Probing New Physics in Charm Couplings

Jusak Tandean

National Taiwan University

in collaboration with XG He & G Valencia arXiv:0904.2301

Eighth Particle Physics Phenomenology Workshop Tainan, Taiwan 20 May 2009

Outline of talk

- * Introduction
- * Tree-level processes
- * Loop-induced processes
- * Conclusions

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへ⊙

Introduction

- Existing data on various decays of hadrons and mixing of neutral mesons are consistent with the loop-induced nature of flavor-changing neutral currents (FCNC's) in the standard model (SM)
- * They are also consistent with the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix with three generations.
- * Our understanding of the dynamics of flavor is nevertheless not yet complete.
- * The continuing study of low-energy flavor-changing processes with increased precision will play a crucial role in the search for new physics.

Anomalous couplings of quarks

- * In many types of new physics, the new particles are heavier than their SM counterparts.
 - Their effects can be described by an effective low-energy theory.
- * It is possible that the effect of new physics is mainly to modify the SM couplings between gauge bosons and certain fermions.
- * Anomalous top-quark couplings have been much studied in the literature.
 - They are most tightly constrained by the $b
 ightarrow s \gamma$ decay.
 - This mode does not place severe constraints on the corresponding charm-quark couplings due to the relative smallness of the charm mass.
- * It is thus interesting to explore anomalous charm-quark couplings subject to existing and future data.

Effective interactions

- * We focus on new physics affecting primarily the charged weak currents involving the charm quark.
- * The effective Lagrangian for a general parametrization of the W boson interacting with an up-type quark U_k and a down-type quark D_l can be written as

$$\mathcal{L}_{UDW} = -\frac{g}{\sqrt{2}} V_{kl} \bar{U}_k \gamma^{\mu} \big[\big(1 + \kappa_{kl}^{\mathrm{L}}\big) P_{\mathrm{L}} + \kappa_{kl}^{\mathrm{R}} P_{\mathrm{R}} \big] D_l W_{\mu}^{+} + \mathrm{H.c.}$$

g is the weak coupling constant, the anomalous couplings $\kappa_{kl}^{\rm L,R}$ are normalized relative to the CKM-matrix elements V_{kl} , and $P_{\rm L,R}=\frac{1}{2}(1\mp\gamma_5).$

* In general, $\kappa_{kl}^{\rm L,R}$ are complex and therefore provide new sources of CP violation.

Tree-level processes

- $\ast\,$ Anomalous charm-W couplings affect various flavor-changing transitions at tree level.
- * CP-conserving processes

- \ast CP-violating processes
 - $b \rightarrow c \bar{c} s$

イロト イポト イヨト イヨト

 $D
ightarrow \ell
u$ & $D_s
ightarrow \ell
u$

* In the presence of anomalous charm couplings

$$\Gamma(D \to \ell \nu) = \frac{G_F^2 f_D^2 m_\ell^2 m_D}{8\pi} \left(1 - \frac{m_\ell^2}{m_D^2}\right)^2 \left| V_{cd} \left(1 + \kappa_{cd}^{\rm L} - \kappa_{cd}^{\rm R}\right) \right|^2$$

the decay constant f_D defined by $\langle 0|\bar{d}\gamma^\mu c|D(p)\rangle = if_D p^\mu$. * Similarly for $\Gamma(D_s \to \ell \nu)$.

Recent measurements yield

PDG, CLEO

$$f_D^{\rm exp} \,=\, (205.8\pm 8.9)\,{\rm MeV} \ , \qquad \quad f_{D_s}^{\rm exp} \,=\, (261.2\pm 6.9)\,{\rm MeV} \ .$$

* SM calculations give

Dobrescu & Kronfeld, Narison

$$f_D^{\rm th} \,=\, (202\pm 8)\,{
m MeV} \;, \qquad f_{D_s}^{\rm th} \,=\, (240\pm 7)\,{
m MeV}$$

PPP8, 20 May 2009

$D, D_s ightarrow \ell u$

- * The data for $D \rightarrow \ell \nu$ agree with theoretical predictions well, but for $D_s \rightarrow \ell \nu$ there is deviation at the 2-sigma level.
- * It has been argued that this deviation may be due to physics beyond the SM, but it is too early to conclude that new physics is needed.
- * Nevertheless, one can turn the argument around to constrain the new physics parameterized by the anomalous couplings.
- * Using the experimental and theoretical numbers above, one can then extract

 $\left|\operatorname{Re}\left(\kappa_{cd}^{\mathrm{L}} - \kappa_{cd}^{\mathrm{R}}\right)\right| \leq 0.04 , \qquad 0 \leq \operatorname{Re}\left(\kappa_{cs}^{\mathrm{L}} - \kappa_{cs}^{\mathrm{R}}\right) \leq 0.1$

