Flavor Physics in the Littlest Higgs Model with T-Parity

Yasuhiro Yamamoto (Sokendai/KEK)

The 8th Particle Physics Phenomenology Workshop @NCKU, May 20,2009

Phys.Lett.B670:378-382,2009. T.Goto(KEK), Y.Okada(KEK/Sokendai) and Y.Y.

Introduction

Motivations and plan of this talk.

The Littlest Higgs Model with T-Parity

Details of the model which we discuss.

Impact to Flavor Physics

▶ Numerical calculation of $K \to \pi \nu \bar{\nu}$ and lepton flavor violation.

Conclusion

Hierarchy Problems

Hierarchy Problem

- In the SM, physical Higgs mass can be extremely smaller than radiative corrections.

$$H - \underbrace{0.3 \Lambda_{cut off}}_{t} H \rightarrow \delta m^2 \sim (0.3 \Lambda_{cut off})^2$$

- Unnaturalness increase at $\Lambda_{\it cut\,off}~\gtrsim 1$ TeV.

Little Hierarchy Problem

- Electroweak precision measurement, in LEP, implies the scale of new physics \gtrsim 5 TeV.

$$rac{\delta m^2}{m_H^2}\gtrsim \left(0.3\,rac{5{
m TeV}}{100{
m GeV}}
ight)^2\sim 200$$

The Littlest Higgs Model with T-Parity

The Littlest Higgs Model

- The Higgs boson is realized as a pseudo Nambu-Goldstone boson.

- Quadratic divergences generated by the top quark and gauge bosons can be compensated with corresponding heavy new particles at 1-loop.

'01 N.Arkani-Hamed, A.G.Cohen, H.Georgi

'02 N.Arkani-Hamed, A.G.Cohen, E.Katz, A.E.Nelson

T-Parity

- To avoid extra contributions to 4 fermi interaction against electroweak precision constraints, symmetry breaking scale become large i.e. little hierarchy problem revives.

- Z_2 symmetry, T-parity, suppress the contributions.
- New particles are needed to impose T-parity.

Impact to Flavor Physics

New Fermion Mixing Matrices

- New contributions to flavor signals are induced.

'05 J.Hubisz, S.J.Lee, G.Paz

'06 M.Blanke, A.J.Buras, S.Poschenrieder, S.Recksiegel, C.Tarantino, S.Uhlig, A.Weiler

Previous Works

 Low energy ultra-violet sensitivity is reported in loop induced flavor changing processes.

'06~'07 M.Blanke, A.J.Buras, C.Tarantino et.al.

Our Results

- Additional terms missing in previous works are found.
- Low energy ultra-violet sensitivity is cancelled.
- Numerical calculations of $K \to \pi \nu \bar{\nu}$ and lepton flavor violation.

Global Symmetry

• A non-linear sigma model, $SU(5) \xrightarrow{f} SO(5)$.

- Vaccum expectation value of $\boldsymbol{\Sigma},$ Nambu-Goldstone bosons, break the global symmetry.

- Spontaneous symmetry breaking generate masses of new particles, $\mathcal{O}(f)$.

- A effective theory below the cut off scale, $4\pi f$.

- ► There are 14 Nambu-Goldstone bosons.
 - The Higgs boson is realized as a pseudo Nambu-Goldstone boson.

$$\Sigma = \xi \Sigma_0 \xi^T, \quad \Sigma_0 = \begin{pmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{pmatrix}$$
$$\xi = \exp \left[\begin{array}{c} i \\ f \\ \frac{H^{\dagger}}{f} & \eta \\ \Phi^{\dagger} & H^* \\ \mathbf{0} \end{array} \right]$$

Gauge Symmetry

• Subgroups of global symmetry, SU(5), are gauged.

►
$$[SU(2) \times U(1)]_1 \xrightarrow{T-parity} [SU(2) \times U(1)]_2$$

⇒ W^{\pm} , Z, A (T-even), W_H^{\pm} , Z_H, A_H (T-odd).

Pseudo Nambu-Goldstone bosons.

- H : The SM Higgs doublet (T-even).
- ω,η : Eaten by heavy gauge bosons (T-odd).
- ϕ : Physical heavy scalar (T-odd).

