$B \to K\eta, K\eta'$ Decays in QCD Factorization

T. N. PHAM

Centre de Physique Théorique, CNRS Ecole Polytechnique, 91128 Palaiseau Cedex, France

Talk at the 8th Particle Physics Phenomenology Workshop (PPP8) May 20-23, NCKU Tainan, Taiwan 701, Republic of China Based on a recent work:

T. N. Pham, Phys. Rev. **D** 77 014024 (2008).

1 Introduction

• In charmless two-body decays, the $B \to K\eta'$ decay is the one with the largest branching ratio, bigger than that of $B \to K\pi$ decay by a factor of ≈ 3 .

• The $B \rightarrow K\eta, K\eta'$ decays have been analysed in many recent papers, for example, Beneke and Neubert, NP B 651, 225 (2003); Dutta, Kim, Oh and Zhu, EPJC 37, 273 (2004), Williamson and Zupan, PRD 74, 014003(2006); Charng, Kurimoto and Li, PRD 74 074024 (2006); Gerard and Kou, PRL 97 261804 (2006) and more recently Hsu, Charng and Li, PRD 78 014020 (2008) and Xiao, Liu and Guo, PRD 78 114001 (2008).

• In QCDF the $B \to K\pi$ branching ratio could be understood with a moderate contribution from the power-suppressed annihilation terms.

• Without fine tuning, the $B \to K \eta'$ branching ratio is predicted to be larger than that of $B \to K \pi$, but still underestimated by 20 - 30%.

- Main theoretical uncertainties come from the $B \to \eta'$ form factor and the pseudo-scalar density matrix elements for η' .
- This work : To show that nonet symmetry for the pseudo-scalar mass formula implies nonet symmetry for the pseudo-scalar density matrix elements and to use this result in this analysis of $B \to K\eta, K\eta'$ decays.
- Historically, there is an approximate expression for the octet pseudo-scalar density matrix elements by Gell-Mann, Oakes and Renner, PRD 175, 2195 (1968).
- There is no known explicit expression for the singlet pseudo-scalar density using the nonet symmetry scheme.

2 QCD factorization for charmless $B \rightarrow PP$ decays

Figure 1: factorization diagram for charmless B decay

Figure 3: Annihilation diagram for $B \to M_1 M_2$

• With the operator product expansion and renormalization group equation, the effective Lagrangian can be obtained, in which short-distance effects involving large virtual momenta of the loop corrections from the scale M_W down to $\mu = \mathcal{O}(m_b)$ are cleanly integrated into the Wilson coefficients. • $B \to M_1 M_2$ decay amplitude

$$\mathcal{A}(B \to M_1 M_2) = \frac{G_F}{\sqrt{2}} \sum_{p=u,c} V_{pb} V_{ps}^* \times \left(-\sum_{i=1}^{10} a_i^p \langle M_1 M_2 | O_i | B \rangle_H + \sum_i^{10} f_B f_{M_1} f_{M_2} b_i \right), \quad (1)$$

• The QCD coefficients a_i^p contain the vertex corrections, penguin corrections, and hard spectator scattering contributions, the hadronic matrix elements $\langle M_1 M_2 | O_i | B \rangle_H$ of the tree and penguin operators O_i are given by factorization model, b_i are annihilation contributions. The values for $a_i^p, p = u, c$, evaluated at the renormalization scale $\mu = m_b$, with $m_b = 4.2 \,\text{GeV}$

• The effective operators :

$$O_1 = (\bar{s}u)_L (\bar{u}b)_L$$
 , $O_4 = \sum_q (\bar{s}q)_L (\bar{q}b)_L$

$$O_6 = -2\sum_q (\bar{s}_L q_R)(\bar{q}_R b_L)$$

(2)

• $O_{1,2}$: Tree-level, $O_{3,...,6}$: QCD penguin, $O_{7,...,10}$: Electroweak penguin

• Hadronic matrix elements : $\langle M_1 M_2 | O_i(\mu) | B \rangle$ contains the physics effects from the scale $\mu = \mathcal{O}(m_b)$ down to Λ_{QCD} .