Exclusive & inclusive $b \rightarrow c \ell^- \bar{\nu}_{\ell}$ decays

- * $b \rightarrow c \ell^- \bar{\nu}_\ell$ decays provide avenues to measure V_{cb} .
- * The presence of anomalous cbW couplings affects V_{cb} extraction.
- * They scale the hadronic vector and axial-vector currents by the factors $1 + \kappa_{cb}^{\rm L} \pm \kappa_{bc}^{\rm R}$, respectively.
- * $\bar{B} \rightarrow D \ell^- \bar{\nu}_{\ell}$ is sensitive only to the vector form-factor.
 - Its decay rate gets multiplied by $|1 + \kappa_{cb}^{L} + \kappa_{bc}^{R}|^{2}$.
 - To $\mathcal{O}(\kappa)$, what is measured is then

$$V_{cb}^{\text{eff}} = V_{cb} \left(1 + \text{Re}\,\kappa_{cb}^{\text{L}} + \text{Re}\,\kappa_{cb}^{\text{R}} \right) = (39.4 \pm 4.4) \times 10^{-3}$$

* $\bar{B} \rightarrow D^* \ell^- \bar{\nu}_{\ell}$ is sensitive to both the vector and axial-vector currents.

- The axial-vector current dominates the decay rate.
- Using constant form-factors yields to $\mathcal{O}(\kappa)$

$$V_{cb}^{\text{eff}} = V_{cb} \left(1 + \text{Re} \,\kappa_{cb}^{\text{L}} - 0.93 \text{Re} \,\kappa_{cb}^{\text{R}} \right) = (38.6 \pm 1.4) \times 10^{-3}$$

・ロト ・ 日 ・ モー ・ モー ・ うへの

PDG

 $b
ightarrow c \ell^- \bar{
u}_\ell$

* The inclusive decay rate in the presence of the κ_{ch} 's

$$\begin{split} \Gamma \big(b \to c \ell^- \bar{\nu}_\ell \big) &= \frac{G_{\rm F}^2 m_b^5}{192 \pi^3} |V_{cb}|^2 \Big\{ F(r) \left(\big| 1 + \kappa_{cb}^{\rm L} \big|^2 + \big| \kappa_{cb}^{\rm R} \big|^2 \right) \\ &+ 2G(r) \operatorname{Re} \big[\big(1 + \kappa_{cb}^{\rm L} \big) \kappa_{cb}^{\rm R*} \big] \Big\} \end{split}$$

where $r = m_c/m_b \simeq 0.3$, $F(r) = 1 - 8r^2 + 8r^6 - r^8 - 24r^4 \ln r$, $G(r) = -8r \left[1 + 9r^2 - 9r^4 - r^6 + 12r^2 \left(1 + r^2\right) \ln r\right]$.

* To $\mathcal{O}(\kappa)$, $V_{cb}^{\text{eff}} = V_{cb} \left(1 + \operatorname{Re} \kappa_{cb}^{\text{L}} - 1.5 \operatorname{Re} \kappa_{cb}^{\text{R}} \right) = (41.6 \pm 0.6) \times 10^{-3}$

- * It is not possible to extract a bound on κ_{cb}^{L} (as long as quadratic effects are ignored), but one can extract bounds on κ_{cb}^{R} .
- * A two-parameter fit results in a χ^2 minimum for

 $V_{cb} \left(1 + \text{Re} \,\kappa_{cb}^{\text{L}} \right) \, = \, 0.038 \, , \qquad \text{Re} \,\kappa_{cb}^{\text{R}} \, = \, -0.057$

with a corresponding 1- σ range

$$-0.13 \le \operatorname{Re} \kappa_{cb}^{\mathrm{R}} \le 0$$

Loop-induced processes

- $\ast\,$ The anomalous quark-W couplings also generate flavor-changing neutral-current interactions via
 - $\gamma\text{-}$ and $Z\text{-}\mathsf{penguin}$ diagrams

* They therefore affect loop-induced processes, such as $K \to \pi \nu \bar{\nu}$, $K_L \to \ell^+ \ell^-$, and neutral-meson mixing.

Loop contributions

- * The effective theory with anomalous couplings is not renormalizable
 - This results in divergent contributions to some of the processes we consider.
- These divergences are understood in the context of effective field theories as contributions to the coefficients of higher-dimension operators.
- For our numerical analysis, we will limit ourselves to the anomalous couplings ignoring the higher-dimension operators.
- In so doing, we trade the possibility of obtaining precise predictions in specific models for order-of-magnitude estimates of the effects of new physics parameterized in a model-independent way.

Loop evaluations

- * Not having the knowledge about the new degrees of freedom, we adopt the unitary gauge, implying that the loops contain only fermions and *W*-bosons.
- * We follow the common procedure of using dimensional regularization, dropping the resulting pole in 4 dimensions, and identifying the renormalization scale μ with the scale of the new physics underlying the effective theory.
- * Our results thus contain a logarithmic term of the form $\ln(\mu/m_W)$ in which we set $\mu = \Lambda = 1 \text{ TeV}$ for definiteness.
- * We also keep in our estimates those finite terms that correspond to contributions from SM quarks in the loops.
- * In the SM limit ($\kappa^{L,R} = 0$), after CKM unitarity is imposed, our results are finite and reproduce those obtained in the literature in R_{ξ} gauges.