Fermions

- ► Left-handed fermions consist of **5** and $\overline{\mathbf{5}}$ of SU(5). $\Psi_1(\mathbf{5}) \xrightarrow{T-parity} -\Sigma_0 \Psi_2(\overline{\mathbf{5}})$
- Right-handed heavy fermions are 5 of SO(5), and non-linear representations of SU(5).
 - $\Psi'_R = \xi \Psi_R$ transforms as **5** of SU(5).
- ► Yukawa coupling generate $\mathcal{O}(f)$ masses for T-odd fermions. $\mathcal{L}_{HY} \supset -\kappa^{ij} f(\overline{\Psi}_2^i \Psi_R^{\,j} - \overline{\Psi}_1^i \widetilde{\Psi}_R^{\,j}) + H.c.$ $(\widetilde{\Psi}_R^{\prime} \text{ is T-parity conjugate of } \Psi_R^{\prime})$
- New mixing matrices are induced between the SM fermions and heavy new fermions since mass bases of heavy fermions are independent of that of the SM fermions.

$$\frac{g}{\sqrt{2}}(\mathbf{V}_{\mathrm{Hd}})_{ij} u_{H}^{i} \gamma^{\mu} W_{H\mu}^{+} d_{SM}^{j} \sim u_{H}^{d_{SM}} V_{\mathrm{Hd}} V_{Hd}$$

Previous Results

- Flavor signals were calculated with low energy expansion of the full Lagurangean.
 - 4 dimension relevant operators.
 - Including corrections until $\mathcal{O}(v^2/f^2)$.
 - Leading contributions of new particles are $\mathcal{O}(v^2/f^2)$.
- In the amplitudes of loop induced flavor changing processes, low energy ultra-violet sensitivity were reported.
 - Loss of low energy predictability.

$$Br(\text{flavor changing})_{T-odd} \sim \frac{v^2}{f^2} \left(\ln \frac{\Lambda^2}{M_{WH}^2} + \text{finite} \right)$$

Corrections of Non-Linear Representation

- There are O(v²/f²) contributions in the expansion of non-linear Lagrangean.
 - $\mathcal{L} \supset rac{f^2}{8} {
 m tr}[(D^\mu \Sigma)^\dagger D_\mu \Sigma]$

$$\longrightarrow \bigcup_{\omega}^{\omega} \sum_{w} Z \propto \left(\cos^2 \theta_W - \frac{\mathbf{v}^2}{8\mathbf{f}^2}\right)$$

 Missing terms are found in the expansion of interactions between right-handed heavy fermions, non-linear representation, and Z boson.

Cancelation of Ultara-Violet Sensitivity

• Relevant diagrams for leading $O(v^2/f^2)$ contributions.

- Reported low energy ultra-violet sensitivity, contribution of blue vertices, is canceled by new contributions, red vertices.

$K \rightarrow \pi \nu \overline{\nu}$

- ► This processes receive small QCD correction.
 - Theoriticaly clean and sensitive to new physics.

$$\blacktriangleright K^+ \rightarrow \pi^+ \nu \, \overline{\nu}$$

- A few events have been observed.

$$\blacktriangleright K_L \rightarrow \pi^0 \nu \overline{\nu}$$

- Any events have not been observed.
- In J-PARC, new experiment is planned.
- New contributions in the littlest Higgs model with T-parity.

Numerical Calculation

There are 20 new parameters in the littlest Higgs model with T-parity.

f , $m_{T},\,6$ fermion masses, 6 mixing angles, 6 phases

$$\begin{split} f &= 1 \; \text{TeV} \;, \; m_T = 1.34 \; \text{TeV}, \\ m_{Hq}^{1,2} &= m_{H\ell}^i = 500 \; \text{GeV}, \\ \text{Re}[\xi_3] &= 0, \qquad (\pmb{\xi}_3 = (\pmb{\mathsf{V}}_{\text{Hd}}^*)_{3\text{s}}(\pmb{\mathsf{V}}_{\text{Hd}})_{3\text{d}}). \end{split}$$

- Dengerous contributions to $K^0 - \overline{K^0}$ are suppressed.

 m_{Hg}^3 and $Im[\xi_3]$ are free parameters.

Numerical Calculation of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

13

Numerical Calculation of $K_L \rightarrow \pi^0 \nu \overline{\nu}$

14

Lepton Flavor Violation

- ► In the SM, branching ratios become extreamely small.
 - Observation means new physics.
- Experiments.
 - μ e γ experiment in MEG.
 - $\mu \rightarrow$ 3e is bounded by SINDRUM.
 - μ e conversion is planned in FNAL and J-PARC.
- New contributions.