• In heavy quark limit, QCD Factorisation : $\langle M_1 M_2 | O_i(\mu) | B \rangle$ can be factorized into hard radiative corrections and simpler nonperturbative structures which can be parametrized by the form factors and meson light-cone distribution amplitudes (LCDAs).

• Power corrections in $1/m_b$ come from Penguin matrix element, chirally enhanced corrections and annihilation contribution.

• Penguin matrix element like that of O_6 is of the order $O(1/m_b)$ compared to the $(V - A) \times (V - A) O_1$ and O_4 matrix element in the $B \to K\pi$ amplitude, since the matrix element $\langle K|\bar{s}_L d_R|0 \rangle$ is proportional to $m_K^2/m_s \approx 2.5 \text{ GeV}$ while $\langle K|\bar{s}_L d_L|0 \rangle$ is proportional to K momentum which is $O(m_b)$, thus numerically, the matrix element of O_6 which has a factor

$$r_{\chi}^{K} = \frac{2m_{K}^{2}}{m_{b}(m_{s} + m_{d})} \approx O(1)$$

$$(3)$$

is comparable to that of O_4 .

• Chirally enhanced corrections from two-body twist-3 LCDAs of the final state mesons and annihilation contributions parametrized by the two quantities $X_{A,H}$ which could have a strong phase (M. Beneke, G. Buchalla, M. Neubert and C.T. Sachrajda, Nucl. Phys. B **606**, 245 (2001).)

3 Nonet symmetry in the $\eta - \eta'$ system

• Since QCD interactions through the exchange of gluons are flavor-independent, one expects the wave function for the pseudo-scalar meson nonet also flavor-independent in the limit of vanishing current quark mass.

• η and η' can be described as two linear combinations of the $q\bar{q}$ state, the SU(3) singlet η_0 and the SU(3) octet η_8 which mix with each other through a small SU(3) symmetry breaking mixing parameter.

• because of the U(1) QCD-anomaly, the η_0 mass is much larger compared to the η_8 mass, the $\eta - \eta'$ mixing angle is $O(m_s/\Lambda_{\rm QCD})$.

• The quark mass term is the leading term in the large N_c expansion while higher order terms in the chiral Lagrangian (Gasser and Leutwyler) is $O(1/N_c)$ and is thus suppressed in the large N_c limit.

• This justifies the nonet symmetry scheme for the pseudo-scalar meson mass term.

• Nonet symmetry for the off-diagonal mass term $< \eta_0 |H_{\rm SB}| \eta_8 >$ gives an $\eta - \eta'$ mixing angle $\theta = -18^{\circ}$ in good agreement with a value $\theta \approx -(22 \pm 3)^{\circ}$ (Donoghue) or $\theta \approx -(18.4 \pm 2)^{\circ}$ (Pham) and a similar value $\theta \approx -(17 - 20)^{\circ}$ (Ball) obtained from the two-photon decay width of η and η' .

• However, from the Gell-Mann-Okubo(GMO) mass formula, we would have

$$m_{\eta}^{2} = m_{8}^{2} - \tan\theta^{2} \left(m_{\eta'}^{2} - m_{8}^{2} \right)$$
(4)

which gives, for $\theta = -18^{\circ}$, $m_{\eta} = 483 \text{ MeV}$, about 60 MeV below experiment.

• The $\eta - \eta'$ mixing which contributes to L_7 has driven the m_{η} below the GMO value by 63 MeV.

• Higher order terms in the chiral Lagrangian and chiral logarithms(Gasser and Leutwyler; Gerard and Kou(2005)), shift m_{η} upward by a similar amount with the result that the η mass is very close to the GMO value, and a large $\eta - \eta'$ mixing angle consistent with nonet symmetry rather than the small value of -10° obtained with the GMO

formula for m_8 .