Effective Hamiltonians for $d\bar{d}' \rightarrow \nu \bar{\nu}, \ell \bar{\ell}$ induced by κ 's

 $\ast\,$ The effective Hamiltonians generated at one loop by the anomalous charm couplings, at the m_W scale,

$$\begin{split} \mathcal{H}_{d\bar{d}'\to\nu\bar{\nu}}^{\kappa} &= -\frac{\alpha\,G_{\mathrm{F}}\,\lambda_{c}\,(\kappa_{cd}^{\mathrm{L}}+\kappa_{cd'}^{\mathrm{L}*})}{\sqrt{8}\,\pi\,\sin^{2}\theta_{\mathrm{W}}} \bigg(-3\,\ln\frac{\Lambda}{m_{W}}+4X_{0}(x_{c})\bigg)\bar{d}'\gamma^{\sigma}P_{\mathrm{L}}d\,\bar{\nu}\gamma_{\sigma}P_{\mathrm{L}}\nu \\ &+ \frac{\alpha\,G_{\mathrm{F}}\,\lambda_{c}\,\kappa_{cd}^{\mathrm{R}}\kappa_{cd'}^{\mathrm{R}*}}{\sqrt{8}\,\pi\,\sin^{2}\theta_{\mathrm{W}}}\bigg[\big(4x_{c}-3\big)\,\ln\frac{\Lambda}{m_{W}}+\tilde{X}(x_{c})\bigg]\bar{d}'\gamma^{\sigma}P_{\mathrm{R}}d\,\bar{\nu}\gamma_{\sigma}P_{\mathrm{L}}\nu \;, \end{split}$$

$$\begin{split} \mathcal{H}_{d\bar{d}' \to \ell^{+}\ell^{-}}^{\kappa} &= \frac{\alpha \, G_{\mathrm{F}} \, \lambda_{c} \left(\kappa_{cd}^{\mathrm{L}} + \kappa_{cd'}^{\mathrm{L}*}\right)}{\sqrt{8} \, \pi} \bigg[\bigg(3 \, \ln \frac{\Lambda}{m_{W}} - 4Y_{0}(x_{c}) \bigg) \frac{\bar{d}' \gamma^{\sigma} P_{\mathrm{L}} d \, \bar{\ell} \gamma_{\sigma} P_{\mathrm{L}} \ell}{\sin^{2} \theta_{\mathrm{W}}} \\ &+ \left(-\frac{16}{3} \, \ln \frac{\Lambda}{m_{W}} + 8Z_{0}(x_{c}) \right) \bar{d}' \gamma^{\sigma} P_{\mathrm{L}} d \, \bar{\ell} \gamma_{\sigma} \ell \bigg] \\ &+ \frac{\alpha \, G_{\mathrm{F}} \, \lambda_{c} \, \kappa_{cd}^{\mathrm{R}} \kappa_{cd'}^{\mathrm{R}}}{\sqrt{8} \, \pi} \bigg\{ \bigg[\big(3 - 4x_{c} \big) \, \ln \frac{\Lambda}{m_{W}} + \tilde{Y}(x_{c}) \bigg] \frac{\bar{d}' \gamma^{\sigma} P_{\mathrm{R}} d \, \bar{\ell} \gamma_{\sigma} P_{\mathrm{L}} \ell}{\sin^{2} \theta_{\mathrm{W}}} \\ &+ \bigg[\bigg(8x_{c} - \frac{16}{3} \bigg) \, \ln \frac{\Lambda}{m_{W}} + \tilde{Z}(x_{c}) \bigg] \bar{d}' \gamma^{\sigma} P_{\mathrm{R}} d \, \bar{\ell} \gamma_{\sigma} \ell \bigg\} \end{split}$$

