$\frac{117.404}{116.067} = 1.012$	$\frac{117.531}{116.339} = 1.010$
$\tan \beta_N$	13.676	13.503	13.453	13.307
$E_{\rm cb}/T_N$	150.386	150.379	150.370	150.360
E	1.769	1.770	1.770	1.771
$\mathcal{N}_{\mathrm{tr}}$	6.652	6.658	6.662	6.667
$\mathcal{N}_{\mathrm{rot}}$	12.266	12.253	12.240	12.229
$v_N/T_N >$	1.383	1.382	1.382	1.380

 $A_b = A_t = -300 \text{ GeV}, \ m_{\tilde{t}_R} = 10^{-4} \text{ GeV}, \ m_{\tilde{b}_R} = 1000 \text{ GeV}, \ \mu = 100 \text{ GeV}, \ M_2 = 500 \text{ GeV},$

$m_{\tilde{q}} (\text{GeV})$	1200	1300	1400	1500
$\tan\beta$	10.11	9.87	9.75	9.57
$m_{H^{\pm}}$ (GeV)	127.40	127.40	127.50	127.50
v_C/T_C	$\frac{107.096}{116.274} = 0.921$	$\frac{107.512}{116.496} = 0.923$	$\frac{107.769}{116.770} = 0.923$	$\frac{107.915}{117.045} = 0.922$
$ an \beta_C$	13.803	13.640	13.597	13.455
v_N/T_N	$\frac{116.727}{115.585} = 1.010$	$\frac{117.155}{115.798} = 1.012$	$\frac{117.404}{116.067} = 1.012$	$\frac{117.531}{116.339} = 1.010$
$\tan \beta_N$	13.676	13.503	13.453	13.307
$E_{\rm cb}/T_N$	150.386	150.379	150.370	150.360
E	1.769	1.770	1.770	1.771
$\mathcal{N}_{\mathrm{tr}}$	6.652	6.658	6.662	6.667
$\mathcal{N}_{\mathrm{rot}}$	12.266	12.253	12.240	12.229
$v_N/T_N >$	1.383	1.382	1.382	1.380

Our negative results might be circumvented.

- → $T_N \Rightarrow$ onset of the PT. We should know a temperature at which the PT ends. The sphaleron decoupling condition should be imposed at such a temperature.
- Higher order (2-loop) contributions must be taken into account. [J.R. Espinosa, NPB475, ('06) 273]

⇒ The sphaleron decoupling cond. might be relaxed.

 The potential can be extended in such a way that stop also has a nontrivial VEV. (Charge-Color-Breaking vacuum)

⇒ MSSM BG is viable. [Canena et al, NPB812,('09) 243]
 [N.B.] EW vacuum: metastable, CCB vacuum: global minimum
 If the refined sphaleron decoupling cond. is used, is it still viable?

Summary

- We have analyzed the strength of the 1st order EWPT in the light Higgs boson scenario of the MSSM.
- $\sim v/T$ at T_N can be enhanced by about 10% compared to that at Tc.
- ∽ The sphaleron decoupling condition at *TN* is typically given by v/T>1.38.
- The sphaleron process is not decoupled at both Tc and TN.

Decoupling limit

 $|A_t| = |A_b| = |\mu| / \tan \beta, \ m_{\tilde{t}_R} = 10^{-4} \text{ GeV}, \ m_{\tilde{b}_R} = 1000 \text{ GeV}, \ |\mu| = 100 \text{ GeV}, \ M_1 = 100 \text{ GeV}, \ M_2 = 500 \text{ GeV}.$

$m_{\tilde{q}} \; (\text{GeV})$	1700	1800	1900	2000
$\tan\beta$	42.62	15.10	10.97	9.35
$m_{H^{\pm}} (\text{GeV})$	1000.00	1000.00	1000.00	1000.00
v_C/T_C	$\frac{111.461}{116.993} = 0.953$	$\frac{111.460}{117.007} = 0.953$	$\frac{111.483}{116.994} = 0.953$	$\frac{111.440}{117.060} = 0.952$
$ an eta_C$	42.966	15.171	11.022	9.394
v_N/T_N	$\frac{121.454}{116.221} = 1.045$	$\frac{121.452}{116.236} = 1.045$	$\frac{121.478}{116.222} = 1.045$	$\frac{121.424}{116.288} = 1.044$
$\tan \beta_N$	42.955	15.168	11.019	9.392
$E_{\rm cb}(T_N)/T_N$	150.366	150.370	150.364	150.360
E	1.773	1.773	1.773	1.773
$\mathcal{N}_{\mathrm{tr}}$	6.677	6.677	6.678	6.678
$\mathcal{N}_{ m rot}$	12.211	12.210	12.210	12.209
$v_N/T_N >$	1.379	1.379	1.379	1.379

The sphaleron process is not decoupled in this case either.