- Thus nonet symmetry seems to be a good approximation for the 0^- nonet mass term.
- The matrix elements of the pseudo-scalar density local operator *e.g.* $\bar{s} i \gamma_5 s$ might also satisfy nonet symmetry.
- This is in fact the case as shown in this work that nonet symmetry for the mass term implies nonet symmetry for the pseudo-scalar density local operator.
- The penguin matrix elements in charmless B decays with η' in the final state could be then computed using nonet symmetry.

• The matrix element of the axial vector current $\bar{u} \gamma_{\mu} \gamma_5 u$ and $\bar{s} \gamma_{\mu} \gamma_5 s$ between the vacuum and η_0 and η_8 :

$$<0|\bar{u}\gamma_{\mu}\gamma_{5}u|\eta_{0}>=if_{u}p_{\mu}/\sqrt{3}, \quad <0|\bar{u}\gamma_{\mu}\gamma_{5}u|\eta_{8}>=if_{u}p_{\mu}/\sqrt{6}.$$
(5)

 $<0|\bar{s}\gamma_{\mu}\gamma_{5}s|\eta_{0}>=if_{s}p_{\mu}/\sqrt{3},\quad<0|\bar{s}\gamma_{\mu}\gamma_{5}s|\eta_{8}>=-2if_{s}p_{\mu}/\sqrt{6}.$ (6)

• The octet $A_{8\,\mu}$ and singlet $A_{0\,\mu}$ axial vector current matrix elements $< 0|A_{\mu8}|\eta_8 >= \frac{(f_u + f_d + 4f_s)}{6}p_{\mu}, \quad < 0|A_{\mu0}|\eta_0 >= \frac{(f_u + f_d + f_s)}{3}p_{\mu}.$ (7)

• Assuming each s- quark contributes to the decay constant a symmetry breaking term ϵ , to first order in ϵ (Pham(1984)) (Rewriting $f_{q\bar{q}} = f_q$):

$$f_{\pi} = f_{u\bar{d}} \approx f_{u}, \quad f_{K} = f_{u\bar{s}} = (1+\epsilon) f_{u\bar{d}},$$

$$f_{s} = (1+2\epsilon) f_{u} \approx (1+\epsilon) f_{K}.$$
 (8)

• Pseudo-scalar density matrix elements for the pseudo-scalar meson octet:

$$f_{\pi}B_0(m_u + m_d) = (m_u + m_d)\langle 0|\bar{u}\,i\gamma_5 d|u\bar{d}\rangle,$$

$$f_KB_0(m_u + m_s) = (m_u + m_s)\langle 0|\bar{u}\,i\gamma_5 s|u\bar{s}\rangle.$$
 (9)

and for π^0 :

$$f_u B_0(m_u + m_d) = (m_u + m_d) \langle 0 | \bar{u} \, i\gamma_5 u | u\bar{u} \rangle. \tag{10}$$

• Consider now the $I = 0 A_{n \mu}$ and $A_{s \mu}$ axial vector current:

$$A_{n\,\mu} = (\bar{u}\,\gamma_{\mu}\gamma_{5}u + \bar{d}\,\gamma_{\mu}\gamma_{5}d), \quad A_{s\,\mu} = \bar{s}\,\gamma_{\mu}\gamma_{5}s. \tag{11}$$

• The divergence:

$$\partial A_{\rm n} = 2(m_u \bar{u} i \gamma_5 u + m_d \bar{d} i \gamma_5 d) + 2 \frac{\alpha_s}{4\pi} G \tilde{G}.$$
 (12)

$$\partial A_{\rm s} = 2m_s \bar{s} i \gamma_5 s + \frac{\alpha_s}{4\pi} G \tilde{G}. \tag{13}$$