Effective Hamiltonians induced by κ 's

* From the box diagrams

$$\begin{split} \mathcal{H}_{d\vec{d}'\rightarrow\vec{d}d'}^{\kappa} &= \\ & \frac{G_{\mathrm{F}}^{2}m_{W}^{2}}{8\pi^{2}}\,\lambda_{c}\big(\kappa_{cd}^{\mathrm{L}}+\kappa_{cd'}^{\mathrm{L}*}\big)\left(-\lambda_{t}\,x_{t}\,\ln\frac{\mu^{2}}{m_{W}^{2}}-\sum_{q}\lambda_{q}\,\mathcal{B}_{1}\left(x_{q},x_{c}\right)\right)\vec{d}'\gamma^{\alpha}P_{\mathrm{L}}d\,\vec{d}'\gamma_{\alpha}P_{\mathrm{L}}d\\ &-\frac{G_{\mathrm{F}}^{2}m_{W}^{2}}{4\pi^{2}}\,\lambda_{c}\kappa_{cd}^{\mathrm{R}}\kappa_{cd'}^{\mathrm{R}*}\left(\lambda_{t}\,x_{t}\,\ln\frac{\mu^{2}}{m_{W}^{2}}+\sum_{q}\lambda_{q}\,\mathcal{B}_{2}\left(x_{q},x_{c}\right)\right)\vec{d}'\gamma^{\alpha}P_{\mathrm{L}}d\,\vec{d}'\gamma_{\alpha}P_{\mathrm{R}}d\\ &-\frac{G_{\mathrm{F}}^{2}m_{W}^{2}}{4\pi^{2}}\,\lambda_{c}^{2}x_{c}\left(\ln\frac{\mu^{2}}{m_{W}^{2}}+\mathcal{B}_{3}\left(x_{c},x_{c}\right)\right)\left[\left(\kappa_{cd}^{\mathrm{R}}\right)^{2}\vec{d}'P_{\mathrm{R}}d\,\vec{d}'P_{\mathrm{R}}d+\left(\kappa_{cd'}^{\mathrm{R}*}\right)^{2}\vec{d}'P_{\mathrm{L}}d\,\vec{d$$

 $d' \neq d$, terms linear in κ^{L} and quadratic in κ^{R} are kept, $\lambda_{q} = V_{qd'}^{*}V_{qd}$, θ_{W} is the Weinberg angle, $X_{0}, Y_{0}, Z_{0}, \tilde{X}, \tilde{Y}, \tilde{Z}$, and $\mathcal{B}_{1,2,3}$ are loop functions.

◆□▼ ▲□▼ ▲□▼ ▲□▼ ▲□▼

$K^+ o \pi^+ u ar{ u}$

* The dominant contribution in the SM comes from the top loop

$$\mathcal{M}_{\rm SM}(K^+ \to \pi^+ \nu \bar{\nu}) = \frac{G_{\rm F}}{\sqrt{2}} \frac{\alpha V_{td} V_{ts}^* X_0(x_t)}{2\pi \sin^2 \theta_{\rm W}} \langle \pi^+ | \bar{s} \gamma_\mu d | K^+ \rangle \bar{\nu} \gamma^\mu (1 - \gamma_5) \nu$$

* The combined SM and anomalous-charm contribution

$$\mathcal{M}(K^+ \to \pi^+ \nu \bar{\nu}) = (1+\delta) \mathcal{M}_{\rm SM} (K^+ \to \pi^+ \nu \bar{\nu}) ,$$

$$\delta = \frac{V_{cd}V_{cs}^{*}}{V_{td}V_{ts}^{*}} \frac{\left(\kappa_{cd}^{L} + \kappa_{cs}^{L*}\right) \left[-3\ln(\Lambda/m_{W}) + 4X_{0}(x_{c})\right]}{4X(x_{t})} + \mathcal{O}(\kappa^{2})$$

- * The SM branching ratio $\mathcal{B}_{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (8.5 \pm 0.7) \times 10^{-11}$ to be compared with its experimental value $\mathcal{B}_{exp} = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$.
- * We then require $-0.2 \le \operatorname{Re} \delta \le 1$, which translates into

$$-2.5 \times 10^{-4} \leq -\text{Re}\left(\kappa_{cd}^{\text{L}} + \kappa_{cs}^{\text{L}}\right) + 0.42 \,\text{Im}\left(\kappa_{cd}^{\text{L}} - \kappa_{cs}^{\text{L}}\right) \leq 1.3 \times 10^{-3}$$

 $K_L
ightarrow \mu^+ \mu^-$

* The dominant short-distance SM contribution is also due to the top loop

$$\mathcal{M}_{\rm SM}^{\rm SD} \left(K^0 \to \mu^+ \mu^- \right) = -\frac{G_{\rm F}}{\sqrt{2}} \frac{\alpha V_{td} V_{ts}^* Y_0(x_t)}{2\pi \sin^2 \theta_{\rm W}} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\sigma \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\delta \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\delta \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\delta \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\delta \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\delta \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 d|K^0 \rangle \,\bar{\mu}\gamma_\delta \gamma_5 \mu_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 \eta_{\rm SM}^{-1} \langle 0|\bar{s}\gamma^\sigma \gamma_5 \eta_{\rm S$$

* The total SD amplitude

$$\mathcal{M}_{\rm SD}(K_L \to \mu^+ \mu^-) = (1 + \delta') \, \mathcal{M}_{\rm SM}^{\rm SD}(K_L \to \mu^+ \mu^-) \, ,$$

$$\delta' = \frac{\operatorname{Re} \left[V_{cd}^* V_{cs} \left(\kappa_{cs}^{\mathrm{L}} + \kappa_{cd}^{\mathrm{L*}} \right) \right] \left[-3 \ln(\Lambda/m_W) + 4Y_0(x_c) \right]}{4 \operatorname{Re} \left(V_{td}^* V_{ts} \right) Y(x_t)} + \mathcal{O}(\kappa^2)$$

