$B \rightarrow K \eta, K \eta^{\prime}$ Decays in QCD Factorization

T. N. PHAM

Centre de Physique Théorique, CNRS
Ecole Polytechnique, 91128 Palaiseau Cedex, France
Fravi

Talk at the 8th Particle Physics Phenomenology Workshop (PPP8)
May 20-23, NCKU Tainan, Taiwan 701, Republic of China
Based on a recent work:
T. N. Pham, Phys. Rev. D 77014024 (2008).

1 Introduction

- In charmless two-body decays, the $B \rightarrow K \eta^{\prime}$ decay is the one with the largest branching ratio, bigger than that of $B \rightarrow K \pi$ decay by a factor of ≈ 3.
- The $B \rightarrow K \eta, K \eta^{\prime}$ decays have been analysed in many recent papers, for example, Beneke and Neubert, NP B 651, 225 (2003); Dutta, Kim, Oh and Zhu, EPJC 37 , 273 (2004), Williamson and Zupan, PRD 74 , 014003(2006); Charng, Kurimoto and Li, PRD 74074024 (2006); Gerard and Kou, PRL 97261804 (2006) and more recently Hsu, Charng and Li, PRD 78014020 (2008) and Xiao, Liu and Guo, PRD 78114001 (2008).
- In QCDF the $B \rightarrow K \pi$ branching ratio could be understood with a moderate contribution from the power-suppressed annihilation terms.
- Without fine tuning, the $B \rightarrow K \eta^{\prime}$ branching ratio is predicted to be larger than that of $B \rightarrow K \pi$, but still underestimated by $20-30 \%$.
- Main theoretical uncertainties come from the $B \rightarrow \eta^{\prime}$ form factor and the pseudo-scalar density matrix elements for η^{\prime}.
- This work : To show that nonet symmetry for the pseudo-scalar mass formula implies nonet symmetry for the pseudo-scalar density matrix elements and to use this result in this analysis of $B \rightarrow K \eta, K \eta^{\prime}$ decays.
- Historically, there is an approximate expression for the octet pseudo-scalar density matrix elements by Gell-Mann, Oakes and Renner, PRD 175, 2195 (1968).
- There is no known explicit expression for the singlet pseudo-scalar density using the nonet symmetry scheme.

2 QCD factorization for charmless $B \rightarrow P P$ decays

Figure 1: factorization diagram for charmless B decay

Figure 2: Vertex and spectator corrections to charmless B decays

Figure 3: Annihilation diagram for $B \rightarrow M_{1} M_{2}$

- With the operator product expansion and renormalization group equation, the effective Lagrangian can be obtained, in which short-distance effects involving large virtual momenta of the loop corrections from the scale M_{W} down to $\mu=\mathcal{O}\left(m_{b}\right)$ are cleanly integrated into the Wilson coefficients.
- $B \rightarrow M_{1} M_{2}$ decay amplitude

$$
\begin{align*}
& \mathcal{A}\left(B \rightarrow M_{1} M_{2}\right)=\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} V_{p b} V_{p s}^{*} \times \\
& \left(-\sum_{i=1}^{10} a_{i}^{p}\left\langle M_{1} M_{2}\right| O_{i}|B\rangle_{H}+\sum_{i}^{10} f_{B} f_{M_{1}} f_{M_{2}} b_{i}\right), \tag{1}
\end{align*}
$$

- The QCD coefficients a_{i}^{p} contain the vertex corrections, penguin corrections, and hard spectator scattering contributions, the hadronic matrix elements $\left\langle M_{1} M_{2}\right| O_{i}|B\rangle_{H}$ of the tree and penguin operators O_{i} are given by factorization model, b_{i} are annihilation contributions. The values for $a_{i}^{p}, p=u, c$, evaluated at the renormalization scale $\mu=m_{b}$, with $m_{b}=4.2 \mathrm{GeV}$
- The effective operators :

$$
O_{1}=(\bar{s} u)_{L}(\bar{u} b)_{L} \quad, \quad O_{4}=\sum_{q}(\bar{s} q)_{L}(\bar{q} b)_{L}
$$

$$
\begin{equation*}
O_{6}=-2 \sum_{q}\left(\bar{s}_{L} q_{R}\right)\left(\bar{q}_{R} b_{L}\right) \tag{2}
\end{equation*}
$$

