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Several deviations between theoretical predictions and 
experimental data appear both in Standard Model of Particle 
Physics and Cosmology due to precision measurement. 

Nentrino masses, anomalous μ magnetic moment, dark matter,
…

Lithium problem, baryon asymmetry, dark energy, …



The model

The evidence of dark matter            Z2  symmetry 

All the new particles besides SM sectors are Z2  odd 

Scalar sector 

Fermion sector

New Yukawa couplings  

Potential 

1 The Model

Besides the Zee model with two Higgs doublets, we introduced a set of new
fermionic lepton doublet Li in our model. The new fermions are assume to be
vector-like to make sure that the theory is anomaly free as for self consistency.
A discrete symmetry are imposed such that all the new particles are odd and
the SM sectors are even under this Z2 projection. The content of the model is
following, scalar sectors

φi=1,2 and S+ (1)

and extra fermionic part

Li =

(

N
E−

)

i

, (2)

where φ1 corresponds to the SM Higgs which is even under Z2. So we have
the new Yukawa couplings

fαi

2
l̄cαLiS

+ + yαilRαLiφ2 + h.c.

=
[

fαi(ν̄2
αE−

i + l−α N̄ c
i )

]

S+ + yαi

[

l−RαE+
i φ0

2 + l−RαNiφ
−
2

]

+ h.c., (3)

where α runs for e, µ, and τ , while i stands number of new fermionic doublet
we introduced, we will show later that at least two of them in order to have a
successful leptogenesis.

The potential is given by,

V = −µ2
1|φ1|2 + λ1|φ1|4 + m2

2|φ2|2 + λ2|φ2|4 + λ3|φ1|2|φ2|2

+ λ4|φ†
1φ2|2 +

λ5

2

[

(φ†
1φ2)

2 + h.c.
]

+ m2
s|S|2 + λs|S|4

+ µ
[

(φ0∗
1 φ−

2 − φ−
1 φ0

2)S
+ + h.c.

]

. (4)

We note that the Z2 symmetry is exactly conserved, the symmetry breaking
pattern is just like SM. The term involving with µ in the potential is interesting
since it mix the two new charged scalar, it is the important parameter associated
with neutrino mass matrix. The mixing matrix between S± and φ±

2 is

(

φ+
2 S+

)

(

µ2
2 + λ3v2

2
µv√

2
µv√

2
m2

s

)

(

φ−
2

S−

)

(5)
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Neutrino mass generation 
No tree level seesaw due to Z2  symmetry, neutrino masses are 
generated in one-loop level

νLi E+
Ri E+

Li
νLj

S− φ−
2

µ < φ0
1 >

×

×
S−

Figure 1: Majorana mass of neutrino in one-loop level

1.1 Neutrino mass generation

The neutrino masses can be generated at one-loop level that is similar to the
Zee model as showed in Fig. 1. Note that there is a mixing between two charged
scalars S± and φ±

2 in the loop which associated with a GIM cancellation that
make the corrections finite. The neutrino masses are generated as

(mν)αβ =
fαifiβMEi

µv√
2

sin δ cos δ

∫

d4q

(2π)4
1

(q2 − M2
s )

1

(q2 − M2
P 2

1

)

1

(q2 − M2
Ei

)

=
fαifiβMEi

µv

16
√

2π2
sin δ cos δ

[

G(M2
P1

)

(M2
Ei

− M2
P1

)
−

G(M2
P2

)

(M2
Ei

− M2
P2

)

]

, (6)

where the function F is

G(M2
Pj

) =
M2

Ei

M2
Ei

− M2
s

ln
M2

s

M2
Ei

−
M2

Pk

M2
Pk

− M2
s

ln
M2

s

M2
Pk

. (7)

We will assume MEi
>∼ Ms >∼ Mφ−

2

hereafter, then we expect G(M2
Pk

) ∼
O(1). Thus the neutrino mass matrix approximate

(mν)αβ ≈
fαifiβ sin δ cos δ

16π2
√

2

µv

MEi

=
fαifiβ

32π2

µ2v2

(M2
P1

− M2
P2

)MEi

≈
fαifiβ

64π2

µ2

MP1

, (8)

one can see there is interesting structure in the neutrino masses. If we assume
the mass differences between the charged scalars are of order O(10 ∼ 100)GeV

such that the magnitude of v2

(MP1
−MP2

)MEi
∼ O(1). Let’s take MP1

= 1TeV then

to have neutrino masses around 0.1 ∼ 1eV . We have µ is O(1) ∼ O(100)GeV
and f ∼ 10−2∼−5.
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Figure 2: µ magnetic moment contributions from charged scalars

Here I use the flavor eigenstates to calculate the neutrino masses,

(mν)αβ = fαifiβMEi
µ2 < φ0

1 >2

∫

d4q

(2π)4
1

(q2 − M2
s )

1

(q2 − M2
φ2

)

