Symmetry properties of black holes
in higher dimensional general relativity

Akihiro Ishibashi

Cosmophysics, Theory Division, IPNS,
KEK (High Energy Accelerator Research Organization)

20 Oct. 07 NCKU mini-workshop
Purpose of this talk

- attempt to give a brief overview of basic properties of higher dimensional black holes
Purpose of this talk

- attempt to give a brief overview of basic properties of higher dimensional black holes

- present a proof of symmetry/rigidity theorems of higher dimensional black holes (Hollands, Al & Wald 07)
Outline

- Introduction
- Basic properties of $4D$ stationary BHs
- Basic properties of $D > 4$ BHs
- Symmetry properties of $D > 4$ BHs
- Remarks
Why Higher-dimensions?

- required in most attempts to unify the forces in Nature
 Kaluza-Klein, Supergravity, Superstring theories

- phenomenological ideas
 Braneworld / Large extra-dimensions

- help understand 4-dimensional gravity
 How special 4D gravity is!
Why Higher-dimensions?

- required in most attempts to unify the forces in Nature
 Kaluza-Klein, Supergravity, Superstring theories

- phenomenological ideas
 Braneworld / Large extra-dimensions

- help understand 4-dimensional gravity
 How special $4D$ gravity is!

Higher Dimensional BH solutions play an important role
Why Higher-dimensions?

- required in most attempts to unify the forces in Nature
 Kaluza-Klein, Supergravity, Superstring theories

- phenomenological ideas
 Braneworld / Large extra-dimensions

- help understand 4-dimensional gravity
 How special $4D$ gravity is!

Higher Dimensional BH solutions play an important role

Focus: Stationary Black Holes in $D > 4$ General Relativity
 – No compactified dimensions
Black holes in 4D general relativity

Asymptotically flat stationary BHs in 4-dimensions
Black holes in $4D$ general relativity

Asymptotically flat stationary BHs in 4-dimensions

- **Exact Solutions** — (Kerr-family metrics)
Black holes in $4D$ general relativity

Asymptotically flat stationary BHs in 4-dimensions

- **Exact Solutions** — (Kerr-family metrics)
- **Stability** — (stable \Rightarrow final state of dynamics)
Black holes in $4D$ general relativity

Asymptotically flat stationary BHs in 4-dimensions

- **Exact Solutions** — (Kerr-family metrics)
- **Stability** — (stable \Rightarrow final state of dynamics)
- **Topology** — (event horizon ≈ 2 - sphere $\times \mathbb{R}$)
Black holes in $4D$ general relativity

Asymptotically flat stationary BHs in 4-dimensions

- Exact Solutions — (Kerr-family metrics)
- Stability — (stable \Rightarrow final state of dynamics)
- Topology — (event horizon ≈ 2 - sphere $\times \mathbb{R}$)
- Symmetry — (static or axisymmetric)
Black holes in $4D$ general relativity

Asymptotically flat stationary BHs in 4-dimensions

- **Exact Solutions** — (Kerr-family metrics)
- **Stability** — (stable \Rightarrow final state of dynamics)
- **Topology** — (event horizon ≈ 2-sphere $\times \mathbb{R}$)
- **Symmetry** — (static or axisymmetric)
- **Uniqueness** — (vacuum \Rightarrow Kerr-metric)
Black holes in $4D$ general relativity

Asymptotically flat stationary BHs in 4-dimensions

- **Exact Solutions** — (Kerr-family metrics)
- **Stability** — (stable \Rightarrow final state of dynamics)
- **Topology** — (event horizon ≈ 2 - sphere $\times \mathbb{R}$)
- **Symmetry** — (static or axisymmetric)
- **Uniqueness** — (vacuum \Rightarrow Kerr-metric)
- **BH Mechanics** — (Thermodynamics)
Black holes in $4D$ general relativity

Asymptotically flat stationary BHs in 4-dimensions

- **Exact Solutions** --- (Kerr-family metrics)
- **Stability** --- (stable \Rightarrow final state of dynamics)
- **Topology** --- (event horizon ≈ 2 - sphere $\times \mathbb{R}$)
- **Symmetry** --- (static or axisymmetric)
- **Uniqueness** --- (vacuum \Rightarrow Kerr-metric)
- **BH Mechanics** --- (Thermodynamics)

Which properties of $4D$ BHs are extended to $D > 4$?
Exact Solutions — much larger variety

Rotating Holes (Myers & Perry 86) Rotating Rings (Emparan & Reall 02)
Exact Solutions — much larger variety

Rotating Holes (Myers & Perry 86) Rotating Rings (Emparan & Reall 02)

Stability — not fully studied yet

Static vacuum ⇒ stable (AI & Kodama 03)

Rotating holes ⇒ only partial results:
- **Exact Solutions** — much larger variety

 Rotating Holes (Myers & Perry 86) Rotating Rings (Emparan & Reall 02)

- **Stability** — not fully studied yet

 Static vacuum \Rightarrow stable (Akihiro Ishibashi & Kodama 03)

 Rotating holes \Rightarrow only partial results:

- **Topology** — more varieties

 Some restrictions, e.g., (Galloway & Shoen 05)
Introduction

Overview of $D > 4$ black holes

Symmetry properties

Remarks

- **Exact Solutions** — much larger variety

 Rotating Holes (Myers & Perry 86) Rotating Rings (Emparan & Reall 02)

