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1 Introduction

e In charmless two-body decays, the B — Kn' decay is the one with the
largest branching ratio, bigger than that of B — Km decay by a factor of
~ 3.

e The B — Kn, Kn' decays have been analysed in many recent papers,
for example, Beneke and Neubert, NP B 651, 225 (2003); Dutta, Kim,
Oh and Zhu, EPJC 37 , 273 (2004), Williamson and Zupan, PRD 74 |
014003(2006); Charng, Kurimoto and Li, PRD 74 074024 (2006); Gerard
and Kou, PRL 97 261804 (2006) and more recently Hsu, Charng and Li,
PRD 78 014020 (2008) and Xiao, Liu and Guo, PRD 78 114001 (2008).

e In QCDF the B — K« branching ratio could be understood with a

moderate contribution from the power-suppressed annihilation terms.

e Without fine tuning, the B — K7’ branching ratio is predicted to be
larger than that of B — K , but still underestimated by 20 — 30% .




e Main theoretical uncertainties come from the B — 1’ form factor and

the pseudo-scalar density matrix elements for n’.

e This work : To show that nonet symmetry for the pseudo-scalar mass

formula implies nonet symmetry for the pseudo-scalar density matrix

elements and to use this result in this analysis of B — K7, Kn' decays.

e Historically, there is an approximate expression for the octet
pseudo-scalar density matrix elements by Gell-Mann, Oakes and Renner,

PRD 175, 2195 (1968).

e There is no known explicit expression for the singlet pseudo-scalar

density using the nonet symmetry scheme.




QCD factorization for charmless
B — PP decays

Figure 1: factorization diagram for charmless B decay




Figure 2: Vertex and spectator corrections to charmless B decays




Figure 3: Annihilation diagram for B — MM,

e With the operator product expansion and renormalization group
equation, the effective Lagrangian can be obtained, in which
short-distance effects involving large virtual momenta of the loop
corrections from the scale My down to u = O(my) are cleanly

integrated into the Wilson coeflicients.




e B — MiMs decay amplitude

=Y al{(MiM|Oi|B)u + ) frfan farsbi | (1)

=1

e The QCD coefficients a? contain the vertex corrections, penguin
corrections, and hard spectator scattering contributions, the hadronic
matrix elements (M; M2|O;|B) g of the tree and penguin operators O;

are given by factorization model, b; are annihilation contributions. The

values for a? ,p = u, c , evaluated at the renormalization scale p = my,
with mpy = 4.2 GeV

e The effective operators :

O, = (EU)L(’L_L[))L




O = —2 Z(quR)(CYRbL)

e 012 : Tree-level, O3, ¢ : QCD penguin, O7 . 10 : Electroweak

penguin

e Hadronic matrix elements : (M M2|O;(u)|B) contains the physics
effects from the scale u = O(my) down to Aqep.

e In heavy quark limit, QCD Factorisation : (M1 M2|O;(u)|B) can be
factorized into hard radiative corrections and simpler nonperturbative
structures which can be parametrized by the form factors and meson

light-cone distribution amplitudes (LCDAs).

e Power corrections in 1/mj come from Penguin matrix element, chirally

enhanced corrections and annihilation contribution.

e Penguin matrix element like that of Og is of the order O(1/my)
compared to the (V — A) x (V — A) O; and O4 matrix element in the
B — K amplitude, since the matrix element < K|S.dgr|0 > is
proportional to m%{/ms ~ 2.5 GeV while < K|s5d|0 > is proportional




to K momentum which is O(my), thus numerically, the matrix element

of Og which has a factor

2
K 2mi
X

= O(1) (3)

r

is comparable to that of Oy4.

e Chirally enhanced corrections from two-body twist-3 LCDAs of the
final state mesons and annihilation contributions parametrized by the
two quantities Xa g which could have a strong phase (M. Beneke, G.
Buchalla, M. Neubert and C.T. Sachrajda, Nucl. Phys. B 606, 245
(2001).)




3 Nonet symmetry in the n — ' system

e Since QCD interactions through the exchange of gluons are
flavor-independent, one expects the wave function for the pseudo-scalar
meson nonet also flavor-independent in the limit of vanishsing current

quark mass.

e 1 and 1’ can be described as two linear combinations of the ¢g state,
the SU(3) singlet no and the SU(3) octet ns which mix with each other

through a small SU(3) symmetry breaking mixing parameter.

e because of the U(1) QCD-anomaly, the 1o mass is much larger
compared to the ng mass, the n — n’ mixing angle is O(ms/Aqcp).

e The quark mass term is the leading term in the large N. expansion
while higher order terms in the chiral Lagrangian (Gasser and

Leutwyler) is O(1/N.) and is thus suppressed in the large N, limit.