- * The measured $\mathcal{B}(K_L \to \mu^+ \mu^-) = (6.84 \pm 0.11) \times 10^{-9}$ is almost saturated by the absorptive part of the long-distance contribution, $\mathcal{B}_{\rm abs} = (6.64 \pm 0.07) \times 10^{-9}$.
- * This suggests the allowed room for new physics, $B_{\rm NP} \lesssim 3.8 \times 10^{-10}$, the upper bound about $\frac{1}{2}$ the SD SM contribution, $B_{\rm SM}^{\rm SD} = (7.9 \pm 1.2) \times 10^{-10}$.
- * Consequently, we demand $|\delta'| \leq 0.2$, implying

$$\left|\operatorname{Re}\left(\kappa_{cs}^{\mathrm{L}} + \kappa_{cd}^{\mathrm{L}}\right) + 6 \times 10^{-4} \operatorname{Im}\left(\kappa_{cs}^{\mathrm{L}} - \kappa_{cd}^{\mathrm{L}}\right)\right| \leq 1.5 \times 10^{-4}$$

K- \overline{K} mixing

- * The matrix element for $K^0 \bar{K}^0$ mixing $M_{12}^K = \langle K^0 | \mathcal{H}_{d\bar{s} \to \bar{d}s} | \bar{K}^0 \rangle / (2m_K)$ consists of SM and new-physics terms.
- * The anomalous charm contribution

$$\begin{split} M_{12}^{K,\kappa} &= \frac{G_{\rm F}^2 m_W^2}{24\pi^2} f_K^2 m_K \lambda_c^{ds} \Big[\bar{\eta}^3 B_K \big(\kappa_{cd}^{\rm L*} + \kappa_{cs}^{\rm L} \big) \Big(-\lambda_t^{ds} x_t \ln \frac{\mu^2}{m_W^2} - \sum_q \lambda_q^{ds} \mathcal{B}_1 \big(x_q, x_c \big) \Big) \\ &+ \frac{\bar{\eta}^{3/2} B_K m_K^2}{(m_d + m_s)^2} \kappa_{cd}^{\rm R*} \kappa_{cs}^{\rm R} \Big(\lambda_t^{ds} x_t \ln \frac{\mu^2}{m_W^2} + \sum_q \lambda_q^{ds} \mathcal{B}_2 \big(x_q, x_c \big) \Big) \Big] \\ \lambda_q^{ds} &= V_{ad}^* V_{as} \end{split}$$

- * The K_L - K_S mass difference $\Delta M_K = 2 \operatorname{Re} M_{12}^K + \Delta M_K^{LD}$ contains a sizable long-distance term, ΔM_K^{LD} .
- * Since the LD part has significant uncertainties, we constrain the κ 's by requiring that their contribution to ΔM_K be less than the largest SM contribution, arising from the charm loop,

$$M_{12}^{K,\text{SM}} \simeq \frac{G_{\text{F}}^2 m_W^2}{12\pi^2} f_K^2 m_K B_K \eta_{cc} (\lambda_c^{ds})^2 S_0(x_c)$$

K- \overline{K} mixing

* As a result

 $\left|0.043\mathrm{Re}\left(\kappa_{cd}^{\mathrm{L}}+\kappa_{cs}^{\mathrm{L}}\right)+0.015\mathrm{Im}\left(\kappa_{cd}^{\mathrm{L}}-\kappa_{cs}^{\mathrm{L}}\right)-\mathrm{Re}\left(\kappa_{cd}^{\mathrm{R*}}\kappa_{cs}^{\mathrm{R}}\right)+0.28\mathrm{Im}\left(\kappa_{cd}^{\mathrm{R*}}\kappa_{cs}^{\mathrm{R}}\right)\right| \\ \leq 8.5\times10^{-4}$

- * A complementary constraint on the couplings can be obtained from the CP-violation parameter ϵ .
- \ast Its magnitude is related to M_{12}^K by

$$|\epsilon| \simeq \frac{\left|\operatorname{Im} M_{12}^{K}\right|}{\sqrt{2}\,\Delta M_{K}^{\exp}} , \qquad \Delta M_{K}^{\exp} = (3.483 \pm 0.006) \times 10^{-15} \,\mathrm{GeV}$$

* Since $|\epsilon|_{\exp} = (2.229 \pm 0.012) \times 10^{-3}$ and $|\epsilon|_{SM} = (2.06^{+0.47}_{-0.53}) \times 10^{-3}$, we demand $|\epsilon|_{\kappa} < 0.7 \times 10^{-3}$, leading to

 $\left| 0.015 \text{Re} \left(\kappa_{cs}^{\text{L}} + \kappa_{cd}^{\text{L}} \right) + 0.043 \text{Im} \left(\kappa_{cs}^{\text{L}} - \kappa_{cd}^{\text{L}} \right) - 0.28 \text{Re} \left(\kappa_{cd}^{\text{R}*} \kappa_{cs}^{\text{R}} \right) - \text{Im} \left(\kappa_{cd}^{\text{R}*} \kappa_{cs}^{\text{R}} \right) \right| \\ \leq 2.5 \times 10^{-6}$