1

(q2 − M2
Ei

)

=
ifαifiβµ2v2MEi

32π2(M2
Ei

− M2
φ2

)

[

F (M2
Ei

) − F (M2
φ2

)
]

(9)

where

F (M2) =
1

(M2 − M2
s )

+
M2

(M2 − M2
s )2

ln
M2

s

M2
(10)

1.2 Dark matter

There are many possible dark matter (DM) candidates in the theory beyond
SM, such as supersymmetric, little Higgs, and extra dimension theories. In
those theories, the DM are assumed to be SM singlet, however, the concept
of DM can be formed in the SM multiplets so-called minimal dark matter is
introduced in recent years. In our model, we will take the neutral component
of φ2 as the dark matter candidate. The study of DM in this kind have been
investigated in literature [1].

1.3 Muon magnetic moment

The current limit of the muon magnetic moment is

∆aµ = (290 ± 90)× 10−11, (11)

which is 3.2σ deviation between theory and experiment. The contributions
to muon g − 2 from the new particles are showed in Fig. 3 and Fig. 4. One
can see that the new particles are only appear pairing in loop due to the Z2

symmetry. Here as we assume the masses of all the new particles are around
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It is interesting to see that in the limit of M and Ms are almost degenerate,
the eq. (10) becomes − 1

2M2 . This limit is exact what we need in explaining the
lithium problem later on. So the neutrino masses can be approximated as

(mν)αβ ≈
ifαifiβ

64π2

µ2v2

MEi
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∼ 10−3 × f2 µ2

MEi

. (11)

Thus we have the results that if µ is around O(1) ∼ O(100)GeV , we have
f ∼ 10−2 − 10−4 to have the neutrino masses as 0.1eV .

1.2 Muon magnetic moment

The current limit of the muon magnetic moment is

∆aµ = (290 ± 90)× 10−11, (12)

which is 3.2σ deviation between theory and experiment. The contributions
to muon g − 2 from the new particles are showed in Fig. 3 and Fig. 4. One
can see that the new particles are only appear pairing in loop due to the Z2
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Muon g-2

μ anomalous magnetic moment  is one of the most precisely measured 
quantities in particle physics. 

A recent experiment at Brookhaven it has been measured with a 
remarkable 14-fold improvement of the previous CERN result.

3.2σ



Neutrino masses and μ g-2 
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Here I use the flavor eigenstates to calculate the neutrino masses,
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which is 3.2σ deviation between theory and experiment. The contributions
to muon g − 2 from the new particles are showed in Fig. 3 and Fig. 4. One
can see that the new particles are only appear pairing in loop due to the Z2

symmetry. Here as we assume the masses of all the new particles are around
∼ O(1)TeV but ME >∼ Ms >∼ Mφ2

. We first calculate the contributions from
Fig. 3, there is a mixing between the two charged scalars S− and φ−

2 just like
the neutrino mass generation. And we also see the enhancement by the chirality
flip in the internal fermion line, we have
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k and Pi are the mass eigenstates of the charged scalars.
The function F is

F (x) =
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(1 − x)3
[1 − x2 + 2x lnx]. (13)

From neutrino masses we know that sin δ cos δ × fµk ∼ 10−4, and since
mµ/Mk ∼ 10−4, we find that by setting yµk ∼ O(10−1 − 10−2) will give us
sufficient magnetic moment of order of 10−9. Now let’s turn to the second
contributions, we see the enhanced FCNC type leading contributions in the
parameter regime that mµ $ ME−
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It will not give us sufficient muon anomalous magnetic moment unless the
couplings yµk is of oder of O(10).

1.3 Dark matter and lithium problem

The lithium problem arises from the significant discrepancy between the primor-
dial 7Li abundance as predicted by Standard Big Bang Nucleosynthesis (BBN)
and the WMAP baryon density, and the pre-Galactic lithium abundance in-
ferred from observations of metal-poor stars. It has been generally accepted
this is problem by using the standard solar model of Bahcall, and recent solar
neutrino data one can exclude systematic variations of the magnitude need to
resolve the SBBN 7Li problem at the ≥ 95% confidence level.

One of the solution to this is that so-called Catalytic Big Bang Nucleosynthe-
sis (CBBN) which states if a long-live negatively-charged particle exists, it would
capture a light element previously synthesized in SBBN and form a Coulombic
bound state. The exotic atom will work as a catalyzer since the bound state will
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one can see there is interesting structure in the neu-
trino masses. If we assume the mass differences between
the charged scalars are of order O(10 ∼ 100)GeV such
that the magnitude of v2

(MP1−MP2 )MEi
∼ O(1). Let’s

take MP1 = 1TeV then to have neutrino masses around
0.1 ∼ 1eV . We have µ is O(1) ∼ O(100)GeV and
f ∼ 10−2∼−5.