- **Stability** — not fully studied yet

 Static vacuum \Rightarrow stable (AI & Kodama 03)

 Rotating holes \Rightarrow only partial results:

- **Topology** — more varieties

 Some restrictions, e.g., (Galloway & Shoen 05)

- **Uniqueness** — non-unique

 Hole and Rings w/ the same (J, M)

 Static holes: e.g., (Gibbons, Ida & Shiromizu 02)

 Uniqueness in $5D$ rotating holes/rings (Morisawa-Iida 04, Hollands & Yazadjiev 07)
Overview of $D > 4$ black holes

- **Exact Solutions** — much larger variety
 - Rotating Holes (Myers & Perry 86) Rotating Rings (Emparan & Reall 02)
- **Stability** — not fully studied yet
 - Static vacuum \Rightarrow stable (Aï & Kodama 03)
 - Rotating holes \Rightarrow only partial results:
- **Topology** — more varieties
 - Some restrictions, e.g., (Galloway & Shoen 05)
- **Uniqueness** — non-unique
 - Hole and Rings w/ the same (J, M)
 - Static holes: e.g., (Gibbons, Ida & Shiromizu 02)
 - Uniqueness in $5D$ rotating holes/rings (Morisawa-Iida 04, Hollands & Yazadjiev 07)
- **BH Mechanics** — generalize to $D > 4$ e.g., (Rogatko 07)
Exact Solutions — much larger variety

Rotating Holes (Myers & Perry 86) Rotating Rings (Emparan & Reall 02)

Stability — not fully studied yet

Static vacuum \Rightarrow stable (Al & Kodama 03)
Rotating holes \Rightarrow only partial results:

Topology — more varieties

Some restrictions, e.g., (Galloway & Shoen 05)

Symmetry — **This talk**

Rigidity Theorems (Hollands, Al & Wald 07)

Uniqueness — non-unique

Hole and Rings w/ the same (J, M)

Static holes: e.g., (Gibbons, Ida & Shiromizu 02)
Uniqueness in $5D$ rotating holes/rings (Morisawa-Ida 04, Hollands & Yazadjiev 07)

BH Mechanics — generalize to $D > 4$ e.g., (Rogatko 07)
Exact solutions in $D \geq 4$

- Static spherical holes in $\forall D > 4$ (Tangherlini 63)
Exact solutions in $D \geq 4$

- Static spherical holes in $\forall D > 4$ (Tangherlini 63)
- Stationary rotating black holes in $\forall D > 4$ (Myers-Perry 82)
Exact solutions in $D \geq 4$

- Static spherical holes in $\forall D > 4$ (Tangherlini 63)
- Stationary rotating black holes in $\forall D > 4$ (Myers-Perry 82)
 - Topology of horizon cross-sections $\approx S^{D-2}$
Exact solutions in $D \geq 4$

- Static spherical holes in $\forall D > 4$ (Tangherlini 63)

- Stationary rotating black holes in $\forall D > 4$ (Myers-Perry 82)
 - Topology of horizon cross-sections $\approx S^{D-2}$
 - $[(D+1)/2]$ commuting Killing fields $\Rightarrow [(D-1)/2]$ spins
Exact solutions in $D \geq 4$

- Static spherical holes in $\forall D > 4$ (Tangherlini 63)

- Stationary rotating black holes in $\forall D > 4$ (Myers-Perry 82)
 - Topology of horizon cross-sections $\approx S^{D-2}$
 - $[(D + 1)/2]$ commuting Killing fields $\Rightarrow [(D - 1)/2]$ spins
 - for $D = 4, 5$, \exists Kerr upper-bound on angular momentum J
Exact solutions in $D \geq 4$

- Static spherical holes in $\forall D > 4$ (Tangherlini 63)
- Stationary rotating black holes in $\forall D > 4$ (Myers-Perry 82)
 - Topology of horizon cross-sections $\approx S^{D-2}$
 - $[(D + 1)/2]$ commuting Killing fields $\Rightarrow [(D - 1)/2]$ spins
 - for $D = 4, 5$, \exists Kerr upper-bound on angular momentum J
 - for $D \geq 6$, No upper-bound on J
Exact solutions in $D \geq 4$

- Static spherical holes in $\forall D > 4$ \hspace{1cm} (Tangherlini 63)

- Stationary rotating black holes in $\forall D > 4$ \hspace{1cm} (Myers-Perry 82)
 - Topology of horizon cross-sections $\approx S^{D-2}$
 - $[(D+1)/2]$ commuting Killing fields $\Rightarrow [(D-1)/2]$ spins
 - for $D = 4, 5$, \exists Kerr upper-bound on angular momentum J
 - for $D \geq 6$, No upper-bound on J

\[\exists \text{ horizon} \iff 0 = g^{rr} = \Pi_i \left(1 + \frac{(J_i/M)^2}{r^2} \right) - \frac{GM}{r^{D-3}} \]

as the last term dominates for small r when $D \geq 6$
Exact solutions in $D \geq 4$

Surprise in $D > 4$:
Exact solutions in $D \geq 4$

Surprise in $D > 4$: *Rotating black-rings*
(Empanran-Reall 02)
Exact solutions in $D \geq 4$

Surprise in $D > 4$: *Rotating black-rings*
(Emparan-Reall 02)

- in $5D$ (so far)
Exact solutions in $D \geq 4$

Surprise in $D > 4$: *Rotating black-rings* (Emparan-Reall 02)

