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1 Introduction

• In charmless two-body decays, the B → Kη′ decay is the one with the

largest branching ratio, bigger than that of B → Kπ decay by a factor of

≈ 3.

• The B → Kη, Kη′ decays have been analysed in many recent papers,

for example, Beneke and Neubert, NP B 651, 225 (2003); Dutta, Kim,

Oh and Zhu, EPJC 37 , 273 (2004), Williamson and Zupan, PRD 74 ,

014003(2006); Charng, Kurimoto and Li, PRD 74 074024 (2006); Gerard

and Kou, PRL 97 261804 (2006) and more recently Hsu, Charng and Li,

PRD 78 014020 (2008) and Xiao, Liu and Guo, PRD 78 114001 (2008).

• In QCDF the B → Kπ branching ratio could be understood with a

moderate contribution from the power-suppressed annihilation terms.

• Without fine tuning, the B → Kη′ branching ratio is predicted to be

larger than that of B → Kπ , but still underestimated by 20 − 30% .

2



• Main theoretical uncertainties come from the B → η′ form factor and

the pseudo-scalar density matrix elements for η′.

• This work : To show that nonet symmetry for the pseudo-scalar mass

formula implies nonet symmetry for the pseudo-scalar density matrix

elements and to use this result in this analysis of B → Kη, Kη′ decays.

• Historically, there is an approximate expression for the octet

pseudo-scalar density matrix elements by Gell-Mann, Oakes and Renner,

PRD 175, 2195 (1968).

• There is no known explicit expression for the singlet pseudo-scalar

density using the nonet symmetry scheme.
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2 QCD factorization for charmless

B → PP decays
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Figure 1: factorization diagram for charmless B decay
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Figure 2: Vertex and spectator corrections to charmless B decays
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Figure 3: Annihilation diagram for B → M1M2

• With the operator product expansion and renormalization group

equation, the effective Lagrangian can be obtained, in which

short-distance effects involving large virtual momenta of the loop

corrections from the scale MW down to µ = O(mb) are cleanly

integrated into the Wilson coefficients.
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• B → M1M2 decay amplitude

A(B → M1M2) =
GF√

2

∑

p=u,c

VpbV
∗

ps ×

(

−
10
∑

i=1

ap
i 〈M1M2|Oi|B〉H +

10
∑

i

fBfM1
fM2

bi

)

, (1)

• The QCD coefficients ap
i contain the vertex corrections, penguin

corrections, and hard spectator scattering contributions, the hadronic

matrix elements 〈M1M2|Oi|B〉H of the tree and penguin operators Oi

are given by factorization model, bi are annihilation contributions. The

values for ap
i ,p = u, c , evaluated at the renormalization scale µ = mb,

with mb = 4.2GeV

• The effective operators :

O1 = (s̄u)L(ūb)L , O4 =
∑

q

(s̄q)L(q̄b)L
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O6 = −2
∑

q

(s̄LqR)(q̄RbL) (2)

• O1,2 : Tree-level, O3,...,6 : QCD penguin, O7,...,10 : Electroweak

penguin

• Hadronic matrix elements : 〈M1M2|Oi(µ)|B〉 contains the physics

effects from the scale µ = O(mb) down to ΛQCD.

• In heavy quark limit, QCD Factorisation : 〈M1M2|Oi(µ)|B〉 can be

factorized into hard radiative corrections and simpler nonperturbative

structures which can be parametrized by the form factors and meson

light-cone distribution amplitudes (LCDAs).

• Power corrections in 1/mb come from Penguin matrix element, chirally

enhanced corrections and annihilation contribution.

• Penguin matrix element like that of O6 is of the order O(1/mb)

compared to the (V − A) × (V − A) O1 and O4 matrix element in the

B → Kπ amplitude, since the matrix element < K|s̄LdR|0 > is

proportional to m2
K/ms ≈ 2.5GeV while < K|s̄LdL|0 > is proportional
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to K momentum which is O(mb), thus numerically, the matrix element

of O6 which has a factor

rK
χ =

2m2
K

mb(ms + md)
≈ O(1) (3)

is comparable to that of O4.

• Chirally enhanced corrections from two-body twist-3 LCDAs of the

final state mesons and annihilation contributions parametrized by the

two quantities XA,H which could have a strong phase (M. Beneke, G.