- $O_{1,2}$: Tree-level, $O_{3, \ldots, 6}$: QCD penguin, $O_{7, \ldots, 10}$: Electroweak penguin
- Hadronic matrix elements : $\left\langle M_{1} M_{2}\right| O_{i}(\mu)|B\rangle$ contains the physics effects from the scale $\mu=\mathcal{O}\left(m_{b}\right)$ down to Λ_{QCD}.
- In heavy quark limit, QCD Factorisation : $\left\langle M_{1} M_{2}\right| O_{i}(\mu)|B\rangle$ can be factorized into hard radiative corrections and simpler nonperturbative structures which can be parametrized by the form factors and meson light-cone distribution amplitudes (LCDAs).
- Power corrections in $1 / m_{b}$ come from Penguin matrix element, chirally enhanced corrections and annihilation contribution.
- Penguin matrix element like that of O_{6} is of the order $O\left(1 / m_{b}\right)$ compared to the $(V-A) \times(V-A) O_{1}$ and O_{4} matrix element in the $B \rightarrow K \pi$ amplitude, since the matrix element $<K\left|\bar{s}_{L} d_{R}\right| 0>$ is proportional to $m_{K}^{2} / m_{s} \approx 2.5 \mathrm{GeV}$ while $<K\left|\bar{s}_{L} d_{L}\right| 0>$ is proportional
to K momentum which is $O\left(m_{b}\right)$, thus numerically, the matrix element of O_{6} which has a factor

$$
\begin{equation*}
r_{\chi}^{K}=\frac{2 m_{K}^{2}}{m_{b}\left(m_{s}+m_{d}\right)} \approx O(1) \tag{3}
\end{equation*}
$$

is comparable to that of O_{4}.

- Chirally enhanced corrections from two-body twist-3 LCDAs of the final state mesons and annihilation contributions parametrized by the two quantities $X_{\mathrm{A}, \mathrm{H}}$ which could have a strong phase (M. Beneke, G. Buchalla, M. Neubert and C.T. Sachrajda, Nucl. Phys. B 606, 245 (2001).)

3 Nonet symmetry in the $\eta-\eta^{\prime}$ system

- Since QCD interactions through the exchange of gluons are flavor-independent, one expects the wave function for the pseudo-scalar meson nonet also flavor-independent in the limit of vanishsing current quark mass.
- η and η^{\prime} can be described as two linear combinations of the $q \bar{q}$ state, the $\mathrm{SU}(3)$ singlet η_{0} and the $\mathrm{SU}(3)$ octet η_{8} which mix with each other through a small $S U(3)$ symmetry breaking mixing parameter.
- because of the $U(1)$ QCD-anomaly, the η_{0} mass is much larger compared to the η_{8} mass, the $\eta-\eta^{\prime}$ mixing angle is $O\left(m_{s} / \Lambda_{\mathrm{QCD}}\right)$.
- The quark mass term is the leading term in the large N_{c} expansion while higher order terms in the chiral Lagrangian (Gasser and Leutwyler) is $O\left(1 / N_{c}\right)$ and is thus suppressed in the large N_{c} limit.
- This justifies the nonet symmetry scheme for the pseudo-scalar meson mass term.
- Nonet symmetry for the off-diagonal mass term $<\eta_{0}\left|H_{\mathrm{SB}}\right| \eta_{8}>$ gives an $\eta-\eta^{\prime}$ mixing angle $\theta=-18^{\circ}$ in good agreement with a value $\theta \approx-(22 \pm 3)^{\circ}$ (Donoghue) or $\theta \approx-(18.4 \pm 2)^{\circ}$ (Pham) and a similar value $\theta \approx-(17-20)^{\circ}$ (Ball) obtained from the two-photon decay width of η and η^{\prime}.
- However, from the Gell-Mann-Okubo(GMO) mass formula, we would have

$$
\begin{equation*}
m_{\eta}^{2}=m_{8}^{2}-\tan \theta^{2}\left(m_{\eta^{\prime}}^{2}-m_{8}^{2}\right) \tag{4}
\end{equation*}
$$

which gives, for $\theta=-18^{\circ}, m_{\eta}=483 \mathrm{MeV}$, about 60 MeV below experiment.