Here I use the flavor eigenstates to calculate the neu-
trino masses,
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B. Dark matter

There are many possible dark matter (DM) candidates
in the theory beyond SM, such as supersymmetric, little
Higgs, and extra dimension theories. In those theories,
the DM are assumed to be SM singlet, however, the con-
cept of DM can be formed in the SM multiplets so-called
minimal dark matter is introduced in recent years. In
our model, we will take the neutral component of φ2 as
the dark matter candidate. The study of DM in this kind
have been investigated in literature [1].

FIG. 2: muon g-2 contributions from singly charged scalars
mixing.

FIG. 3: muon g-2 contributions from heavy charged leptons.

C. Muon magnetic moment

The current limit of the muon magnetic moment is

∆aµ = (290± 90)× 10−11, (11)

which is 3.2σ deviation between theory and experiment.
The contributions to muon g − 2 from the new particles
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new particles are only appear pairing in loop due to the
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Dark matter, lithium problem, and leptogenesis

A dark matter can be realized in the inert scalar  doublet 
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Figure 4: Charged singlet scalar decays

1.3 Dark matter and lithium problem

The lithium problem arises from the significant discrepancy between the primor-
dial 7Li abundance as predicted by Standard Big Bang Nucleosynthesis (BBN)
and the WMAP baryon density, and the pre-Galactic lithium abundance in-
ferred from observations of metal-poor stars. It has been generally accepted
this is problem by using the standard solar model of Bahcall, and recent solar
neutrino data one can exclude systematic variations of the magnitude need to
resolve the SBBN 7Li problem at the ≥ 95% confidence level.

One of the solution to this is that so-called Catalytic Big Bang Nucleosynthe-
sis (CBBN) which states if a long-live negatively-charged particle exists, it would
capture a light element previously synthesized in SBBN and form a Coulombic
bound state. The exotic atom will work as a catalyzer since the bound state will
induce the reactions which will produce a suitable abundance of 6Li and 7Li
primordially. The catalytic enhancement is that in the 6Li and 9Be production
triggered by the formation of bound states of 4He with the negatively charged
relic, in our model we take S− play the role. The catalytic path to 6Li and 9Be
is following,

S− → (4HeS−) →6 Li and S− → (4HeS−) → (8BeX−) →9 Be. (17)

And the key for the nuclear catalysis is an enormous enhancement of the
reaction rates in the photonless recoil reactions mediated by S− :

(4HeS−) + D →6 Li + S− and (8BeS−) + n →9 Be + S−. (18)

However, the rates of these catalyzed reactions exceed the SBBN rates for
the production of 6Li and 9Be by many orders of magnitude, one finds a strong
sensitivity to the abundance of S− at the relevant times. The observations
impose the significant constraints on the lifetime of the negative charged particle
should be ∼ 103sec to live long enough to form the exotic atom and catalyze the
reactions. In our model a long-lived S− can be achieved through the three body
decays into the lepton sectors and dark matter in the final states. The figures
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1.3 Dark matter

There are many possible dark matter (DM) candidates in the theory beyond
SM, such as supersymmetric, little Higgs, and extra dimension theories. The
neutral component of the inserted doublet scalar will be the DM candidate in
our model and the study of this DM have been investigated in literature [1].
Since φ0

2 consists two degrees of freedom (scalar and pseudoscalar components),
and their mass difference is determined by the sign of λ5 in the potential. If we
use the convention φ0

2 = φ0
2R + iφ0

2I , the masses of φ0
2R and φ0

2I are

m2
2 +

v2

2
(λ3 + λ4 ± λ5). (17)

Thus if λ5 is positive(negative), φ0
2I(φ

0
2R) is the DM. A detailed discussions

of the relations among the DM relic abundance, the scalar quartic couplings
and the mass splitting among scalars are showed in [2]. The lower bound of the
DM mass is

Mφ0

2
≥ 534GeV. (18)

1.4 Lithium problem
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dial 7Li abundance as predicted by Standard Big Bang Nucleosynthesis (BBN)
and the WMAP baryon density, and the pre-Galactic lithium abundance in-
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capture a light element previously synthesized in SBBN and form a Coulombic
bound state. The exotic atom will work as a catalyzer since the bound state will
induce the reactions which will produce a suitable abundance of 6Li and 7Li
primordially. The catalytic enhancement is that in the 6Li and 9Be production
triggered by the formation of bound states of 4He with the negatively charged
relic, in our model we take S− play the role. The catalytic path to 6Li and 9Be
is following,

S− → (4HeS−) →6 Li and S− → (4HeS−) → (8BeX−) →9 Be. (19)

And the key for the nuclear catalysis is an enormous enhancement of the
reaction rates in the photonless recoil reactions mediated by S− :

(4HeS−) + D →6 Li + S− and (8BeS−) + n →9 Be + S−. (20)
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1.3 Dark matter