B_d - \bar{B}_d mixing

* The SM mixing matrix element M_{12}^d is dominated by the top loop

$$M_{12}^{d,\rm SM} \simeq \frac{G_{\rm F}^2 \, m_W^2}{12\pi^2} \, f_{B_d}^2 m_{B_d} \, \eta_B B_{B_d} \left(V_{tb} V_{td}^* \right)^2 S_0 \! \left(x_t \right)$$

- $\ast\,$ In contrast, the anomalous couplings of charm and top may produce similar effects on $M^d_{12}.$
- * The anomalous top contributions having been studied before, we switch them off and get to $\mathcal{O}(\kappa)$

$$M_{12}^{d,\kappa} = \frac{G_{\rm F}^2 m_W^2}{24\pi^2} f_{B_d}^2 m_{B_d} \eta_B B_{B_d} \lambda_c^{db} \left(\kappa_{cb}^{\rm L} + \kappa_{cd}^{\rm L*}\right) \left(-\lambda_t^{db} x_t \ln \frac{\Lambda^2}{m_W^2} - \sum_q \lambda_q^{db} \, \mathcal{B}_1(x_q, x_c)\right)$$

$$\lambda_q^{db} = V_{qd}^* V_{qb}$$

- * The heavy-light mass difference $\Delta M_d = M_H M_L = 2 |M_{12}^d|$, $M_{12}^d = M_{12}^{d,SM} + M_{12}^{d,\kappa}$
- * The measured value $\Delta M_d^{\exp} = (0.507 \pm 0.005) \,\mathrm{ps^{-1}}$ agrees with the SM prediction $\Delta M_d^{\mathrm{SM}} = (0.563^{+0.068}_{-0.076}) \,\mathrm{ps^{-1}}$

(日) (同) (三) (三) (三) (○)

B_d - \bar{B}_d mixing

* In the presence of the anomalous couplings

$$\Delta M_d^{\text{exp}} = \Delta M_d^{\text{SM}} \left| 1 + \delta_d \right| \,, \qquad \delta_d = \frac{M_{12}^{d,\kappa}}{M_{12}^{d,\text{SM}}}$$

* We can then impose $-0.2 \leq \operatorname{Re} \delta_d \leq +0.02$, leading to

 $-0.031 \leq \operatorname{Re}\left(\kappa_{cb}^{\mathrm{L}} + \kappa_{cd}^{\mathrm{L}}\right) + 0.4\operatorname{Im}\left(\kappa_{cb}^{\mathrm{L}} - \kappa_{cd}^{\mathrm{L}}\right) \leq 0.003$

- * An additional constraint can be extracted from the β measurement in $B \rightarrow J/\psi K$.
- * The anomalous couplings enter $\beta^{\rm eff}$ via both the mixing and decay amplitudes.

$$\frac{q_{B_d}}{p_{B_d}} \simeq \sqrt{\frac{M_{12}^{d, {\rm SM}*}(1+\delta_d^*)}{M_{12}^{d, {\rm SM}}(1+\delta_d)}} \simeq \frac{V_{td}V_{tb}^*}{V_{td}^*V_{tb}} \, e^{-i\,{\rm Im}\,\delta_d}$$

* From the decay amplitude

$$\frac{\mathcal{M}(\bar{B}^0 \to \psi K_S)}{\mathcal{M}(B^0 \to \psi K_S)} = -\frac{V_{cd}^* V_{cb} \left(1 + \kappa_{cs}^{\mathrm{L}*} + \kappa_{cb}^{\mathrm{L}}\right)}{V_{cd} V_{cb}^* \left(1 + \kappa_{cs}^{\mathrm{L}} + \kappa_{cb}^{\mathrm{L}*}\right)} \simeq -\frac{V_{cd}^* V_{cb}}{V_{cd} V_{cb}^*} \left[1 + 2i \operatorname{Im}(\kappa_{cb}^{\mathrm{L}} - \kappa_{cs}^{\mathrm{L}})\right]$$

▲ロ ▶ ▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ● の Q ()

B_d - \bar{B}_d mixing

* It follows that

$$e^{-2i\beta_{\psi K}^{\rm eff}} = \frac{q_{B_d}}{p_{B_d}} \frac{\mathcal{M}(\bar{B}^0 \to \psi K_S)}{\mathcal{M}(B^0 \to \psi K_S)} \simeq e^{-2i\beta^{\rm SM}} e^{2i\operatorname{Im}(\kappa_{cb}^{\rm L} - \kappa_{cs}^{\rm L}) - i\operatorname{Im}\delta_d}$$