- The $\eta-\eta^{\prime}$ mixing which contributes to L_{7} has driven the m_{η} below the GMO value by 63 MeV .
- Higher order terms in the chiral Lagrangian and chiral logarithms(Gasser and Leutwyler; Gerard and Kou(2005)), shift m_{η} upward by a similar amount with the result that the η mass is very close to the GMO value, and a large $\eta-\eta^{\prime}$ mixing angle consistent with nonet symmetry rather than the small value of -10° obtained with the GMO

formula for m_{8}.

- Thus nonet symmetry seems to be a good approximation for the 0^{-} nonet mass term.
- The matrix elements of the pseudo-scalar density local operator e.g. $\bar{s} i \gamma_{5} s$ might also satisfy nonet symmetry.
- This is in fact the case as shown in this work that nonet symmetry for the mass term implies nonet symmetry for the pseudo-scalar density local operator.
- The penguin matrix elements in charmless B decays with η^{\prime} in the final state could be then computed using nonet symmetry.
- The matrix element of the axial vector current $\bar{u} \gamma_{\mu} \gamma_{5} u$ and $\bar{s} \gamma_{\mu} \gamma_{5} s$ between the vacuum and η_{0} and η_{8} :

$$
\begin{gather*}
<0\left|\bar{u} \gamma_{\mu} \gamma_{5} u\right| \eta_{0}>=i f_{u} p_{\mu} / \sqrt{3}, \quad<0\left|\bar{u} \gamma_{\mu} \gamma_{5} u\right| \eta_{8}>=i f_{u} p_{\mu} / \sqrt{6} . \tag{5}\\
<0\left|\bar{s} \gamma_{\mu} \gamma_{5} s\right| \eta_{0}>=i f_{s} p_{\mu} / \sqrt{3}, \quad<0\left|\bar{s} \gamma_{\mu} \gamma_{5} s\right| \eta_{8}>=-2 i f_{s} p_{\mu} / \sqrt{6} . \tag{6}
\end{gather*}
$$

- The octet $A_{8 \mu}$ and singlet $A_{0 \mu}$ axial vector current matrix elements

$$
\begin{equation*}
<0\left|A_{\mu 8}\right| \eta_{8}>=\frac{\left(f_{u}+f_{d}+4 f_{s}\right)}{6} p_{\mu}, \quad<0\left|A_{\mu 0}\right| \eta_{0}>=\frac{\left(f_{u}+f_{d}+f_{s}\right)}{3} p_{\mu} \tag{7}
\end{equation*}
$$

- Assuming each s - quark contributes to the decay constant a symmetry breaking term ϵ, to first order in $\epsilon(\operatorname{Pham}(1984))$ (Rewriting $\left.f_{q \bar{q}}=f_{q}\right)$:

$$
\begin{align*}
& f_{\pi}=f_{u \bar{d}} \approx f_{u}, \quad f_{K}=f_{u \bar{s}}=(1+\epsilon) f_{u \bar{d}} \\
& f_{s}=(1+2 \epsilon) f_{u} \approx(1+\epsilon) f_{K} \tag{8}
\end{align*}
$$

- Pseudo-scalar density matrix elements for the pseudo-scalar meson octet:

$$
\begin{align*}
& f_{\pi} B_{0}\left(m_{u}+m_{d}\right)=\left(m_{u}+m_{d}\right)\langle 0| \bar{u} i \gamma_{5} d|u \bar{d}\rangle, \\
& f_{K} B_{0}\left(m_{u}+m_{s}\right)=\left(m_{u}+m_{s}\right)\langle 0| \bar{u} i \gamma_{5} s|u \bar{s}\rangle . \tag{9}
\end{align*}
$$

and for π^{0} :

$$
\begin{equation*}
f_{u} B_{0}\left(m_{u}+m_{d}\right)=\left(m_{u}+m_{d}\right)\langle 0| \bar{u} i \gamma_{5} u|u \bar{u}\rangle . \tag{10}
\end{equation*}
$$