There are many possible dark matter (DM) candidates in the theory beyond
SM, such as supersymmetric, little Higgs, and extra dimension theories. The
neutral component of the inserted doublet scalar will be the DM candidate in
our model and the study of this DM have been investigated in literature [1].
Since φ0

2 consists two degrees of freedom (scalar and pseudoscalar components),
and their mass difference is determined by the sign of λ5 in the potential. If we
use the convention φ0

2 = φ0
2R + iφ0

2I , the masses of φ0
2R and φ0

2I are

m2
2 +

v2

2
(λ3 + λ4 ± λ5). (17)

Thus if λ5 is positive(negative), φ0
2I(φ

0
2R) is the DM. A detailed discussions

of the relations among the DM relic abundance, the scalar quartic couplings
and the mass splitting among scalars are showed in [2]. The lower bound of the
DM mass is

Mφ0

2
≥ 534GeV. (18)

A local distribution of DM could be detected by measuring the energy de-
posited in a low background detector by the scattering of a DM with a nuclei of
the detector. There are two kinds of processes at tree level, φ0

2Rq → Z → φ0
2Iq

and φ0
2Rq → h → φ0

2Rq. The experiments have reached such a level of sensitivity
that the Z exchange contribution is excluded by current limits. However, one
can evade this constraint by a mass splitting between φ0

2R and φ0
2I is higher

than a few 100KeV . The cross section of the scatterings mediated by Higgs is

σh
DM−N ≈

f2
Nλ2

φ0

2

4π
(

m2
N

mDMm2
h

)2, (19)

and if mDM > MW , there are contributions to elastic scattering through
exchange gauge bosons at 1-loop level,

σ1−loop =
9f2

Nπα4
2m

4
N

64M2
W

(
1

M2
W

+
1

m2
h

)2. (20)

Which is independent on DM mass and can be reached the sensitivity at the
next-generation experiment around σ ∼ 10−8 − 10−10 pb.
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Direct detection

Experimental limit on Z exchange -- 
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σh
DM−N ≈

f2
Nλ2

φ0

2

4π
(

m2
N

mDMm2
h

)2. (19)

1.4 Lithium problem

The lithium problem arises from the significant discrepancy between the primor-
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and the WMAP baryon density, and the pre-Galactic lithium abundance in-
ferred from observations of metal-poor stars. It has been generally accepted
this is problem by using the standard solar model of Bahcall, and recent solar
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induce the reactions which will produce a suitable abundance of 6Li and 7Li

6

1.3 Dark matter

There are many possible dark matter (DM) candidates in the theory beyond
SM, such as supersymmetric, little Higgs, and extra dimension theories. The
neutral component of the inserted doublet scalar will be the DM candidate in
our model and the study of this DM have been investigated in literature [1].
Since φ0

2 consists two degrees of freedom (scalar and pseudoscalar components),
and their mass difference is determined by the sign of λ5 in the potential. If we
use the convention φ0

2 = φ0
2R + iφ0

2I , the masses of φ0
2R and φ0

2I are

m2
2 +

v2

2
(λ3 + λ4 ± λ5). (17)

Thus if λ5 is positive(negative), φ0
2I(φ

0
2R) is the DM. A detailed discussions

of the relations among the DM relic abundance, the scalar quartic couplings
and the mass splitting among scalars are showed in [2]. The lower bound of the
DM mass is

Mφ0

2
≥ 534GeV. (18)

A local distribution of DM could be detected by measuring the energy de-
posited in a low background detector by the scattering of a DM with a nuclei of
the detector. There are two kinds of processes at tree level, φ0

2Rq → Z → φ0
2Iq

and φ0
2Rq → h → φ0

2Rq. The experiments have reached such a level of sensitivity
that the Z exchange contribution is excluded by current limits. However, one
can evade this constraint by a mass splitting between φ0

2R and φ0
2I is higher

than a few 100KeV . The cross section of the scatterings mediated by Higgs is

σh
DM−N ≈

f2
Nλ2

φ0

2

4π
(

m2
N

mDMm2
h

)2, (19)

and if mDM > MW , there are contributions to elastic scattering through
exchange gauge bosons at 1-loop level,

σ1−loop =
9f2

Nπα4
2m

4
N

64M2
W

(
1

M2
W

+
1

m2
h

)2. (20)

1.4 Lithium problem

The lithium problem arises from the significant discrepancy between the primor-
dial 7Li abundance as predicted by Standard Big Bang Nucleosynthesis (BBN)
and the WMAP baryon density, and the pre-Galactic lithium abundance in-
ferred from observations of metal-poor stars. It has been generally accepted
this is problem by using the standard solar model of Bahcall, and recent solar

6

Independent of DM mass



1.3 Dark matter

There are many possible dark matter (DM) candidates in the theory beyond
SM, such as supersymmetric, little Higgs, and extra dimension theories. The
neutral component of the inserted doublet scalar will be the DM candidate in
our model and the study of this DM have been investigated in literature [1].
Since φ0