- in $5D$ (so far)
- Topology of the horizon $\approx S^1 \times S^2$
Surprise in $D > 4$: *Rotating black-rings* (Emparan-Reall 02)

- in $5D$ (so far)
- Topology of the horizon $\approx S^1 \times S^2$
- 3-commuting Killing fields $\text{Isom}: \mathbb{R} \times SO(2) \times SO(2)$
Exact solutions in $D \geq 4$

Surprise in $D > 4$: Rotating black-rings (Emparan-Reall 02)

- in $5D$ (so far)
- Topology of the horizon $\approx S^1 \times S^2$
- 3-commuting Killing fields $\text{Isom}: \mathbb{R} \times SO(2) \times SO(2)$
- not uniquely specified by (M, J_1, J_2)

 two ring-solutions w/ the same $(M, J_1, J_2 = 0)$
Exact solutions in $D \geq 4$

Surprise in $D > 4$:

- Rotating black-rings (Emparan-Reall 02)
 - in $5D$ (so far)
 - Topology of the horizon $\approx S^1 \times S^2$
 - 3-commuting Killing fields $\text{Isom} : \mathbb{R} \times \text{SO}(2) \times \text{SO}(2)$
 - not uniquely specified by (M, J_1, J_2)

 Two ring-solutions w/ the same $(M, J_1, J_2 = 0)$

⇒ In $5D$, Uniqueness Theorem no longer holds as it stands
Exact solutions in $D \geq 4$

- Solutions akin to Emparan-Reall’s ring ($M, J_1 \neq 0, J_2 = 0$)
Exact solutions in $D \geq 4$

- Solutions akin to Emparan-Reall’s ring ($M, J_1 \neq 0, J_2 = 0$)

 • Black-ring w/ ($M, J_1 = 0, J_2 \neq 0$) (Mishima & Iguchi 05)
Exact solutions in $D \geq 4$

– Solutions akin to Emparan-Reall’s ring $(M, J_1 \neq 0, J_2 = 0)$

- Black-ring w/ $(M, J_1 = 0, J_2 \neq 0)$ (Mishima & Iguchi 05)

- Black-ring w/ two angular momenta $(M, J_1 \neq 0, J_2 \neq 0)$
 (Pomeransky & Sen’kov 06)
 (Morisawa-Tomizawa & Yasui) w/ uniqueness proof
Exact solutions in $D \geq 4$

- Solutions akin to Emparan-Reall’s ring $(M, J_1 \neq 0, J_2 = 0)$
 - Black-ring w/ $(M, J_1 = 0, J_2 \neq 0)$ (Mishima & Iguchi 05)
 - Black-ring w/ two angular momenta $(M, J_1 \neq 0, J_2 \neq 0)$ (Pomeransky & Sen’kov 06)
 (Morisawa-Tomizawa & Yasui) w/ uniqueness proof
 - Black di-rings (“ring” + “ring”) (Iguchi & Mishima 07)
Exact solutions in $D \geq 4$

- Solutions akin to Emparan-Reall’s ring $(M, J_1 \neq 0, J_2 = 0)$

 - Black-ring w/ $(M, J_1 = 0, J_2 \neq 0)$ (Mishima & Iguchi 05)

 - Black-ring w/ \textit{two} angular momenta $(M, J_1 \neq 0, J_2 \neq 0)$
 (Pomeransky & Sen’kov 06)
 (Morisawa-Tomizawa & Yasui) w/ uniqueness proof

 - Black di-rings (“ring” + “ring”) (Iguchi & Mishima 07)

 - Black-Saturn (“hole” + “ring”) (Elvang & Figueras 07)
Stability of static holes

Gravitational perturbations of $\forall D > 4$ static black holes
Stability of static holes

Gravitational perturbations of $\forall D > 4$ static black holes

– 3 types: tensor-, vector-, scalar-type w.r.t. $(D - 2)$-base space
Stability of static holes

Gravitational perturbations of $\forall D > 4$ static black holes

- 3 types: tensor-, vector-, scalar-type w.r.t. $(D - 2)$-base space

 - get a single master equation for each type of perturbations
Stability of static holes

Gravitational perturbations of $\forall D > 4$ static black holes

- 3 types: tensor-, vector-, scalar-type w.r.t. $(D - 2)$-base space
 - get a single *master equation* for each type of perturbations
 ⇒ make complete stability analysis possible
Stability of static holes

Gravitational perturbations of $\forall D > 4$ static black holes

– 3 types: tensor-, vector-, scalar-type w.r.t. $(D - 2)$-base space

 – get a single *master equation* for each type of perturbations
 ⇒ make complete stability analysis possible
 ⇒ Stable for vacuum case (AI & Kodama 03)
Stability of static holes

Gravitational perturbations of $\forall D > 4$ static black holes

- 3 types: tensor-, vector-, scalar-type w.r.t. $(D - 2)$-base space
 - get a single master equation for each type of perturbations
 - make complete stability analysis possible
 - Stable for vacuum case (AI & Kodama 03)

- Einstein-Λ-Maxwell case: not completed yet
Stability of static holes

Gravitational perturbations of $\forall D > 4$ static black holes

- 3 types: tensor-, vector-, scalar-type w.r.t. $(D - 2)$-base space
 - get a single master equation for each type of perturbations
 \Rightarrow make complete stability analysis possible
 \Rightarrow Stable for vacuum case (AI & Kodama 03)