- Consider now the $I=0 A_{\mathrm{n} \mu}$ and $A_{\mathrm{s} \mu}$ axial vector current:

$$
\begin{equation*}
A_{\mathrm{n} \mu}=\left(\bar{u} \gamma_{\mu} \gamma_{5} u+\bar{d} \gamma_{\mu} \gamma_{5} d\right), \quad A_{\mathrm{s} \mu}=\bar{s} \gamma_{\mu} \gamma_{5} s . \tag{11}
\end{equation*}
$$

- The divergence:

$$
\begin{align*}
& \partial A_{\mathrm{n}}=2\left(m_{u} \bar{u} i \gamma_{5} u+m_{d} \bar{d} i \gamma_{5} d\right)+2 \frac{\alpha_{s}}{4 \pi} G \tilde{G} . \tag{12}\\
& \partial A_{\mathrm{s}}=2 m_{s} \bar{s} i \gamma_{5} s+\frac{\alpha_{s}}{4 \pi} G \tilde{G} . \tag{13}
\end{align*}
$$

- The matrix elements of ∂A_{n} and ∂A_{s} between the vacuum and $\eta_{0,8}$ are given by:

$$
\begin{align*}
\langle 0| \partial A_{\mathrm{n}}\left|\eta_{0}\right\rangle & =2 m_{u}\langle 0| \bar{u} i \gamma_{5} u\left|\eta_{0}\right\rangle+2 m_{d}\langle 0| \bar{d} i \gamma_{5} d\left|\eta_{0}\right\rangle, \tag{14}\\
& +2\langle 0| \frac{\alpha_{s}}{4 \pi} G \tilde{G}\left|\eta_{0}\right\rangle, \\
\langle 0| \partial A_{s}\left|\eta_{0}\right\rangle & =2 m_{s}\langle 0| \bar{s} i \gamma_{5} s\left|\eta_{0}\right\rangle+\langle 0| \frac{\alpha_{s}}{4 \pi} G \tilde{G}\left|\eta_{0}\right\rangle . \tag{15}\\
\langle 0| \partial A_{\mathrm{n}}\left|\eta_{8}\right\rangle & =2 m_{u}\langle 0| \bar{u} i \gamma_{5} u\left|\eta_{8}\right\rangle+2 m_{d}\langle 0| \bar{d} i \gamma_{5} d\left|\eta_{8}\right\rangle, \\
& +2\langle 0| \frac{\alpha_{s}}{4 \pi} G \tilde{G}\left|\eta_{8}\right\rangle, \tag{16}
\end{align*}
$$

$$
\begin{equation*}
\langle 0| \partial A_{\mathrm{s}}\left|\eta_{8}\right\rangle=2 m_{s}\langle 0| \bar{s} i \gamma_{5} s\left|\eta_{8}\right\rangle+\langle 0| \frac{\alpha_{s}}{4 \pi} G \tilde{G}\left|\eta_{8}\right\rangle . \tag{17}
\end{equation*}
$$

- Consider next Eq.(14-15) and Eq.(16-17) with the pole terms included using the nonet symmetry expressions $\left(\hat{m}=\left(m_{u}+m_{d}\right) / 2\right)$.

$$
\begin{align*}
m_{8}^{2} & =B_{0} \frac{2}{3}\left(2 m_{s}+\hat{m}\right) \\
m_{0}^{2} & =\bar{m}_{0}^{2}+B_{0} \frac{2}{3}\left(m_{s}+2 \hat{m}\right) \\
m_{08}^{2} & =B_{0} \frac{2}{3} \sqrt{2}\left(-m_{s}+\hat{m}\right) \tag{18}
\end{align*}
$$