2 consists two degrees of freedom (scalar and pseudoscalar components),
and their mass difference is determined by the sign of λ5 in the potential. If we
use the convention φ0

2 = φ0
2R + iφ0

2I , the masses of φ0
2R and φ0

2I are

m2
2 +

v2

2
(λ3 + λ4 ± λ5). (17)

Thus if λ5 is positive(negative), φ0
2I(φ

0
2R) is the DM. A detailed discussions

of the relations among the DM relic abundance, the scalar quartic couplings
and the mass splitting among scalars are showed in [2]. The lower bound of the
DM mass is

Mφ0

2
≥ 534GeV. (18)

A local distribution of DM could be detected by measuring the energy de-
posited in a low background detector by the scattering of a DM with a nuclei of
the detector. There are two kinds of processes at tree level, φ0

2Rq → Z → φ0
2Iq

and φ0
2Rq → h → φ0

2Rq. The experiments have reached such a level of sensitivity
that the Z exchange contribution is excluded by current limits. However, one
can evade this constraint by a mass splitting between φ0

2R and φ0
2I is higher

than a few 100KeV . The cross section of the scatterings mediated by Higgs is

σh
DM−N ≈

f2
Nλ2

φ0

2

4π
(

m2
N

mDMm2
h

)2, (19)

and if mDM > MW , there are contributions to elastic scattering through
exchange gauge bosons at 1-loop level,

σ1−loop =
9f2

Nπα4
2m

4
N

64M2
W

(
1

M2
W

+
1

m2
h

)2. (20)

Which is independent on DM mass and can be reached the sensitivity at the
next-generation experiment around σ ∼ 10−8 − 10−10 pb.

µ = λv , ρ0 = 0.3GeV/cm3

1.4 Lithium problem

The lithium problem arises from the significant discrepancy between the primor-
dial 7Li abundance as predicted by Standard Big Bang Nucleosynthesis (BBN)

6

mh = 120 GeV

Next generation experiment



Lithium problem	

BBN was generally taken to be a three-parameter theory 

SBBN                                             and  

               6Li component is small

Metal-poor halo stars ---

Galactic cosmic rays --- primordial value 

Measurement from clusters (NGC 6397) --- 

Recent high-precision measurements are sensitive to the tiny isotopic shift 
in Li absorption and indicate 

Baryon density Neutron mean-life Number of neutrino flavors

η10(WMAP2008)=6.23±0.17 Τn=878.5±0.8 s

on the lifetime of S−. Since we assume MEi
∼ O(1)TeV ,the decay rate of S±

is roughly,

Γs|αβ(Ni) ≈
(fαiyiβ)2

30π3M4
Ni

× (δm)5(1 −
5m2

l

δm2
)

≈ f2
αiy

2
iβ × 10−15(

δm

1GeV
)5GeV, (23)

where δm = Ms − Mφ2
. We can see the lifetime will be around

ταβ ≈ 6.6 × f−2
αi y−2

iβ × (
δm

1GeV
)−5 × 10−10 (24)

As we can see from the neutrino masses generation that the couplings f ∼
O(10−4∼−5) if µ ∼ O(100)GeV , and the muon anomalous magnetic moment
gives the y ∼ 10−1 − 10−2. In order to satisfy the constraint from CBBN,
we need the masses of S− and dark matter φ2 have to be almost degenerate
to give us proper lifetime constrained by data. Let’s take δm ∼ O(1)GeV ,
that will bring us the final states of τ is not allowed. We have to remember
there is roughly factor of O(10) by including all the decay modes. And the
final states with electrons are much less suppressed, we will take the associated
Yukawa couplings smaller. Combine all of these we can have the prediction to
the pattern of neutrino mass structure is normal hierarchy.

Li/H = (1 ∼ 2) × 10−10 , Li/H = (1.23 ± 0.06) × 10−10,
Li/H = (2.19 ± 0.28)× 10−10

1.5 Leptogenesis

There are two sources of CP asymmetry and lepton number violation processes
from each of the new Yukawa interactions as drawn in Fig. 5 and 6. The decay
rates of N1 are

ΓN1
=

∑

α(y1α)2

16π
MN1

or ΓN1
=

(f †f)11
8π

MN1
(25)

corresponding to Fig. 5 and Fig. 6 respectively. The latter one is similar
to the one in canonical leptogenesis where its couplings are related to neutrino
masses. Let’s consider the possibility that the scalar singlet φ−

2 as the final
states and yαi are the couplings not related to neutrino masses. We have the
CP asymmetry

ε1 =
Γ(N1 → lφ+

2 ) − Γ(N1 → l̄φ−
2 )

Γ(N1 → lφ+
2 ) + Γ(N1 → l̄φ−

2 )
=

1

8π

∑

m #=1

Im[(y†y)21m]
∑

α(y†y)1α
{fv(

M2
m

M2
1

) + fs(
M2

m

M2
1

)}

=
3

16π

∑

m #=1

Im[(y†y)21m]
∑

α(y†y)1α

M1

Mm
, (26)
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Lithium problem : The SBBN predicts primordial 6Li abundance about 
1000 times smaller than the observed abundance level and 7Li abundance a 
factor of 2~3 larger than when one adopts a value of η inferred from the 
WMAP data. 