• Lepton sector is similar to quark sector in this model. - Using $m_{H\ell}^1$ and θ_{12} , in $V_{H\ell}$, as free parameter.

Numerical Calculation of Lepton Flavor Violation 16

Matrix elements for μ - e conversion are taken from known formalism.
'02 R.Kitano, M.Koike and Y.Okada

Conclusion

- The littlest Higgs model with T-parity has charastristic flavor signals.
- ► Amplitudes of loop induced flavor changing processes, dⁱ → d^j and eⁱ → e^j, become ultra-violet finite at O(^{v²}/_{f²}).
- Branching ratios of $K \to \pi \nu \overline{\nu}$ can be different from the SM predictions.
- Lepton flavor violation can be large enough to be measurable.
- The processes may be measured in near future experiment.

Back up Slides

New Contributions to $K \rightarrow \pi \nu \bar{\nu}$

Collective Symmetry Breaking

 Quadratic divergences are compensated with new particles at 1-loop.

top quark \leftrightarrow top partner

gauge bosons \leftrightarrow heavy gauge bosons

Nambu-Goldstone Bosons

$$\xi = \exp\left[i\Pi/f\right]$$

U(1) Charge Assignment to Left-handed Fermions

	$SU(2)_{1}$	$SU(2)_{2}$	Y_1	Y_2	Y_1'	Y'_2	Y_1''	<i>Y</i> ₂ ''
$q_1 = egin{pmatrix} u_1 \ d_1 \end{pmatrix}$	2	1	$\frac{1}{30}$	$\frac{4}{30}$	$-\frac{3}{10}$	$-\frac{2}{10}$	$\frac{1}{3}$	$\frac{1}{3}$
$q_2 = \begin{pmatrix} u_2 \\ d_2 \end{pmatrix}$	1	2	$\frac{4}{30}$	$\frac{1}{30}$	$-\frac{2}{10}$	$-\frac{3}{10}$	$\frac{1}{3}$	$\frac{1}{3}$
$t_1' \\ t_2'$	1 1	1 1	8 15 2 15	$\frac{2}{15}$ $\frac{8}{15}$	$ \frac{\frac{2}{10}}{-\frac{2}{10}} $	$-\frac{2}{10}$ $\frac{2}{10}$	$\frac{1}{3}$ $\frac{1}{3}$	$\frac{1}{3}$ $\frac{1}{3}$
$\ell_1 = \begin{pmatrix} \nu_1 \\ e_1 \end{pmatrix}$	2	1	$-\frac{2}{10}$	$-\frac{3}{10}$	$-\frac{3}{10}$	$-\frac{2}{10}$	0	0
$\ell_2 = \begin{pmatrix} \nu_2 \\ e_2 \end{pmatrix}$	1	2	$-\frac{3}{10}$	$-\frac{2}{10}$	$-\frac{2}{10}$	$-\frac{3}{10}$	0	0

U(1) Charge Assignment to Right Handed Fermions

	$SU(2)_{1}$	$SU(2)_{2}$	Y_1	Y_2	Y_1'	Y'_2	Y_1''	Y_2''
u_{R} d_{R} $q_{HR} = \begin{pmatrix} u_{HR} \\ d_{HR} \end{pmatrix}$	1 1 -	1 1 -	$\frac{\frac{1}{3}}{-\frac{1}{6}}$	$\frac{\frac{1}{3}}{-\frac{1}{6}}$	0 0 —	0 0 —	$\frac{\frac{1}{3}}{-\frac{1}{6}}$ $\frac{\frac{1}{3}}{-\frac{1}{3}}$	$ \begin{array}{c} \frac{1}{3} \\ -\frac{1}{6} \\ \frac{1}{3} \end{array} $
t'_{1R} t'_{2R}	1 1	1 1	$\frac{\frac{8}{15}}{\frac{2}{15}}$	2 15 8 15	$ \frac{\frac{2}{10}}{-\frac{2}{10}} $	$-\frac{2}{10}$ $\frac{2}{10}$	$\frac{1}{3}$ $\frac{1}{3}$	$\frac{1}{3}$ $\frac{1}{3}$
ν _R e _R	1 1	1 1	$0 \\ -\frac{1}{2}$	$0 \\ -\frac{1}{2}$	0 0	0 0	$0 \\ -\frac{1}{2}$	$0 \\ -\frac{1}{2}$
$\ell_{HR} = \begin{pmatrix} u_{HR} \\ e_{HR} \end{pmatrix}$	-	-	-	-	-	-	0	0