- The pseudo-scalar density matrix elements can now be extracted from the following expressions

$$
\begin{align*}
& f_{u} \frac{1}{\sqrt{3}}\left(\bar{m}_{0}^{2}+B_{0} \frac{2}{3}\left(m_{s}+2 \hat{m}\right)\right)=f_{u} \frac{1}{\sqrt{3}} m_{0}^{2}- \\
& f_{u} \frac{1}{\sqrt{6}}\left(B_{0} \frac{2 \sqrt{2}}{3}\left(\hat{m}-m_{s}\right)\right)+2 \frac{1}{\sqrt{3}} \hat{m}\langle 0| \bar{u} i \gamma_{5} u|u \bar{u}\rangle, \tag{19}\\
& f_{s} \frac{1}{\sqrt{3}}\left(\bar{m}_{0}^{2}+B_{0} \frac{2}{3}\left(m_{s}+2 \hat{m}\right)\right)=f_{s} \frac{1}{\sqrt{3}} m_{0}^{2}-
\end{align*}
$$

$$
\begin{equation*}
f_{s} \frac{2}{\sqrt{6}} B_{0} \frac{2 \sqrt{2}}{3}\left(\hat{m}-m_{s}\right)+2 \frac{1}{\sqrt{3}} m_{s}\langle 0| \bar{s} i \gamma_{5} s|s \bar{s}\rangle . \tag{20}
\end{equation*}
$$

- Thus for η_{0} :

$$
\begin{equation*}
\langle 0| \bar{u} i \gamma_{5} u|u \bar{u}\rangle=B_{0} f_{u}, \quad\langle 0| \bar{s} i \gamma_{5} s|s \bar{s}\rangle=B_{0} f_{s} . \tag{21}
\end{equation*}
$$

- Similarly, for η_{8} :

$$
\begin{align*}
f_{u} \frac{1}{\sqrt{6}}\left(B_{0} \frac{2}{3}\left(2 m_{s}+\hat{m}\right)\right) & =-f_{u} \frac{1}{\sqrt{3}} B_{0} \frac{2 \sqrt{2}}{3}\left(\hat{m}-m_{s}\right) \\
& +2 \frac{1}{\sqrt{6}} \hat{m}\langle 0| \bar{u} i \gamma_{5} u|u \bar{u}\rangle, \tag{22}\\
-f_{s} \frac{2}{\sqrt{6}}\left(B_{0} \frac{2}{3}\left(2 m_{s}+\hat{m}\right)\right) & =-f_{s} \frac{1}{\sqrt{3}} B_{0} \frac{2 \sqrt{2}}{3}\left(\hat{m}-m_{s}\right) \\
& -2 \frac{2}{\sqrt{6}} m_{s}\langle 0| \bar{s} i \gamma_{5} s|s \bar{s}\rangle . \tag{23}
\end{align*}
$$

- In the limit $m_{u}=m_{d}=0$, the l.h.s and r.h.s of Eq. (22) become $f_{u} m_{8}^{2} / \sqrt{6}$ in agreement with the divergence equation Eq. (12).
- from the above equations, we have the same expression for the
pseudo-scalar density matrix element, but in η_{8}.
- Like $\langle 0| \bar{u} i \gamma_{5} d\left|\pi^{+}\right\rangle,\langle 0| \bar{u} i \gamma_{5} u\left|\pi^{0}\right\rangle$ and $\langle 0| \bar{u} i \gamma_{5} s\left|K^{+}\right\rangle$, they are given by the parameter B_{0} and the decay constant involved.
- Experimentally, $m_{08}^{2}=-(0.81 \pm 0.05) m_{K}^{2}$ to be compared with the nonet symmetry value of $m_{08}^{2} \simeq-0.90 m_{K}^{2}$ (Donoghue).
- Expect nonet symmetry for the pseudo-scalar density matrix elements in $\eta-\eta^{\prime}$ valid to this accuracy.
- Since the octet m_{8}^{2} mass gets about 15% increase from higher order terms $L_{4}, L_{5}, L_{6}, L_{8}$ and chiral logarithms, Eqs.(22-23) show that $\langle 0| \bar{s} i \gamma_{5} s|s \bar{s}\rangle$ in η will be increased by a similar amount
- Assuming a similar 15% increase from the nonet value for m_{0}^{2}, $\langle 0| \bar{s} i \gamma_{5} s|s \bar{s}\rangle$ in η_{0} will also be increased by a similar amount.
- This could be another source of enhancement for the $B \rightarrow K \eta^{\prime}$ branching ratio.