Catalyzed BBN (CBBN) may provide the solution S−
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Figure 4: Charged singlet scalar decays

and the WMAP baryon density, and the pre-Galactic lithium abundance in-
ferred from observations of metal-poor stars. It has been generally accepted
this is problem by using the standard solar model of Bahcall, and recent solar
neutrino data one can exclude systematic variations of the magnitude need to
resolve the SBBN 7Li problem at the ≥ 95% confidence level.

One of the solution to this is that so-called Catalytic Big Bang Nucleosynthe-
sis (CBBN) which states if a long-live negatively-charged particle exists, it would
capture a light element previously synthesized in SBBN and form a Coulombic
bound state. The exotic atom will work as a catalyzer since the bound state will
induce the reactions which will produce a suitable abundance of 6Li and 7Li
primordially. The catalytic enhancement is that in the 6Li and 9Be production
triggered by the formation of bound states of 4He with the negatively charged
relic, in our model we take S− play the role. The catalytic path to 6Li and 9Be
is following,

S− → (4HeS−) →6 Li and S− → (4HeS−) → (8BeX−) →9 Be. (21)

And the key for the nuclear catalysis is an enormous enhancement of the
reaction rates in the photonless recoil reactions mediated by S− :

(4HeS−) + D →6 Li + S− and (8BeS−) + n →9 Be + S−. (22)

However, the rates of these catalyzed reactions exceed the SBBN rates for
the production of 6Li and 9Be by many orders of magnitude, one finds a strong
sensitivity to the abundance of S− at the relevant times. The observations
impose the significant constraints on the lifetime of the negative charged particle
should be ∼ 103sec to live long enough to form the exotic atom and catalyze the
reactions. In our model a long-lived S− can be achieved through the three body
decays into the lepton sectors and dark matter in the final states. The figures
are showed in Fig. 4, one can expect that with the new heavy leptonic doublet
in the intermediate states plus the small Yukawa couplings and the phase space
suppression of the mass differences between S− and φ2, we can fit the constraint
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and the WMAP baryon density, and the pre-Galactic lithium abundance in-
ferred from observations of metal-poor stars. It has been generally accepted
this is problem by using the standard solar model of Bahcall, and recent solar
neutrino data one can exclude systematic variations of the magnitude need to
resolve the SBBN 7Li problem at the ≥ 95% confidence level.

One of the solution to this is that so-called Catalytic Big Bang Nucleosynthe-
sis (CBBN) which states if a long-live negatively-charged particle exists, it would
capture a light element previously synthesized in SBBN and form a Coulombic
bound state. The exotic atom will work as a catalyzer since the bound state will
induce the reactions which will produce a suitable abundance of 6Li and 7Li
primordially. The catalytic enhancement is that in the 6Li and 9Be production
triggered by the formation of bound states of 4He with the negatively charged
relic, in our model we take S− play the role. The catalytic path to 6Li and 9Be
is following,

S− → (4HeS−) →6 Li and S− → (4HeS−) → (8BeX−) →9 Be. (21)

And the key for the nuclear catalysis is an enormous enhancement of the
reaction rates in the photonless recoil reactions mediated by S− :

(4HeS−) + D →6 Li + S− and (8BeS−) + n →9 Be + S−. (22)

However, the rates of these catalyzed reactions exceed the SBBN rates for
the production of 6Li and 9Be by many orders of magnitude, one finds a strong
sensitivity to the abundance of S− at the relevant times. The observations
impose the significant constraints on the lifetime of the negative charged particle
should be ∼ 103sec to live long enough to form the exotic atom and catalyze the
reactions. In our model a long-lived S− can be achieved through the three body
decays into the lepton sectors and dark matter in the final states. The figures
are showed in Fig. 4, one can expect that with the new heavy leptonic doublet
in the intermediate states plus the small Yukawa couplings and the phase space
suppression of the mass differences between S− and φ2, we can fit the constraint
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A long-lived          is needed  ~ 1000 sec

1 The Model

Besides the Zee model with two Higgs doublets, we introduced a set of new
fermionic lepton doublet Li in our model. The new fermions are assume to be
vector-like to make sure that the theory is anomaly free as for self consistency.
A discrete symmetry are imposed such that all the new particles are odd and
the SM sectors are even under this Z2 projection. The content of the model is
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φi=1,2 and S+ (1)

and extra fermionic part

Li =
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N
E−

)

i

, (2)
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the new Yukawa couplings
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i )
]
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[

l−RαE+
i φ0
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−
2

]