- Einstein-Λ-Maxwell case: not completed yet

- New ingredient in $D \geq 5$
 Tensor-mode w.r.t. $(D - 2)$-horizon manifold Σ
Stability of static holes

Gravitational perturbations of $\forall D > 4$ static black holes

- 3 types: tensor-, vector-, scalar-type w.r.t. $(D - 2)$-base space
 - get a single master equation for each type of perturbations
 ⇒ make complete stability analysis possible
 ⇒ Stable for vacuum case (AI & Kodama 03)

- Einstein-Λ-Maxwell case: not completed yet

- New ingredient in $D \geq 5$
 Tensor-mode w.r.t. $(D - 2)$-horizon manifold Σ

 c.f. if Σ is a highly clumpy Einstein-manifold,
 ⇒ tensor-mode instability (Gibbons & Hartnoll 02)
Stability of rotating holes: Some partial analysis

- $D \geq 6$ rotating Myers-Perry black holes
Stability of rotating holes: Some partial analysis

- $D \geq 6$ rotating Myers-Perry black holes
 - no upper-bound on J:
 - ultra-spinning hole looks like “pancake”
Stability of rotating holes: Some partial analysis

- $D \geq 6$ rotating Myers-Perry black holes
 - no upper-bound on J:
 - ultra-spinning hole looks like “pancake”
 - looks like black-p-brane near the rotation axis
Stability of rotating holes: Some partial analysis

- $D \geq 6$ rotating Myers-Perry black holes
 - no upper-bound on J:
 - ultra-spinning hole looks like “pancake”
 - looks like black-p-brane near the rotation axis
 - unstable due to Gregory-Laflamme modes? (Emparan & Myers 03)
Myers-Perry solution:

\[ds^2 = -dt^2 + \frac{M}{\rho^2 r^{D-5}} (dt + a \sin^2 \theta d\phi)^2 + \frac{\rho^2}{\Delta} dr^2 \\
+ \rho^2 d\theta^2 + (r^2 + a^2) \sin^2 \theta d\phi^2 + r^2 \cos^2 \theta d\Omega^2_{(D-4)} \]

where

\[\rho^2 = r^2 + a^2 \cos^2 \theta \quad \Delta = r^2 + a^2 - \frac{M}{r^{D-5}} \]

In the ultra-spinning limit: \(a \to \infty \) with \(\mu = M/a^2 \) kept finite, near the pole \(\theta = 0 \) \((\sigma := a \sin \theta) \) the metric becomes

\[ds^2 = -\left(1 - \frac{\mu}{r^{D-5}}\right) dt^2 + \left(1 - \frac{\mu}{r^{D-5}}\right)^{-1} dr^2 + r^2 d\Omega^2_{(D-4)} + d\sigma^2 + \sigma^2 d\phi^2 \]

\(\Rightarrow \) Black-membrane metric \(\Rightarrow \) Gregory-Laflamme instability?
Stability of rotating holes: Some partial analysis

- $D(\text{odd}) \geq 7$: rotating holes \textit{(Kunduri-Lucietti-Reall 06)}

Special background: $J_1 = J_2 = \cdots J_{[(D-1)/2]}$
Stability of rotating holes: Some partial analysis

- $D(\text{odd}) \geq 7$: rotating holes (Kunduri-Lucietti-Reall 06)

Special background: $J_1 = J_2 = \cdots J_{[(D-1)/2]}$

\Rightarrow enhanced symmetry: $\mathbb{R} \times U((D-1)/2)$
Stability of rotating holes: Some partial analysis

- $D(\text{odd}) \geq 7$: rotating holes \[(\text{Kunduri-Lucietti-Reall 06})\]

 Special background: $J_1 = J_2 = \cdots J_{[(D-1)/2]}$
 - \Rightarrow enhanced symmetry: $\mathbb{R} \times U((D-1)/2)$
 - \Rightarrow co-homogeneity-1 metric: depends only on r
Stability of rotating holes: Some partial analysis

- $D(\text{odd}) \geq 7$: rotating holes \ (Kunduri-Lucietti-Reall 06)

Special background: $J_1 = J_2 = \cdots = J_{(D-1)/2}$

⇒ enhanced symmetry: $\mathbb{R} \times U((D-1)/2)$

⇒ co-homogeneity-1 metric: depends only on r

⇒ **Stable** w.r.t. a subclass of tensor perturbations
 (tensor-modes w.r.t. $(D-3)$-base space)
Stability of rotating holes: Some partial analysis

- \(D(\text{odd}) \geq 7 \): rotating holes \hspace{1cm} (Kunduri-Lucietti-Reall 06)

 Special background: \(J_1 = J_2 = \cdots J_{[(D-1)/2]} \)

 \(\Rightarrow \) enhanced symmetry: \(\mathbb{R} \times U((D-1)/2) \)

 \(\Rightarrow \) co-homogeneity-1 metric: depends only on \(r \)

 \(\Rightarrow \) Stable w.r.t. a subclass of tensor perturbations

 (tensor-modes w.r.t. \((D-3) \)-base space)

 - For \(\Lambda < 0 \) \(\Rightarrow \) superradiant instability is observed
Stability of rotating holes: Some partial analysis

- $D(\text{odd}) \geq 7$: rotating holes (Kunduri-Lucietti-Reall 06)