- * The experimental value $2\beta^{\text{eff}} = 2\beta^{\text{eff}}_{\psi K} = 0.717 \pm 0.033$ agrees with the SM prediction $2\beta^{\text{SM}} = 0.753^{+0.032}_{-0.028}$.
- * We then require $-0.01 \le 2 \operatorname{Im}(\kappa_{cb}^{L} \kappa_{cs}^{L}) \operatorname{Im} \delta_{d} \le 0.08$, implying

 $-1.5 \times 10^{-3} \, \le \, 0.4 \, {\rm Re} \big(\kappa^{\rm L}_{cb} + \kappa^{\rm L}_{cd} \big) - 0.69 \, {\rm Im} \, \kappa^{\rm L}_{cb} + {\rm Im} \, \kappa^{\rm L}_{cd} - 0.31 \, {\rm Im} \, \kappa^{\rm L}_{cs} \, \le \, 0.012 \ .$

B_s - \bar{B}_s mixing

* Constraint from ΔM_s

 $-0.014 \leq \operatorname{Re}\left(\kappa_{cs}^{\mathrm{L}} + \kappa_{cb}^{\mathrm{L}}\right) + 0.018 \operatorname{Im}\left(\kappa_{cs}^{\mathrm{L}} - \kappa_{cb}^{\mathrm{L}}\right) \leq 0.015$

* Additional constraint from β_s in $B_s \to J \psi \phi$ decay

 $-0.09 \le 0.026 \operatorname{Re} \left(\kappa_{cb}^{\mathrm{L}} + \kappa_{cs}^{\mathrm{L}} \right) + \operatorname{Im} \left(\kappa_{cb}^{\mathrm{L}} - \kappa_{cs}^{\mathrm{L}} \right) \le 7 \times 10^{-4}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Constraints from dipole penguin operators

- * Electromagnetic and chromomagnetic dipole operators describing $d \rightarrow d'\gamma$ and $d \rightarrow d'g$ are generated at one loop with W and up-type quark in the loop.
 - New-physics effects are known to give rise to potentially large corrections to SM contribution.
- $\ast\,$ Constraints on the $\kappa{'}{\rm s}$ can be obtained from
 - $b \to s\gamma$
 - $s \to d\gamma$
 - $s \to dg$ contribution to CP-violation parameters ϵ and ϵ' in the kaon sector and $A_{\Lambda\Xi}$ in hyperon nonleptonic decays
- * The corresponding flavor-conserving contributions to the electric dipole moment of the neutron also provide constraints on some of the κ 's.

Summary of constraints

Process	Constraint
$D \rightarrow \ell \nu$	$\left \operatorname{Re}(\kappa_{cd}^{\mathrm{L}}-\kappa_{cd}^{\mathrm{R}}) ight \leq 0.04$
$D_s \to \ell \nu$	$0 \leq \operatorname{Re}(\kappa_{cs}^{\mathrm{L}} - \kappa_{cs}^{\mathrm{R}}) \leq 0.1$
$b \rightarrow c \ell \bar{\nu}$	$-0.13 \leq { m Re} \kappa^{ m R}_{cb} \leq 0$
$B \rightarrow \psi K, \eta_c K$	$-5 \times 10^{-4} \le \mathrm{Im}(\kappa_{cb}^{\mathrm{R}} + \kappa_{cs}^{\mathrm{R}}) \le 0.04$
$K^+ \to \pi^+ \nu \bar{\nu}$	$-2.5 \times 10^{-4} \le -\text{Re}(\kappa_{cd}^{\text{L}} + \kappa_{cs}^{\text{L}}) + 0.42 \text{Im}(\kappa_{cd}^{\text{L}} - \kappa_{cs}^{\text{L}}) \le 1.3 \times 10^{-3}$
$K_L \rightarrow \mu^+ \mu^-$	$\left \operatorname{Re}(\kappa_{cs}^{\mathrm{L}} + \kappa_{cd}^{\mathrm{L}}) + 6 \times 10^{-4} \operatorname{Im}(\kappa_{cs}^{\mathrm{L}} - \kappa_{cd}^{\mathrm{L}})\right \le 1.5 \times 10^{-4}$
ΔM_K	$\left 0.043 \operatorname{Re}(\kappa_{cd}^{\mathrm{L}} + \kappa_{cs}^{\mathrm{L}}) + 0.015 \operatorname{Im}(\kappa_{cd}^{\mathrm{L}} - \kappa_{cs}^{\mathrm{L}}) - \operatorname{Re}(\kappa_{cd}^{\mathrm{R}*} \kappa_{cs}^{\mathrm{R}}) + 0.28 \operatorname{Im}(\kappa_{cd}^{\mathrm{R}*} \kappa_{cs}^{\mathrm{R}}) \right \le 8.5 \times 10^{-4}$
ϵ (mixing)	$\left 0.015 \text{Re}(\kappa_{cs}^{\text{L}} + \kappa_{cd}^{\text{L}}) + 0.043 \text{Im}(\kappa_{cs}^{\text{L}} - \kappa_{cd}^{\text{L}}) - 0.28 \text{Re}(\kappa_{cd}^{\text{R}*} \kappa_{cs}^{\text{R}}) - \text{Im}(\kappa_{cd}^{\text{R}*} \kappa_{cs}^{\text{R}}) \right \le 2.5 \times 10^{-6}$
ΔM_d	$-0.031 \leq \operatorname{Re}(\kappa_{cb}^{\mathrm{L}} + \kappa_{cd}^{\mathrm{L}}) + 0.4 \operatorname{Im}(\kappa_{cb}^{\mathrm{L}} - \kappa_{cd}^{\mathrm{L}}) \leq 0.003$
$\sin(2\beta)$	$-1.5 \times 10^{-3} \le 0.4 \mathrm{Re} (\kappa_{cb}^{\mathrm{L}} + \kappa_{cd}^{\mathrm{L}}) - 0.69 \mathrm{Im} \kappa_{cb}^{\mathrm{L}} + \mathrm{Im} \kappa_{cd}^{\mathrm{L}} - 0.31 \mathrm{Im} \kappa_{cs}^{\mathrm{L}} \le 0.012$
ΔM_s	$-0.014 \leq \operatorname{Re}(\kappa_{cs}^{\mathrm{L}} + \kappa_{cb}^{\mathrm{L}}) + 0.018 \operatorname{Im}(\kappa_{cs}^{\mathrm{L}} - \kappa_{cb}^{\mathrm{L}}) \leq 0.015$
$\sin(2\beta_s)$	$-0.09 \le 0.026 \operatorname{Re}(\kappa_{cb}^{\rm L} + \kappa_{cs}^{\rm L}) + \operatorname{Im}(\kappa_{cb}^{\rm L} - \kappa_{cs}^{\rm L}) \le 7 \times 10^{-4}$