+ h.c., (3)

where α runs for e, µ, and τ , while i stands number of new fermionic doublet
we introduced, we will show later that at least two of them in order to have a
successful leptogenesis.
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2)S
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We note that the Z2 symmetry is exactly conserved, the symmetry breaking
pattern is just like SM. The term involving with µ in the potential is interesting
since it mix the two new charged scalar, it is the important parameter associated
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2
µv√
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on the lifetime of S−. Since we assume MEi
∼ O(1)TeV ,the decay rate of S±
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where δm = Ms − Mφ2
. We can see the lifetime will be around

ταβ ≈ 6.6 × f−2
αi y−2

iβ × (
δm

1GeV
)−5 × 10−10 (24)

As we can see from the neutrino masses generation that the couplings f ∼
O(10−4∼−5) if µ ∼ O(100)GeV , and the muon anomalous magnetic moment
gives the y ∼ 10−1 − 10−2. In order to satisfy the constraint from CBBN,
we need the masses of S− and dark matter φ2 have to be almost degenerate
to give us proper lifetime constrained by data. Let’s take δm ∼ O(1)GeV ,
that will bring us the final states of τ is not allowed. We have to remember
there is roughly factor of O(10) by including all the decay modes. And the
final states with electrons are much less suppressed, we will take the associated
Yukawa couplings smaller. Combine all of these we can have the prediction to
the pattern of neutrino mass structure is normal hierarchy.

Li/H = (1 ∼ 2) × 10−10 , Li/H = (1.23 ± 0.06) × 10−10,
Li/H = (2.19 ± 0.28)× 10−10

7Li/H = (5.24+0.71
−0.62) × 10−10 , 6Li/7Li ≤ 0.15

6Li/7Li ∼ 3.3 × 10−5 , X−

SBBN :4 He + D →6 Li + γ

1.5 Leptogenesis

There are two sources of CP asymmetry and lepton number violation processes
from each of the new Yukawa interactions as drawn in Fig. 5 and 6. The decay
rates of N1 are

ΓN1
=

∑

α(y1α)2

16π
MN1

or ΓN1
=

(f †f)11
8π

MN1
(25)

corresponding to Fig. 5 and Fig. 6 respectively. The latter one is similar
to the one in canonical leptogenesis where its couplings are related to neutrino
masses. Let’s consider the possibility that the scalar singlet φ−

2 as the final
states and yαi are the couplings not related to neutrino masses. We have the
CP asymmetry
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which means that at least one of the y2α couplings is of order 10−3 ×
√

MN2
/MN1

. The second constraint comes from the out-of-equilibrium con-
dition, it reads

ΓN1
< H(T ) =

√

4π3g∗
45

T 2

Mpl
|T=MN1

. (29)

We have

y(1) =

√

∑

i

|y1i|2 < 3 × 10−4

√

MN1

109GeV
. (30)

By considering the Boltzmann equations, we obtain,

y(1)

y(2)
< 0.28 ×

√

MN1

MN2

MN1

109GeV
. (31)

From these conditions, we can find the TeV solution of leptogenesis, such as,
if MN1

= 1TeV , MN2
= 5TeV , y(2) " 2.3 × 10−3, and y(1) " 3 × 10−7.

Note that the extra washout effects of Ni decaying through and/or into
gauge particles are depicted in Fig. 7. However, it was showed [3] that the
gauge interactions involve two particles and are therefore doubly Boltzmann
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Γ(N1 → lφ+

2 ) − Γ(N1 → l̄φ−
2 )

Γ(N1 → lφ+
2 ) + Γ(N1 → l̄φ−

2 )
=

1

8π

∑

m #=1

Im[(y†y)21m]
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α(y†y)1α
{fv(

M2
m

M2
1

) + fs(
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m

M2
1

)}

=
3

16π

∑

m #=1

Im[(y†y)21m]
∑

α(y†y)1α

M1

Mm
, (26)

where we assumed the hierarchy masses of heavy neutrinos. Due to neutrino
mass constraints, a low-scale heavy Majorana neutrinos must generally have
tiny Yukawa couplings and the CP asymmetry will be highly suppressed. How-
ever in our case the couplings y′s are not associated with neutrino masses, the
constraints are much relaxed. We have to check the conditions for leptogenesis,
first the amount of the baryon asymmetry,

nB

s
= −

28

79

nL

s
= −1.36 × 10−3ε1η = 9 × 10−11, (27)

where η is the efficiency factor. For maximal efficiency, η = 1, we have the
constraint

y(2) =

√

Im[(y1α)(y∗
2α)]2

∑

α(y1α)(y∗
1α)

≥ 1.05 × 10−3

√

MN2

MN1

, (28)
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1.5 Leptogenesis

There are two sources of CP asymmetry and lepton number violation processes
from each of the new Yukawa interactions as drawn in Fig. 5 and 6. The decay
rates of N1 are