Special background: $J_1 = J_2 = \cdots J_{[(D-1)/2]}$
 ⇒ enhanced symmetry: $\mathbb{R} \times U((D-1)/2)$
 ⇒ co-homogeneity-1 metric: depends only on r
 ⇒ Stable w.r.t. a subclass of tensor perturbations
 (tensor-modes w.r.t. $(D-3)$-base space)

- For $\Lambda < 0$ ⇒ *superradiant instability* is observed

- Towards complete stability analysis of rotating holes:
 - decoupled master equations for zero-modes of vector and tensor fields in $5D$ Myers-Perry black holes
 with $J_1 = J_2$ enhanced symmetry (Murata & Soda 07)
Topology of event horizon
Method 1: global analysis (Chrusciel & Wald 94)

- Combine Topological Censorship and Cobordism of spacelike hypersurface S with boundaries at horizon and infinity
Method 1: global analysis \((\text{Chrusciel \& Wald 94}) \)

- Combine \textbf{Topological Censorship} and \textbf{Cobordism} of spacelike hypersurface \(S \) with boundaries at horizon and infinity

\[
\text{Topological Censorship} \implies S \text{ is simply connected}
\]

\[
\Sigma = \partial S \text{ is cobordant to } S^{D-2} \text{ via } S
\]
Method 1: global analysis \textit{(Chrusciel & Wald 94)}

- Combine \textbf{Topological Censorship} and \textbf{Cobordism} of spacelike hypersurface S with boundaries at horizon and infinity.

Topological Censorship $\Rightarrow S$ is simply connected

$\Sigma = \partial S$ is cobordant to S^{D-2} via S

In $4D$ $\Rightarrow \partial S$ must be S^2
Method 1: global analysis (Chrusciel & Wald 94)

– Combine Topological Censorship and Cobordism of spacelike hypersurface S with boundaries at horizon and infinity

 Topological Censorship $\Rightarrow S$ is simply connected

 $\Sigma = \partial S$ is cobordant to S^{D-2} via S

 $\text{In } 4D \Rightarrow \partial S$ must be S^2

– powerful method in $4D$ but turns out to be not so in $D \geq 6$

 e.g., (Helfgott-Oz-Yanay 05)
Method 2: local analysis \((\text{Hawking 72}) \)

- Combine variational analysis \(\delta \theta / \delta \lambda \) and fact that outer-trapped surface must be inside BH, to show

\[
\int_{\Sigma} R > 0
\]

w/ \(\Sigma \) being a horizon cross-section and \(R \) scalar curvature of \(\Sigma \)
Topology of event horizon

Method 2: local analysis (Hawking 72)

– Combine variational analysis $\delta \theta / \delta \lambda$ and fact that outer-trapped surface must be inside BH, to show

$$\int_{\Sigma} R > 0$$

w/ Σ being a horizon cross-section and R scalar curvature of Σ

\Rightarrow in $4D$, $\Sigma \approx S^2$ via Gauss-Bonnet Theorem
Method 2: local analysis \textit{(Hawking 72)}

– Combine variational analysis $\delta \theta / \delta \lambda$ and fact that outer-trapped surface must be inside BH, to show

$$\int_{\Sigma} R > 0$$

w/ Σ being a horizon cross-section and R scalar curvature of Σ

\Rightarrow in $4D$, $\Sigma \approx S^2$ via Gauss-Bonnet Theorem

– generalizes to $D > 4$ \textit{(Galloway & Shoen 05)}
Theorem: (Galloway & Shoen 05, Galloway 07)

Consider a $\forall D \geq 4$ (stationary) black hole spacetime satisfying the dominant energy conditions. Then, the topology of (event) horizon cross-section Σ must be such that Σ admits metrics of positive scalar curvature.
Theorem: (Galloway & Shoen 05 Galloway 07)

Consider a $D \geq 4$ (stationary) black hole spacetime satisfying the dominant energy conditions. Then, the topology of (event) horizon cross-section Σ must be such that Σ admits metrics of positive scalar curvature.

Remarks:

- Σ can be topologically e.g., S^{D-2}, $S^m \times \cdots \times S^n$

 In 5D $\Rightarrow S^3$ or $S^1 \times S^2$
Theorem: (Galloway & Shoen 05 Galloway 07)

Consider a $\forall D \geq 4$ (stationary) black hole spacetime satisfying the dominant energy conditions. Then, the topology of (event) horizon cross-section Σ must be such that Σ admits metrics of positive scalar curvature.

Remarks:

- Σ can be topologically e.g., S^{D-2}, $S^m \times \ldots \times S^n$
 In $5D \Rightarrow S^3$ or $S^1 \times S^2$
- The induced metric on Σ itself does not necessarily have a positive scalar curvature in $D > 4$
Theorem: (Galloway & Shoen 05 Galloway 07)

Consider a $\forall D \geq 4$ (stationary) black hole spacetime satisfying the dominant energy conditions. Then, the topology of (event) horizon cross-section Σ must be such that Σ admits metrics of positive scalar curvature.