Buchalla, M. Neubert and C.T. Sachrajda, Nucl. Phys. B 606, 245

(2001).)
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3 Nonet symmetry in the η − η′ system

• Since QCD interactions through the exchange of gluons are

flavor-independent, one expects the wave function for the pseudo-scalar

meson nonet also flavor-independent in the limit of vanishsing current

quark mass.

• η and η′ can be described as two linear combinations of the qq̄ state,

the SU(3) singlet η0 and the SU(3) octet η8 which mix with each other

through a small SU(3) symmetry breaking mixing parameter.

• because of the U(1) QCD-anomaly, the η0 mass is much larger

compared to the η8 mass, the η − η′ mixing angle is O(ms/ΛQCD).

• The quark mass term is the leading term in the large Nc expansion

while higher order terms in the chiral Lagrangian (Gasser and

Leutwyler) is O(1/Nc) and is thus suppressed in the large Nc limit.

• This justifies the nonet symmetry scheme for the pseudo-scalar meson

mass term.
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• Nonet symmetry for the off-diagonal mass term < η0|HSB|η8 > gives

an η − η′ mixing angle θ = −18◦ in good agreement with a value

θ ≈ −(22 ± 3)◦ (Donoghue) or θ ≈ −(18.4 ± 2)◦ (Pham) and a similar

value θ ≈ −(17 − 20)◦ (Ball) obtained from the two-photon decay width

of η and η′.

• However, from the Gell-Mann-Okubo(GMO) mass formula, we would

have

m2
η = m2

8 − tan θ2 (m2
η′ − m2

8) (4)

which gives, for θ = −18◦, mη = 483MeV, about 60MeV below

experiment.

• The η − η′ mixing which contributes to L7 has driven the mη below

the GMO value by 63MeV.

• Higher order terms in the chiral Lagrangian and chiral

logarithms(Gasser and Leutwyler; Gerard and Kou(2005)), shift mη

upward by a similar amount with the result that the η mass is very close

to the GMO value, and a large η − η′ mixing angle consistent with nonet

symmetry rather than the small value of −10◦ obtained with the GMO
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formula for m8 .

• Thus nonet symmetry seems to be a good approximation for the 0−

nonet mass term.

• The matrix elements of the pseudo-scalar density local operator e.g.

s̄ iγ5 s might also satisfy nonet symmetry.

• This is in fact the case as shown in this work that nonet symmetry for

the mass term implies nonet symmetry for the pseudo-scalar density

local operator.

• The penguin matrix elements in charmless B decays with η′ in the

final state could be then computed using nonet symmetry.

• The matrix element of the axial vector current ū γµγ5u and s̄ γµγ5s

between the vacuum and η0 and η8 :

< 0|ū γµγ5u|η0 >= i fu pµ/
√

3, < 0|ū γµγ5u|η8 >= i fu pµ/
√

6. (5)

< 0|s̄ γµγ5s|η0 >= i fs pµ/
√

3, < 0|s̄ γµγ5s|η8 >= −2 i fs pµ/
√

6. (6)
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• The octet A8 µ and singlet A0 µ axial vector current matrix elements

< 0|Aµ8|η8 >=
(fu + fd + 4 fs)

6
pµ, < 0|Aµ0|η0 >=

(fu + fd + fs)

3
pµ.

(7)

• Assuming each s- quark contributes to the decay constant a symmetry

breaking term ε, to first order in ε(Pham(1984)) (Rewriting fqq̄ = fq):

fπ = fud̄ ≈ fu, fK = fus̄ = (1 + ε) fud̄,

fs = (1 + 2 ε) fu ≈ (1 + ε) fK . (8)

• Pseudo-scalar density matrix elements for the pseudo-scalar meson

octet:

fπB0(mu + md) = (mu + md)〈0|ū iγ5d|ud̄〉,
fKB0(mu + ms) = (mu + ms)〈0|ū iγ5s|us̄〉. (9)

and for π0 :

fuB0(mu + md) = (mu + md)〈0|ū iγ5u|uū〉. (10)
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• Consider now the I = 0 An µ and As µ axial vector current:

An µ = (ū γµγ5u + d̄ γµγ5d), As µ = s̄ γµγ5s. (11)

• The divergence:

∂An = 2(muūiγ5u + mdd̄iγ5d) + 2
αs

4π
G G̃. (12)

∂As = 2mss̄iγ5s +
αs

4π
G G̃. (13)

• The matrix elements of ∂An and ∂As between the vacuum and η0,8 are

given by:

〈0|∂An|η0〉 = 2mu〈0|ū iγ5u|η0〉 + 2md〈0|d̄ iγ5d|η0〉, (14)

+ 2〈0|αs

4π
G G̃|η0〉,

〈0|∂As|η0〉 = 2ms〈0|s̄ iγ5s|η0〉 + 〈0|αs

4π
G G̃|η0〉. (15)

〈0|∂An|η8〉 = 2mu〈0|ū iγ5u|η8〉 + 2md〈0|d̄ iγ5d|η8〉,
+ 2〈0|αs

4π
G G̃|η8〉, (16)
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〈0|∂As|η8〉 = 2ms〈0|s̄ iγ5s|η8〉 + 〈0|αs

4π
G G̃|η8〉. (17)

• Consider next Eq.(14-15) and Eq.(16-17) with the pole terms included

using the nonet symmetry expressions (m̂ = (mu + md)/2).

m2
8 = B0

2

3
(2ms + m̂),

m2
0 = m̄2

0 + B0
2

3
(ms + 2m̂),

m2
08 = B0

2

3

√
2(−ms + m̂). (18)

• The pseudo-scalar density matrix elements can now be extracted from

the following expressions

fu
1√
3
(m̄2

0 + B0
2

3
(ms + 2m̂)) = fu

1√
3
m2

0 −

fu
1√
6
(B0

2
√

2

3
(m̂ − ms)) + 2

1√
3
m̂〈0|ū iγ5u|uū〉, (19)

fs
1√
3
(m̄2

0 + B0
2

3
(ms + 2m̂)) = fs

1√
3
m2

0 −
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fs
2√
6
B0

2
√

2

3
(m̂ − ms) + 2

1√
3
ms〈0|s̄ iγ5s|ss̄〉. (20)

• Thus for η0:

〈0|ū iγ5u|uū〉 = B0fu, 〈0|s̄ iγ5s|ss̄〉 = B0fs. (21)

• Similarly, for η8 :

fu
1√
6
(B0

2

3
(2ms + m̂)) = −fu

1√
3
B0

2
√

2

3
(m̂ − ms)

+ 2
1√
6
m̂〈0|ū iγ5u|uū〉, (22)

−fs
2√
6
(B0

2

3
(2ms + m̂)) = −fs

1√
3
B0

2
√

2

3
(m̂ − ms)

− 2
2√
6
ms〈0|s̄ iγ5s|ss̄〉. (23)

• In the limit mu = md = 0, the l.h.s and r.h.s of Eq. (22) become

fu m2
8/
√

6 in agreement with the divergence equation Eq. (12).

• from the above equations, we have the same expression for the
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pseudo-scalar density matrix element, but in η8 .

• Like 〈0|ū iγ5d|π+〉, 〈0|ū iγ5u|π0〉 and 〈0|ū iγ5s|K+〉, they are given by

the parameter B0 and the decay constant involved.

• Experimentally, m2
08 = −(0.81 ± 0.05)m2

K to be compared with the

nonet symmetry value of m2
08 ' −0.90m2

K(Donoghue).

• Expect nonet symmetry for the pseudo-scalar density matrix elements

in η − η′ valid to this accuracy.

• Since the octet m2
8 mass gets about 15% increase from higher order

terms L4, L5, L6, L8 and chiral logarithms, Eqs.(22-23) show that

〈0|s̄ iγ5s|ss̄〉 in η will be increased by a similar amount

• Assuming a similar 15% increase from the nonet value for m2
0,

〈0|s̄ iγ5s|ss̄〉 in η0 will also be increased by a similar amount.