4 The $B^{-} \rightarrow K^{-}\left(\eta, \eta^{\prime}\right)$ and $B^{-} \rightarrow \pi^{-}\left(\eta, \eta^{\prime}\right)$

 decays- The CKM matrix elements

$$
\begin{equation*}
\left|V_{u b}\right|=\frac{\left|V_{c b} V_{c d}^{*}\right|}{\left|V_{u d}^{*}\right|} \left\lvert\, \sin \beta \sqrt{1+\frac{\cos ^{2} \alpha}{\sin ^{2} \alpha}} .\right. \tag{24}
\end{equation*}
$$

- With $\alpha=\left(99_{-9}^{+13}\right)^{\circ}($ PDG $)$ and
$\left|V_{c b}\right|=(41.78 \pm 0.30 \pm 0.08) \times 10^{-3}$ (Barberio), we find

$$
\begin{equation*}
\left|V_{u b}\right|=3.60 \times 10^{-3} . \tag{25}
\end{equation*}
$$

in agreement with the exclusive data
$\left|V_{u b}\right|=(3.33-3.51) \times 10^{-3}$ (Barberio) .

- The current determination(Abulencia) gives $\left|V_{t d} / V_{t s}\right|=\left(0.208_{-0.006}^{+0.008}\right)$ which in turn can be used to determined the angle γ from the unitarity
relation:

$$
\begin{equation*}
\left|V_{t d}\right|=\frac{\left|V_{c b} V_{c d}^{*}\right|}{\left|V_{t b}^{*}\right|} \left\lvert\, \sin \gamma \sqrt{1+\frac{\cos ^{2} \alpha}{\sin ^{2} \alpha}}\right. \tag{26}
\end{equation*}
$$

which gives $\gamma=66^{\circ}\left(\left|V_{t b}\right|=1\right)$ and $\alpha=91.8^{\circ}$, in good agreement with the value found in the current UT-fit value of $(88 \pm 16)^{\circ}$.

Figure 4: The (db) Unitarity Triangle

- $m_{s}(2 \mathrm{GeV})=80 \mathrm{MeV}, f_{u}=f_{\pi}, f_{s}=f_{\pi}\left(1+2\left(\frac{f_{K}}{f_{\pi}}-1\right)\right)$.
- The $B \rightarrow \pi$ and $B \rightarrow K$ form factor:

$$
\begin{equation*}
F_{0}^{B \pi}(0)=0.258, \quad F_{0}^{B K}(0)=0.33,(\text { Ball and Zwicky }) \tag{27}
\end{equation*}
$$

- From the quark content of η and η^{\prime},

$$
\begin{equation*}
F^{B \eta}(0)=0.58 F_{0}^{B \pi}(0), F^{B \eta^{\prime}}(0)=0.40 F_{0}^{B \pi}(0) \tag{28}
\end{equation*}
$$

and with the s quark content $C_{\eta}=-0.57, C_{\eta^{\prime}}=0.82$:

$$
\begin{equation*}
\langle 0| \bar{s} i \gamma_{5} s|\eta\rangle=C_{\eta} B_{0} f_{s}, \quad\langle 0| \bar{s} i \gamma_{5} s\left|\eta^{\prime}\right\rangle=C_{\eta^{\prime}} B_{0} f_{s} . \tag{29}
\end{equation*}
$$

Decay Modes	QCDF BR $\left(\times 10^{-6}\right)$	Experiment
$B^{-} \rightarrow \pi^{-} \pi^{0}$	5.05	5.7 ± 0.4
$\bar{B}^{0} \rightarrow K^{-} \pi^{+}$	18.25	19.04 ± 0.6
$B^{-} \rightarrow \pi^{-} \eta$	3.39	4.4 ± 0.4
$B^{-} \rightarrow \pi^{-} \eta^{\prime}$	1.91	$2.6_{-0.5}^{+0.6}$
$B^{-} \rightarrow K^{-} \eta$	0.43	2.2 ± 0.3
$B^{-} \rightarrow K^{-} \eta^{\prime}$	48.26	$69.7_{-2.7}^{+2.8}$