▲口 > ▲母 > ▲臣 > ▲臣 > ▲臣 - 釣A(?)

Constraint on each anomalous charm coupling

* Constraints extracted by taking only one anomalous coupling at a time to be non-zero.

$-1.5\times 10^{-4} \le {\rm Re}\kappa^{\rm L}_{cd} \le 1.5\times 10^{-4}$	$-6\times 10^{-5} \le \mathrm{Im}\kappa^{\mathrm{L}}_{cd} \le 6\times 10^{-5}$
$-1.5 \times 10^{-4} \le \operatorname{Re} \kappa_{cs}^{L} \le 1.5 \times 10^{-4}$	$-6\times 10^{-5} \le \mathrm{Im}\kappa^{\mathrm{L}}_{cs} \le 6\times 10^{-5}$
$-4 \times 10^{-3} \le \operatorname{Re} \kappa_{cb}^{L} \le 3 \times 10^{-3}$	$-0.02 \le \mathrm{Im}\kappa_{cb}^{\mathrm{L}} \le 7 \times 10^{-4}$
$-0.04 \le {\rm Re}\kappa^{\rm R}_{cd} \le 0.04$	$-2\times 10^{-3} \leq \mathrm{Im}\kappa^{\mathrm{R}}_{cd} \leq 2\times 10^{-3}$
$-0.1 \leq \operatorname{Re} \kappa_{cs}^{\mathrm{R}} \leq 0$	$-5\times10^{-4} \le \mathrm{Im}\kappa^{\mathrm{R}}_{cs} \le 2\times10^{-3}$
$-0.13 \le {\rm Re}\kappa^{\rm R}_{cb} \le 0$	$-5 \times 10^{-4} \le \mathrm{Im}\kappa_{cb}^{\mathrm{R}} \le 0.04$

- * The left-handed couplings are much more constrained than the right-handed one.
- * The imaginary part of the couplings is more tightly constrained than the corresponding real part.
- * The largest deviations allowed by current data appear in the real part of the right-handed couplings, which can be as large as 10% of the corresponding SM couplings.

Guide for future measurements

- * This study can serve as a guide as to which future measurements provide the most sensitive tests for new physics that can be parameterized with anomalous charm-W couplings.
- * For the *CP*-violating, imaginary parts of the couplings, the electric dipole moment of the neutron and the hyperon asymmetry $A_{\Xi\Lambda}$ are the most promising channels to probe for right-handed couplings.
- * To probe *CP*-violating left-handed couplings, more precise measurements of $\sin(2\beta)$ and $\sin(2\beta_s)$ are desirable.
- * Constraints on the real parts of the right-handed couplings can be improved with better measurements of semileptonic *B* and *D* decays.

Conclusions

- * We have explored the phenomenological consequences of anomalous *W*-boson couplings to the charm quark in a comprehensive way.
- * The resulting constraints on the anomalous charm couplings are, perhaps surprisingly, comparable or tighter than existing constraints on anomalous *W*-boson couplings to the top quark.
- * Our study also points out which future measurements can provide the most sensitive tests for new physics that can be parameterized with anomalous charm-W couplings.