Remarks:

- Σ can be topologically e.g., S^{D-2}, $S^m \times \cdots \times S^n$

 In $5D \Rightarrow S^3$ or $S^1 \times S^2$

- The induced metric on Σ itself does not necessarily have a positive scalar curvature in $D > 4$

- What if $\Lambda < 0$? \Rightarrow more variety?
Symmetry property of black holes
Symmetry property of black holes

Assertion:

(1) The event horizon of a stationary, electro-vacuum BH is a Killing horizon

(2) If rotating, the BH spacetime must be axisymmetric

* Event Horizon: a boundary of causal past of distant observers
* Killing Horizon: a null hypersurface with a Killing symmetry vector field being normal to it
Symmetry property of black holes

Assertion:

(1) The event horizon of a stationary, electro-vacuum BH is a Killing horizon

(2) If rotating, the BH spacetime must be axisymmetric

* Event Horizon: a boundary of causal past of distant observers

* Killing Horizon: a null hypersurface with a Killing symmetry vector field being normal to it

The event horizon is *rigidly rotating* with respect to infinity
Symmetry property of black holes

Assertion:

(1) The event horizon of a stationary, electro-vacuum BH is a Killing horizon

(2) If rotating, the BH spacetime must be axisymmetric

* Event Horizon: a boundary of causal past of distant observers
* Killing Horizon: a null hypersurface with a Killing symmetry vector field being normal to it

The event horizon is rigidly rotating with respect to infinity

\[\cdots \text{ Black Hole Rigidity} \]
Why “rigidity” interesting?

- relates “global” (even horizon) to “local” (Killing horizon)
Why “rigidity” interesting?

- relates “global” (even horizon) to “local” (Killing horizon)
- foundation of BH Thermodynamics
 (Constancy of surface gravity \Rightarrow Oth Law of Thermodynamics)
Why “rigidity” interesting?

- relates “global” (even horizon) to “local” (Killing horizon)
- foundation of BH Thermodynamics
 (Constancy of surface gravity \Rightarrow Oth Law of Thermodynamics)
- rotating hole \Rightarrow extra-(axial) symmetry
Why “rigidity” interesting?

- relates “global” (even horizon) to “local” (Killing horizon)
- foundation of BH Thermodynamics
 (Constancy of surface gravity \Rightarrow Oth Law of Thermodynamics)
- rotating hole \Rightarrow extra-(axial) symmetry
- a critical step toward proof of “Uniqueness” in $4D$ case
Why “rigidity” interesting?

- relates “global” (even horizon) to “local” (Killing horizon)
- foundation of BH Thermodynamics
 (Constancy of surface gravity ⇒ Oth Law of Thermodynamics)
- rotating hole ⇒ extra-(axial) symmetry
- a critical step toward proof of “Uniqueness” in \(4D\) case
- In \(D > 4\), Uniqueness no longer holds as it stands, and there seems to be a much larger variety of exact BH solutions
Why “rigidity” interesting?

- relates “global” (even horizon) to “local” (Killing horizon)
- foundation of BH Thermodynamics
 (Constancy of surface gravity ⇒ Oth Law of Thermodynamics)
- rotating hole ⇒ extra-(axial) symmetry
- a critical step toward proof of “Uniqueness” in 4D case
- In $D > 4$, Uniqueness no longer holds as it stands, and there seems to be a much larger variety of exact BH solutions

⇒ “Rigidity”–if holds also in $D > 4$—places important restrictions on possible exact BH solutions
Rigidity theorem in $D = 4$

Proof in $4D$: Hawking (1972), Hawking & Ellis (1973)
Proof in $4D$: Hawking (1972), Hawking & Ellis (1973)

However

Hawking’s proof for $4D$ case relies heavily on the fact that event horizon cross-section Σ is topologically 2-sphere

\Rightarrow Generalization to $D > 4$ is not at all obvious
Rigidity theorem in $D = 4$

Proof in $4D$: Hawking (1972), Hawking & Ellis (1973)

However

Hawking’s proof for $4D$ case relies heavily on the fact that event horizon cross-section Σ is topologically 2-sphere

\Rightarrow Generalization to $D > 4$ is not at all obvious

Goal: Prove BH Rigidity Theorem in $D \geq 4$

No Assumption on Topology of Event Horizon
Let \((M, g)\) be a \(D \geq 4\), analytic, asymptotically flat, stationary vacuum BH solution to Einstein’s equation. Assume event horizon \(\mathcal{H}\) is analytic, non-degenerate, and topologically \(\mathbb{R} \times \Sigma\) with cross-sections \(\Sigma\) being compact, connected.
Rigidity theorems in $D \geq 4$
Hollands, A.I., & Wald (07)

Let (M, g) be a $D \geq 4$, analytic, asymptotically flat, stationary vacuum BH solution to Einstein’s equation. Assume event horizon \mathcal{H} is analytic, non-degenerate, and topologically $\mathbb{R} \times \Sigma$ with cross-sections Σ being compact, connected.

Theorem 1: There exists a Killing field K^a in the entire exterior of the BH such that K^a is normal to \mathcal{H} and commutes with the stationary Killing vector filed t^a \Rightarrow “Killing horizon”
Rigidity theorems in $D \geq 4$
Hollands, A.I., & Wald (07)

Let (M, g) be a $D \geq 4$, analytic, asymptotically flat, stationary vacuum BH solution to Einstein’s equation. Assume event horizon \mathcal{H} is analytic, non-degenerate, and topologically $\mathbb{R} \times \Sigma$ with cross-sections Σ being compact, connected.