• The matrix elements of ∂A_n and ∂A_s between the vacuum and $\eta_{0,8}$ are given by:

$$\langle 0|\partial A_{n}|\eta_{0}\rangle = 2m_{u}\langle 0|\bar{u}\,i\gamma_{5}u|\eta_{0}\rangle + 2m_{d}\langle 0|\bar{d}\,i\gamma_{5}d|\eta_{0}\rangle,$$

$$+ 2\langle 0|\frac{\alpha_{s}}{4\pi}G\,\tilde{G}|\eta_{0}\rangle,$$

$$\langle 0|\partial A_{s}|\eta_{0}\rangle = 2m_{s}\langle 0|\bar{s}\,i\gamma_{5}s|\eta_{0}\rangle + \langle 0|\frac{\alpha_{s}}{4\pi}G\,\tilde{G}|\eta_{0}\rangle.$$

$$(14)$$

$$\langle 0|\partial A_{n}|\eta_{8}\rangle = 2m_{u}\langle 0|\bar{u}\,i\gamma_{5}u|\eta_{8}\rangle + 2m_{d}\langle 0|\bar{d}\,i\gamma_{5}d|\eta_{8}\rangle, + 2\langle 0|\frac{\alpha_{s}}{4\pi}G\,\tilde{G}|\eta_{8}\rangle,$$

$$(16)$$

$$\langle 0|\partial A_{\rm s}|\eta_8\rangle = 2m_s \langle 0|\bar{s}\,i\gamma_5 s|\eta_8\rangle + \langle 0|\frac{\alpha_s}{4\pi}G\,\tilde{G}|\eta_8\rangle. \tag{17}$$

• Consider next Eq.(14-15) and Eq.(16-17) with the pole terms included using the nonet symmetry expressions ($\hat{m} = (m_u + m_d)/2$).

$$m_8^2 = B_0 \frac{2}{3} (2m_s + \hat{m}),$$

$$m_0^2 = \bar{m}_0^2 + B_0 \frac{2}{3} (m_s + 2\hat{m}),$$

$$m_{08}^2 = B_0 \frac{2}{3} \sqrt{2} (-m_s + \hat{m}).$$
(18)

• The pseudo-scalar density matrix elements can now be extracted from the following expressions

$$f_{u}\frac{1}{\sqrt{3}}(\bar{m}_{0}^{2}+B_{0}\frac{2}{3}(m_{s}+2\hat{m})) = f_{u}\frac{1}{\sqrt{3}}m_{0}^{2} - f_{u}\frac{1}{\sqrt{6}}(B_{0}\frac{2\sqrt{2}}{3}(\hat{m}-m_{s})) + 2\frac{1}{\sqrt{3}}\hat{m}\langle 0|\bar{u}\,i\gamma_{5}u|u\bar{u}\rangle,$$
(19)
$$f_{s}\frac{1}{\sqrt{3}}(\bar{m}_{0}^{2}+B_{0}\frac{2}{3}(m_{s}+2\hat{m})) = f_{s}\frac{1}{\sqrt{3}}m_{0}^{2} - f_{s}\frac{1}{\sqrt{3}}m_{0}\frac{1}{\sqrt{3}}m_{0}^{2} - f_{s}\frac{1}{\sqrt{3}}m_{0}\frac{1}{\sqrt{3}}m_{0}\frac{$$

$$f_s \frac{2}{\sqrt{6}} B_0 \frac{2\sqrt{2}}{3} (\hat{m} - m_s) + 2 \frac{1}{\sqrt{3}} m_s \langle 0 | \bar{s} \, i\gamma_5 s | s\bar{s} \rangle. \tag{20}$$

• Thus for η_0 :

$$\langle 0|\bar{u}\,i\gamma_5 u|u\bar{u}\rangle = B_0 f_u, \quad \langle 0|\bar{s}\,i\gamma_5 s|s\bar{s}\rangle = B_0 f_s. \tag{21}$$

• Similarly, for η_8 :

$$f_{u}\frac{1}{\sqrt{6}}(B_{0}\frac{2}{3}(2m_{s}+\hat{m})) = -f_{u}\frac{1}{\sqrt{3}}B_{0}\frac{2\sqrt{2}}{3}(\hat{m}-m_{s}) + 2\frac{1}{\sqrt{6}}\hat{m}\langle 0|\bar{u}\,i\gamma_{5}u|u\bar{u}\rangle, \qquad (22)$$
$$-f_{s}\frac{2}{\sqrt{6}}(B_{0}\frac{2}{3}(2m_{s}+\hat{m})) = -f_{s}\frac{1}{\sqrt{3}}B_{0}\frac{2\sqrt{2}}{3}(\hat{m}-m_{s}) - 2\frac{2}{\sqrt{6}}m_{s}\langle 0|\bar{s}\,i\gamma_{5}s|s\bar{s}\rangle. \qquad (23)$$