Table 1: The Branching ratios of $B \rightarrow P \eta, B \rightarrow P \eta^{\prime}$ in QCDF

- The predicted $\mathcal{B}\left(B^{-} \rightarrow \pi^{-} \eta\right)$ agrees rather well with experiment, but $\mathcal{B}\left(B^{-} \rightarrow \pi^{-} \eta^{\prime}\right)$ is below the Babar value of $(4.0 \pm 0.8 \pm 0.4) \times 10^{-6}$.
- by increasing the $F^{B \rightarrow \eta^{\prime}}$ form factor by $40-50 \%$ from the nonet symmetry value, one would get, with $F_{0}^{B \rightarrow \eta^{\prime}}(0)=0.156$,

$$
\begin{align*}
& \mathcal{B}\left(B^{-} \rightarrow \pi^{-} \eta^{\prime}\right)=3.89 \times 10^{-6} \\
& \mathcal{B}\left(B^{-} \rightarrow K^{-} \eta^{\prime}\right)=61.84 \times 10^{-6} \tag{30}
\end{align*}
$$

which largely improves the prediction for $\mathcal{B}\left(B^{-} \rightarrow K^{-} \eta^{\prime}\right)$.

- Additional source of enhancement of $\mathcal{B}\left(B^{-} \rightarrow K^{-} \eta^{\prime}\right)$ could come from a possible higher order $S U(3)$ breaking effects in the matrix element $\langle 0| \bar{s} i \gamma_{5} s|s \bar{s}\rangle$ for η_{0}.
- With a 15% increase of this matrix element from its nonet value, we would have $\mathcal{B}\left(B^{-} \rightarrow K^{-} \eta^{\prime}\right)=69.37 \times 10^{-6}$
- The central question is the $F^{B \rightarrow \eta^{\prime}}$ form factor, which need to be determined by a measurement of $\mathcal{B}\left(B^{-} \rightarrow \eta^{\prime} \ell \nu\right)$.
- The new Babar upper limit $\mathcal{B}\left(B^{+} \rightarrow \eta^{\prime} \ell^{+} \nu\right) / \mathcal{B}\left(B^{+} \rightarrow \eta \ell^{+} \nu\right)<0.57$ which is consistent with nonet symmetry for the $B \rightarrow \eta, \eta^{\prime}$ form factors, however shows no evidence for a large value for the $F^{B \rightarrow \eta^{\prime}}$ form factor compared with the usual nonet symmetry value.

5 Conclusion

- We have shown that nonet symmetry for the pseudo-scalar meson mass term implies nonet symmetry for the pseudo-scalar density matrix elements. With this approximate relation, we obtained an improved estimate for the $B \rightarrow P \eta^{\prime}(P=K, \pi)$ branching ratios. With a moderate annihilation contribution consistent with the measured $B \rightarrow K \pi$ branching ratio, we find that a major part of the $B \rightarrow K \eta^{\prime}$ branching ratio could be obtained by QCDF. Without fine tuning or a large $F^{B \rightarrow \eta^{\prime}}$ form factor, we find that the $B \rightarrow K \eta^{\prime}$ branching ratio is underestimated by $20-30 \%$. This could be considered as a more or less successful prediction for QCDF, considering the theoretical uncertainties involved.
- This could also indicate that an additional power-suppressed terms could bring the branching ratio close to experiment, as with the $B \rightarrow K^{*} \pi$ and $B \rightarrow K^{*} \eta$ decay for which the measured branching ratios are much bigger than the QCDF prediction.

6 Acknowledgments

I would like to thank Professor Chuan-Hung Chen for the warm hospitality and the invitation to the PPP8 Workshop and Professor Hsiang-nan Li for support for my visit at Academia Sinica. This work was supported in part by the EU contract No. MRTN-CT-2006-035482, "FLAVIAnet".