Theorem 1: There exits a Killing field K^a in the entire exterior of the BH such that K^a is normal to \mathcal{H} and commutes with the stationary Killing vector filed t^a \Rightarrow “Killing horizon”

Theorem 2: If t^a is not normal to \mathcal{H}, i.e., $t^a \neq K^a$, then there exist mutually commuting Killing vector fields $\varphi^a_{(1)}, \ldots, \varphi^a_{(j)}$ $(j \geq 1)$ with period 2π and $t^a = K^a + \Omega_{(1)} \varphi^a_{(1)} + \cdots + \Omega_{(j)} \varphi^a_{(j)}$, where $\Omega_{(j)}$’s constants. \Rightarrow “Axisymmetry”
Brief sketch of proof of Theorem 1

“Trial foliation” Σ &
“candidate” vector K^a

K^a depends on Σ
Brief sketch of proof of Theorem 1

"Trial foliation" Σ &
"candidate" vector K^a

Step 1
Construct a "candidate" Killing field K^a
on H which satisfies

\[K^a K_a = 0 \text{ and } \mathcal{L}_t K^a = 0 \text{ on } H \]
Brief sketch of proof of Theorem 1

"Trial foliation" Σ & "candidate" vector K^a

Step 1
Construct a "candidate" Killing field K^a on \mathcal{H} which satisfies

1. $K^aK_a = 0$ and $\mathcal{L}_t K^a = 0$ on \mathcal{H}
2. $\mathcal{L}_K g_{ab} = 0$ (Killing eqn.) on \mathcal{H}

K^a depends on Σ
Brief sketch of proof of Theorem 1

Step 1
Construct a "candidate" Killing field K^a on \mathcal{H} which satisfies

- $K^a K_a = 0$ and $\mathcal{L}_t K^a = 0$ on \mathcal{H}
- $\mathcal{L}_K g_{ab} = 0$ (Killing eqn.) on \mathcal{H}
- $\alpha = \text{const.} \ (K^c \nabla_c K^a = \alpha K^a)$ on \mathcal{H}

"Trial foliation" Σ & "candidate" vector K^a

K^a depends on Σ
Brief sketch of proof of Theorem 1

Step 1

Construct a “candidate” Killing field K^a on \mathcal{H} which satisfies

- $K^a K_a = 0$ and $\mathcal{L}_t K^a = 0$ on \mathcal{H}
- $\mathcal{L}_K g_{ab} = 0$ (Killing eqn.) on \mathcal{H}
- $\alpha = \text{const.} \; (K^c \nabla_c K^a = \alpha K^a)$ on \mathcal{H}

Try this one! $K^a = t^a - s^a$

“Trial foliation” Σ & “candidate” vector K^a

K^a depends on Σ
Brief sketch of proof of Theorem 1

Step 1

Construct a "candidate" Killing field K^a on \mathcal{H} which satisfies

- $K^a K_a = 0$ and $\mathcal{L}_t K^a = 0$ on \mathcal{H}
- $\mathcal{L}_K g_{ab} = 0$ (Killing eqn.) on \mathcal{H}
- $\alpha = \text{const. } (K^c \nabla_c K^a = \alpha K^a)$ on \mathcal{H}

Try this one! $K^a = t^a - s^a$

Step 2

- Show Taylor expansion
 $$\partial^m (\mathcal{L}_K g_{ab}) / \partial \lambda^m = 0$$ at \mathcal{H}
Brief sketch of proof of Theorem 1

Step 1
Construct a "candidate" Killing field K^a on \mathcal{H} which satisfies

- $K^a K_a = 0$ and $\mathcal{L}_t K^a = 0$ on \mathcal{H}
- $\mathcal{L}_K g_{ab} = 0$ (Killing eqn.) on \mathcal{H}
- $\alpha = \text{const.} \ (K^c \nabla_c K^a = \alpha K^a)$ on \mathcal{H}

Try this one! $K^a = t^a - s^a$

Step 2
- Show Taylor expansion
 $\partial^m (\mathcal{L}_K g_{ab}) / \partial \lambda^m = 0$ at \mathcal{H}
- Extend K^a to the entire spacetime by invoking analyticity
However, there is \textbf{No reason why }α\textbf{ need be constant}
However, there is **No reason why** α **need be constant**

— wish to find “**correct**” \tilde{K}^a with $\tilde{\alpha} = \text{const.} =: \kappa$ on \mathcal{H} by choosing a **new “correct” foliation** $\tilde{\Sigma}$
However, there is No reason why α need be constant

— wish to find “correct” \tilde{K}^a with $\tilde{\alpha} = \text{const.} =: \kappa$ on H by choosing a new “correct” foliation $\tilde{\Sigma}$

$$K^a + s^a = t^a = \tilde{K}^a + \tilde{s}^a$$
However, there is No reason why α need be constant

— wish to find “correct” \tilde{K}^a with $\tilde{\alpha} = \text{const.} =: \kappa$ on \mathcal{H} by choosing a new “correct” foliation $\tilde{\Sigma}$

Both K^a and \tilde{K}^a are null

$$\tilde{K}^a = f(x) K^a$$

$$K^a + s^a = t^a = \tilde{K}^a + \tilde{s}^a$$
However, there is No reason why α need be constant

— wish to find “correct” \tilde{K}^a with $\tilde{\alpha} = \text{const.} =: \kappa$ on \mathcal{H} by choosing a new “correct” foliation $\tilde{\Sigma}$

Both K^a and \tilde{K}^a are null

$$\tilde{K}^a = f(x) \ K^a$$

Task: Find a solution to equation for coordinate transformation from trial Σ to correct $\tilde{\Sigma}$:

$$-\mathcal{L}_s f(x) + \alpha(x) \ f(x) = \kappa$$

$K^a + s^a = t^a = \tilde{K}^a + \tilde{s}^a$
However, there is **No reason why** α **need be constant**