- In the limit $m_u = m_d = 0$, the l.h.s and r.h.s of Eq. (22) become $f_u m_8^2/\sqrt{6}$ in agreement with the divergence equation Eq. (12).
- from the above equations, we have the same expression for the

pseudo-scalar density matrix element, but in η_8 .

• Like $\langle 0|\bar{u}\,i\gamma_5 d|\pi^+\rangle$, $\langle 0|\bar{u}\,i\gamma_5 u|\pi^0\rangle$ and $\langle 0|\bar{u}\,i\gamma_5 s|K^+\rangle$, they are given by the parameter B_0 and the decay constant involved.

• Experimentally, $m_{08}^2 = -(0.81 \pm 0.05) m_K^2$ to be compared with the nonet symmetry value of $m_{08}^2 \simeq -0.90 m_K^2$ (Donoghue).

• Expect nonet symmetry for the pseudo-scalar density matrix elements in $\eta - \eta'$ valid to this accuracy.

• Since the octet m_8^2 mass gets about 15% increase from higher order terms L_4, L_5, L_6, L_8 and chiral logarithms, Eqs.(22-23) show that $\langle 0|\bar{s}\,i\gamma_5 s|s\bar{s}\rangle$ in η will be increased by a similar amount

• Assuming a similar 15% increase from the nonet value for m_0^2 , $\langle 0|\bar{s} i\gamma_5 s|s\bar{s}\rangle$ in η_0 will also be increased by a similar amount.

• This could be another source of enhancement for the $B \to K \eta'$ branching ratio.

4 The $B^- \to K^-(\eta, \eta')$ and $B^- \to \pi^-(\eta, \eta')$ decays

• The CKM matrix elements

$$|V_{ub}| = \frac{|V_{cb}V_{cd}^*|}{|V_{ud}^*|} |\sin\beta \sqrt{1 + \frac{\cos^2\alpha}{\sin^2\alpha}}.$$
 (24)

• With $\alpha = (99^{+13}_{-9})^{\circ}(\text{PDG})$ and $|V_{cb}| = (41.78 \pm 0.30 \pm 0.08) \times 10^{-3}(\text{Barberio})$, we find

$$|V_{ub}| = 3.60 \times 10^{-3}. \tag{25}$$

in agreement with the exclusive data

 $|V_{ub}| = (3.33 - 3.51) \times 10^{-3}$ (Barberio).

• The current determination (Abulencia) gives $|V_{td}/V_{ts}| = (0.208^{+0.008}_{-0.006})$ which in turn can be used to determined the angle γ from the unitarity relation:

$$|V_{td}| = \frac{|V_{cb}V_{cd}^*|}{|V_{tb}^*|} |\sin\gamma\sqrt{1 + \frac{\cos^2\alpha}{\sin^2\alpha}}.$$
 (26)

which gives $\gamma = 66^{\circ}$ ($|V_{tb}| = 1$) and $\alpha = 91.8^{\circ}$, in good agreement with the value found in the current UT-fit value of $(88 \pm 16)^{\circ}$.

Figure 4: The (db) Unitarity Triangle

- $m_s(2 \text{ GeV}) = 80 \text{ MeV}, f_u = f_\pi, f_s = f_\pi \left(1 + 2\left(\frac{f_K}{f_\pi} 1\right)\right).$
- The $B \to \pi$ and $B \to K$ form factor:

 $F_0^{B\pi}(0) = 0.258, \quad F_0^{BK}(0) = 0.33, \text{(Ball and Zwicky)}$ (27)