e This justifies the nonet symmetry scheme for the pseudo-scalar meson

mass term.




e Nonet symmetry for the off-diagonal mass term < no|Hsg|ns > gives
an 1 — n’ mixing angle § = —18° in good agreement with a value

6 ~ —(22 + 3)° (Donoghue) or § ~ —(18.4 + 2)° (Pham) and a similar
value 0 ~ —(17 — 20)° (Ball) obtained from the two-photon decay width
of n and n’.

e However, from the Gell-Mann-Okubo(GMO) mass formula, we would

have

2

2 =mg —tan®’ (m., —mg) (4)

n
which gives, for § = —18°, m,, = 483 MeV, about 60 MeV below

experiment.

m

e The n — 1’ mixing which contributes to L7 has driven the m,, below
the GMO value by 63 MeV.

e Higher order terms in the chiral Lagrangian and chiral
logarithms(Gasser and Leutwyler; Gerard and Kou(2005)), shift m,,
upward by a similar amount with the result that the n mass is very close
to the GMO value, and a large n — 1’ mixing angle consistent with nonet
symmetry rather than the small value of —10° obtained with the GMO

11



formula for ms .

e Thus nonet symmetry seems to be a good approximation for the 0~

nonet mass term.

e The matrix elements of the pseudo-scalar density local operator e.g.

5175 s might also satisfy nonet symmetry.

e This is in fact the case as shown in this work that nonet symmetry for
the mass term implies nonet symmetry for the pseudo-scalar density

local operator.

e The penguin matrix elements in charmless B decays with i’ in the

final state could be then computed using nonet symmetry.

e The matrix element of the axial vector current uy,vsu and 57,755

between the vacuum and 79 and ns :

< Olayuysulno >=i fupu/V3, < Oliyuysulns >=1 fupu/V6.  (5)

< 0[syuysslno >=1 fs pu/\/g, < O0[syuyssns >= =214 fs pu/\/g- (6)




e The octet Ag, and singlet Ay, axial vector current matrix elements

(fu + fcl + fs)
3 p

6 Pu,

< 0| Aps|ns >=

< 0] Apolno >= e

(7)
e Assuming each s- quark contributes to the decay constant a symmetry
breaking term e, to first order in e¢(Pham(1984)) (Rewriting f,5 = f4):

fW:fuci%f’lM fK:fU§:(1+€)fch7
fs =(142€) fur (1+¢) fx. (8)

e Pseudo-scalar density matrix elements for the pseudo-scalar meson

octet:

frBo(my +mg) = (my, + ma) (0|t ivsd|ud)
frBo(my, + ms) = (my, + ms)(0|uivyss|us).

and for 7° :

fuBo(my +maq) = (my + maq)(0|Tivsu|uu).




e Consider now the I =0 A, , and As, axial vector current:
Anp = (@yysu +dyeysd),  Asy = 57758, (11)
e The divergence:
OAn = 2(mutivsu + madivsd) + 22‘—20 G. (12)
DA, = 2msFivss + Z‘—;G G. (13)

e The matrix elements of 0A, and 0As between the vacuum and 1o s are
given by:
(010 An[no) = 2mu (0T ivsulno) + 2ma(0ldivsdlno), (14)
as =
2(0] =2

(010 Aslmo) = 2m. (0[5 isslno) + (017G Glmo). (15)

(0[0Anlns) = 2my (0|@ivsulns) + 2ma(0|divsdlns),
(16)




(010 Asns) = 2ms(0[5i755[ns) + (0]~ G Glns). (17)

e Consider next Eq.(14-15) and Eq.(16-17) with the pole terms included

using the nonet symmetry expressions (m = (m,, + mg4)/2).

2 .
mg BO§ (2ms +m),

2 .
me mg + BO§(m3 + 2m),

2 .

e The pseudo-scalar density matrix elements can now be extracted from

the following expressions

1
fUT

_2 2 . 2
B - S 2 — u -~
(mg + 03(m +2m)) = f \/gm

2v/2 | _
\/_( 3 (m —ms)) + QEm(muz%u\uu), (19)
1 2 . 1

7(7”0 + Bog (ms +2m)) = fsﬁmo -

Ju

Js




2 22
Bo
V6 3

Js

(m —ms) + 2—=ms{0|5i7vs5s]|sSs).

€
V3

e Thus for 7no:
(O|wiysuluu) = Bofu, (0|5ivyss|s5) = Bofs.

e Similarly, for ns :

Foge(Bad@ma ) = —f B2 (i~ .
z%mmmmuma),
2%m3<0\§i'y53|5§>.

e In the limit m, = mg = 0, the L.h.s and r.h.s of Eq. (22) become
fum3/V/6 in agreement with the divergence equation Eq. (12).