• This could be another source of enhancement for the B → Kη′

branching ratio.
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4 The B−
→ K−(η, η′) and B−

→ π−(η, η′)

decays

• The CKM matrix elements

|Vub| =
|VcbV

∗

cd|
|V ∗

ud|
| sin β

√

1 +
cos2 α

sin2 α
. (24)

• With α = (99+13
−9 )◦(PDG) and

|Vcb| = (41.78 ± 0.30 ± 0.08) × 10−3(Barberio), we find

|Vub| = 3.60 × 10−3. (25)

in agreement with the exclusive data

|Vub| = (3.33 − 3.51) × 10−3(Barberio).

• The current determination(Abulencia) gives |Vtd/Vts| = (0.208+0.008
−0.006)

which in turn can be used to determined the angle γ from the unitarity
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relation:

|Vtd| =
|VcbV

∗

cd|
|V ∗

tb|
| sin γ

√

1 +
cos2 α

sin2 α
. (26)

which gives γ = 66◦ ( |Vtb| = 1) and α = 91.8◦,in good agreement with

the value found in the current UT-fit value of (88 ± 16)◦.

Rb Rt

α

γ β

sinβ

sinγ

Figure 4: The (db) Unitarity Triangle
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• ms(2GeV) = 80MeV, fu = fπ, fs = fπ

(

1 + 2( fK

fπ
− 1)

)

.

• The B → π and B → K form factor:

F Bπ
0 (0) = 0.258, F BK

0 (0) = 0.33, (Ball and Zwicky) (27)

• From the quark content of η and η′,

F Bη(0) = 0.58F Bπ
0 (0), F Bη′

(0) = 0.40F Bπ
0 (0). (28)

and with the s quark content Cη = −0.57, Cη′ = 0.82 :

〈0|s̄ iγ5s|η〉 = Cη B0fs, 〈0|s̄ iγ5s|η′〉 = Cη′ B0fs. (29)
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Decay Modes QCDF BR (×10−6) Experiment

B−
→ π−π0 5.05 5.7 ± 0.4

B̄0
→ K−π+ 18.25 19.04 ± 0.6

B−
→ π−η 3.39 4.4 ± 0.4

B−
→ π−η′ 1.91 2.6+0.6

−0.5

B−
→ K−η 0.43 2.2 ± 0.3

B−
→ K−η′ 48.26 69.7+2.8

−2.7

Table 1: The Branching ratios of B → Pη, B → Pη′ in QCDF

• The predicted B(B− → π−η) agrees rather well with experiment, but

B(B− → π−η′) is below the Babar value of (4.0 ± 0.8 ± 0.4) × 10−6 .

• by increasing the F B→η′

form factor by 40 − 50% from the nonet

symmetry value, one would get, with F B→η′

0 (0) = 0.156,

B(B− → π−η′) = 3.89 × 10−6,

B(B− → K−η′) = 61.84 × 10−6. (30)

which largely improves the prediction for B(B− → K−η′).
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• Additional source of enhancement of B(B− → K−η′) could come from

a possible higher order SU(3) breaking effects in the matrix element

〈0|s̄ iγ5s|ss̄〉 for η0.

• With a 15% increase of this matrix element from its nonet value, we

would have B(B− → K−η′) = 69.37 × 10−6

• The central question is the F B→η′

form factor, which need to be

determined by a measurement of B(B− → η′`ν).

• The new Babar upper limit B(B+ → η′`+ν)/B(B+ → η`+ν) < 0.57

which is consistent with nonet symmetry for the B → η, η′ form factors,

however shows no evidence for a large value for the F B→η′

form factor

compared with the usual nonet symmetry value.
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5 Conclusion

• We have shown that nonet symmetry for the pseudo-scalar meson mass

term implies nonet symmetry for the pseudo-scalar density matrix

elements. With this approximate relation, we obtained an improved

estimate for the B → Pη′(P = K, π ) branching ratios. With a moderate

annihilation contribution consistent with the measured B → Kπ

branching ratio, we find that a major part of the B → Kη′ branching

ratio could be obtained by QCDF. Without fine tuning or a large F B→η′

form factor, we find that the B → Kη′ branching ratio is underestimated

by 20 − 30%. This could be considered as a more or less successful

prediction for QCDF, considering the theoretical uncertainties involved.

• This could also indicate that an additional power-suppressed terms

could bring the branching ratio close to experiment, as with the

B → K∗π and B → K∗η decay for which the measured branching ratios

are much bigger than the QCDF prediction.
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