ΓN1
=

∑

α(y1α)2

16π
MN1

and ΓN1
=

(f †f)11
8π

MN1
(25)

corresponding to Fig. 5 and Fig. 6 respectively. The latter one is similar
to the one in canonical leptogenesis where its couplings are related to neutrino
masses. Let’s consider the possibility that the scalar singlet φ−

2 as the final
states and yαi are the couplings not related to neutrino masses. We have the
CP asymmetry
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The right-handed sector is not constrained by neutrino masses 



Ni

l∓Rj(l
∓
Lj)

φ±
2 (S±)

Ni

l∓Rj(l
∓
Lj)

φ±
2 (S±)

ln

Nm Ni

ln

Nm

l∓Rj(l
∓
Rj)

φ±
2 (S±)

Figure 5: Heavy Majorana neutrinos decay to charged scalar in insert doublet

Ni

l∓Lj

S±

Ni

l∓Lj

S±
ln

Nm Ni

ln

Nm

l∓Lj

S±

Figure 6: Heavy Majorana neutrinos decay to charged singlet scalar

ε1 =
Γ(N1 → lφ+

2 ) − Γ(N1 → l̄φ−
2 )

Γ(N1 → lφ+
2 ) + Γ(N1 → l̄φ−

2 )
=

1

8π

∑

m #=1

Im[(y†y)21m]
∑

α(y†y)1α
{fv(

M2
m

M2
1

) + fs(
M2

m

M2
1

)}

=
3

16π

∑

m #=1

Im[(y†y)21m]
∑

α(y†y)1α

M1

Mm
, (26)

where we assumed the hierarchy masses of heavy neutrinos. Due to neutrino
mass constraints, a low-scale heavy Majorana neutrinos must generally have
tiny Yukawa couplings and the CP asymmetry will be highly suppressed. How-
ever in our case the couplings y′s are not associated with neutrino masses, the
constraints are much relaxed. We have to check the conditions for leptogenesis,
first the amount of the baryon asymmetry,

nB

s
= −

28

79

nL

s
= −1.36 × 10−3ε1η = 9 × 10−11, (27)

where η is the efficiency factor. For maximal efficiency, η = 1, we have the
constraint

y(2) =

√

Im[(y1α)(y∗
2α)]2

∑

α(y1α)(y∗
1α)

≥ 1.05 × 10−3

√

MN2

MN1

, (28)
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which means that at least one of the y2α couplings is of order 10−3 ×
√

MN2
/MN1

. The second constraint comes from the out-of-equilibrium con-
dition, it reads

ΓN1
< H(T ) =

√

4π3g∗
45

T 2

Mpl
|T=MN1

. (29)

We have

y(1) =

√

∑

i

|y1i|2 < 3 × 10−4

√

MN1

109GeV
. (30)

By considering the Boltzmann equations, we obtain,

y(1)

y(2)
< 0.28 ×

√

MN1

MN2

MN1

109GeV
. (31)

From these conditions, we can find the TeV solution of leptogenesis, such as,
if MN1

= 1TeV , MN2
= 5TeV , y(2) " 2.3 × 10−3, and y(1) " 3 × 10−7.

Note that the extra washout effects of Ni decaying through and/or into
gauge particles are depicted in Fig. 7. However, it was showed [3] that the
gauge interactions involve two particles and are therefore doubly Boltzmann
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Washout effects from gauge interactions (Type II ,III seesaw mechanism)
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Figure 8: New washout effects due to SM gauge interactions

suppressed at temperatures below their mass, so that they can not wash-out
the lepton asymmetry in an efficient way. On the contrary gauge interactions
are efficient at higher temperatures and thermalize the initial abundance, so
that final baryon asymmetry almost never depends on it. The cross sections of
Fig. 7 by summing over the 12 SM fermions and the gauge bosons are

σ̂A =
3g4

8π
(1 +

2

x
)r +

g4

16π

[

−r(4 +
17

x
) + 3(1 +

4

x
−

4

x2
) ln

1 + r

1 − r

]

, (32)

where r =
√

1 − 4/x.
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Boltzmann eqs. 

Boltzmann suppression factor 
in gauge fields at low scale

Left-handed leptogenesis 
Contribute constrained by 

Neutrino masses -- subleading



Some Collider phenomena 

The new particles are all reachable at LHC. 

ΔM = 166 MeV
Splitting by gauge interactions

Long-lived to leave the tracks 
In detectors



Conclusions

The neutrino masses generated through the radiative seesaw mechanism 
with double GIM suppression is presented.

Anomalous muon magnetic moment is given through the mechanism 
similar to neutrino masses generation.

Dark matter candidate is realized in inert doublet scalar, and a direct 
measurement is possible in next-generation experiments.

Lithium problem can be solved by a long-lived single charged scalar S-  to 
by Catalyzed BBN method. 

TeV-scale leptogenesis utilizing right-handed lepton sector as well as left-
handed is presented.

The model can be tested in near future at collider.  