_fs

e from the above equations, we have the same expression for the




pseudo-scalar density matrix element, but in 7ns .

o Like (0w ivsd|m™), (O|uivsu|r®) and (0|t iyss|K ), they are given by

the parameter By and the decay constant involved.

e Experimentally, mgs = —(0.81 £ 0.05) m3 to be compared with the

nonet symmetry value of mgg ~ —0.90 m% (Donoghue).

e Eixpect nonet symmetry for the pseudo-scalar density matrix elements

in n —n’ valid to this accuracy.

e Since the octet mz mass gets about 15% increase from higher order
terms L4, Ls, Lg, Ls and chiral logarithms, Eqs.(22-23) show that

(0|5 iy5s|s8) in  will be increased by a similar amount

. .. . 2
e Assuming a similar 15% increase from the nonet value for mg,

0|517v5s|s5) in ng will also be increased by a similar amount.
Y Ui

e This could be another source of enhancement for the B — Kn'

branching ratio.




4 The B~ — K (n,7') and B~ — 7 (n,n')

decays

e The CKM matrix elements

Vc cos? «
V| = | d’\ 6\/

Sln O{

o With a = (99tg3)°(PDG) and
[Vey| = (41.78 4+ 0.30 = 0.08) x 10~ *(Barberio), we find

V| = 3.60 x 10~°
in agreement with the exclusive data

Vus| = (3.33 — 3.51) x 10~ °(Barberio).

e The current determination(Abulencia) gives |Via/Vis| = (0.20870053)

which in turn can be used to determined the angle v from the unitarity




relation:

VeuVeal | . 2
Via| = [Ves d||smfy\/1—i— Cos2a. (26)

Vil sin” o
which gives v = 66° ( |Vi| = 1) and @ = 91.8°in good agreement with
the value found in the current UT-fit value of (88 + 16)°.

Figure 4: The (db) Unitarity Triangle




e ms(2GeV) =80MeV, fu = fr, fs = fr (1+2(45 —1)).
e The B — m and B — K form factor:

Fy™(0) = 0.258, Fy ™ (0) = 0.33, (Ball and Zwicky)

e Irom the quark content of n and 7’,

FP7(0) = 0.58 FP™(0), FP7 (0) = 0.40 FZ™(0).

and with the s quark content C; = —0.57, C,, = 0.82 :

(05 iv558]n) = Cy Bofs, (05ivss|n’) = Cyy Bofs.




Decay Modes | QCDF BR (x10°°) | Experiment
B~ — n xY 5.05 5.7+ 0.4
B - K ot 18.25 19.04 + 0.6
BT — 7w n 3.39 4.4+0.4
B™ — 7 n 1.91 2.670¢
B~ — K™n 0.43 2.24+0.3

B™ — K¢ 48.26 69.7123

Table 1: The Branching ratios of B — Pn, B — Pn’ in QCDF

e The predicted B(B~ — 7w n) agrees rather well with experiment, but
B(B~ — m~n') is below the Babar value of (4.0 £ 0.8 +0.4) x 107° .

e by increasing the F'P —1" form factor by 40 — 50% from the nonet

symmetry value, one would get, with FOB_)”/(O) — 0.156,

B(B~ — 7 n')=389x10°,
B(B~ — K 1n')=61.84x10°.

which largely improves the prediction for B(B~ — K™ n’).




e Additional source of enhancement of B(B~ — K 7') could come from
a possible higher order SU(3) breaking effects in the matrix element
(0|5iv5s|s8) for no.

e With a 15% increase of this matrix element from its nonet value, we
would have B(B~ — K™ n') =69.37 x 107°

e The central question is the F'? 1" form factor, which need to be
determined by a measurement of B(B~ — n'lv).

e The new Babar upper limit B(BT — n'¢Tv)/B(BT — nftv) < 0.57

which is consistent with nonet symmetry for the B — n,n’ form factors,

/
however shows no evidence for a large value for the FZ~" form factor

compared with the usual nonet symmetry value.




5 Conclusion

e We have shown that nonet symmetry for the pseudo-scalar meson mass
term implies nonet symmetry for the pseudo-scalar density matrix
elements. With this approximate relation, we obtained an improved
estimate for the B — Pn'(P = K, m ) branching ratios. With a moderate
annihilation contribution consistent with the measured B — K

branching ratio, we find that a major part of the B — K7’ branching

ratio could be obtained by QCDF. Without fine tuning or a large F'° —n’

form factor, we find that the B — Kn' branching ratio is underestimated

by 20 — 30%. This could be considered as a more or less successful

prediction for QCDF, considering the theoretical uncertainties involved.

e This could also indicate that an additional power-suppressed terms
could bring the branching ratio close to experiment, as with the
B — K*m and B — K™n decay for which the measured branching ratios

are much bigger than the QCDEF prediction.
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