• From the quark content of η and η' ,

$$F^{B\eta}(0) = 0.58 F_0^{B\pi}(0), \ F^{B\eta'}(0) = 0.40 F_0^{B\pi}(0).$$
(28)

and with the s quark content $C_{\eta} = -0.57, C_{\eta'} = 0.82$:

$$\langle 0|\bar{s}\,i\gamma_5 s|\eta\rangle = C_\eta \,B_0 f_s, \quad \langle 0|\bar{s}\,i\gamma_5 s|\eta'\rangle = C_{\eta'} \,B_0 f_s. \tag{29}$$

Decay Modes	QCDF BR $(\times 10^{-6})$	Experiment
$B^- \to \pi^- \pi^0$	5.05	5.7 ± 0.4
$\bar{B}^0 \to K^- \pi^+$	18.25	19.04 ± 0.6
$B^- o \pi^- \eta$	3.39	4.4 ± 0.4
$B^- \to \pi^- \eta'$	1.91	$2.6\substack{+0.6 \\ -0.5}$
$B^- \to K^- \eta$	0.43	2.2 ± 0.3
$B^- \to K^- \eta'$	48.26	$69.7^{+2.8}_{-2.7}$

Table 1: The Branching ratios of $B \to P\eta, B \to P\eta'$ in QCDF

The predicted B(B⁻ → π⁻η) agrees rather well with experiment, but B(B⁻ → π⁻η') is below the Babar value of (4.0 ± 0.8 ± 0.4) × 10⁻⁶.
by increasing the F^{B→η'} form factor by 40 - 50% from the nonet symmetry value, one would get, with F₀^{B→η'}(0) = 0.156,

$$\mathcal{B}(B^- \to \pi^- \eta') = 3.89 \times 10^{-6}, \mathcal{B}(B^- \to K^- \eta') = 61.84 \times 10^{-6}.$$
(30)

which largely improves the prediction for $\mathcal{B}(B^- \to K^- \eta')$.

• Additional source of enhancement of $\mathcal{B}(B^- \to K^- \eta')$ could come from a possible higher order SU(3) breaking effects in the matrix element $\langle 0|\bar{s}\,i\gamma_5 s|s\bar{s}\rangle$ for η_0 .

• With a 15% increase of this matrix element from its nonet value, we would have $\mathcal{B}(B^- \to K^- \eta') = 69.37 \times 10^{-6}$

• The central question is the $F^{B \to \eta'}$ form factor, which need to be determined by a measurement of $\mathcal{B}(B^- \to \eta' \ell \nu)$.

• The new Babar upper limit $\mathcal{B}(B^+ \to \eta' \ell^+ \nu) / \mathcal{B}(B^+ \to \eta \ell^+ \nu) < 0.57$ which is consistent with nonet symmetry for the $B \to \eta, \eta'$ form factors, however shows no evidence for a large value for the $F^{B \to \eta'}$ form factor compared with the usual nonet symmetry value.

5 Conclusion

• We have shown that nonet symmetry for the pseudo-scalar meson mass term implies nonet symmetry for the pseudo-scalar density matrix elements. With this approximate relation, we obtained an improved estimate for the $B \to P\eta'(P = K, \pi)$ branching ratios. With a moderate annihilation contribution consistent with the measured $B \to K\pi$ branching ratio, we find that a major part of the $B \to K\eta'$ branching ratio could be obtained by QCDF. Without fine tuning or a large $F^{B \to \eta'}$ form factor, we find that the $B \to K\eta'$ branching ratio is underestimated by 20 - 30%. This could be considered as a more or less successful prediction for QCDF, considering the theoretical uncertainties involved.

• This could also indicate that an additional power-suppressed terms could bring the branching ratio close to experiment, as with the $B \to K^* \pi$ and $B \to K^* \eta$ decay for which the measured branching ratios are much bigger than the QCDF prediction.

6 Acknowledgments

I would like to thank Professor Chuan-Hung Chen for the warm hospitality and the invitation to the PPP8 Workshop and Professor Hsiang-nan Li for support for my visit at Academia Sinica. This work was supported in part by the EU contract No. MRTN-CT-2006-035482, "FLAVIAnet".