— wish to find “correct” \tilde{K}^a with $\tilde{\alpha} = \text{const.} =: \kappa$ on \mathcal{H} by choosing a new “correct” foliation $\tilde{\Sigma}$

Both K^a and \tilde{K}^a are null

$$\tilde{K}^a = f(x) K^a$$

Task: Find a solution to equation for coordinate transformation from trial Σ to correct $\tilde{\Sigma}$:

$$- \mathcal{L}_s f(x) + \alpha(x) f(x) = \kappa$$

When one solves this equation, the spacetime dimensionality comes to play a role
Find correct foliation $\tilde{\Sigma}$: $4D$ case

Hawking 73
Find correct foliation $\tilde{\Sigma}$: $4D$ case

In $4D$, horizon cross-section Σ is 2-sphere, and therefore the orbits of s^a must be closed.
Find correct foliation $\tilde{\Sigma}$: $4D$ case

Hawking 73

fixed point

In $4D$, horizon cross-section Σ is 2-sphere, and therefore the orbits of s^a must be closed.

There is a discrete isometry "Γ" which maps each null generator into itself.

Akihiro Ishibashi
IPNS, KEK
Find correct foliation $\tilde{\Sigma}$: 4D case

In 4D, horizon cross-section Σ is 2-sphere, and therefore the orbits of s^a must be closed.

There is a discrete isometry "Γ" which maps each null generator into itself.

Discrete isometry, Γ, helps to

- define the surface gravity as
 \[\kappa \equiv P^{-1} \int_0^P \alpha[\phi_s(x)] ds \]
In $4D$, horizon cross-section Σ is 2-shere, and therefore the orbits of s^a must be closed.

There is a discrete isometry "Γ" which maps each null generator into itself.

Discrete isometry, Γ, helps to

- define the surface gravity as $\kappa \equiv P^{-1} \int_0^P \alpha[\phi_s(x)] ds$
- find correct foliation $\tilde{\Sigma}$
Find correct foliation $\tilde{\Sigma}$: $4D$ case

Hawking 73

In $4D$, horizon cross-section Σ is 2-sphere, and therefore the orbits of s^a must be closed.

There is a discrete isometry "Γ" which maps each null generator into itself.

Discrete isometry, Γ, helps to:

- define the surface gravity as
 \[\kappa \equiv P^{-1} \int_0^P \alpha [\phi_s(x)] ds \]
- find correct foliation $\tilde{\Sigma}$
- show Step 2
Find correct foliation $\tilde{\Sigma}$: $D > 4$ case

No reason that the isometry s^a need have closed orbits on Σ.
⇒ in general, there is No discrete isometry Γ.
Find correct foliation $\tilde{\Sigma}$: $D > 4$ case

No reason that the isometry s^a need have closed orbits on Σ. \Rightarrow in general, there is No discrete isometry Γ.

e.g., $5D$ Myers-Perry BH w/ 2-rotations $\Omega_{(1)}$, $\Omega_{(2)}$:

$\Sigma \approx S^3$, \quad t^a = K^a + s^a$

$s^a = \Omega_{(1)} \varphi_{(1)}^a + \Omega_{(2)} \varphi_{(2)}^a$
Find correct foliation $\tilde{\Sigma}$: $D > 4$ case

No reason that the isometry s^a need have closed orbits on Σ. \Rightarrow in general, there is No discrete isometry Γ.

e.g., $5D$ Myers-Perry BH w/ 2-rotations $\Omega(1), \Omega(2)$:

$$
\Sigma \approx S^3, \quad t^a = K^a + s^a
$$

$$
s^a = \Omega(1) \varphi^a_{(1)} + \Omega(2) \varphi^a_{(2)}
$$

Each rotation Killing vector φ^a has closed orbits but s^a does not if $\Omega(1)$ and $\Omega(2)$ are incommensurable.
Solution to $D > 4$ case:

(i) When s^a has closed orbits on $\Sigma \Rightarrow$ we are done!

$$\kappa = \frac{1}{P} \int_0^P \alpha[\phi_s(x)] ds \quad P : \text{period} \quad \phi_s : \text{isom. on } \Sigma \text{ by } s^a$$
Solution to $D > 4$ case:

(i) When s^a has closed orbits on $\Sigma \Rightarrow$ we are done!

$$\kappa = \frac{1}{P} \int_0^P \alpha[\phi_s(x)] \, ds \quad P: \text{period} \quad \phi_s : \text{isom. on } \Sigma \text{ by } s^a$$

(ii) When s^a has No closed orbits \Rightarrow Use Ergodic Theorem!
Solution to $D > 4$ case:

(i) When s^a has closed orbits on $\Sigma \Rightarrow$ we are done!

$$\kappa = \frac{1}{P} \int_0^P \alpha[\phi_s(x)] ds \quad P : \text{period} \quad \phi_s : \text{isom. on } \Sigma \text{ by } s^a$$

(ii) When s^a has No closed orbits \Rightarrow Use Ergodic Theorem!

$$\kappa = \lim_{T \to \infty} \frac{1}{T} \int_0^T \alpha[\phi_s(x)] ds = \frac{1}{\text{Area}(\Sigma)} \int_\Sigma \alpha(x) d\Sigma$$

"time-average" "space-average"
Solution to $D > 4$ case:

(i) When s^a has closed orbits on $\Sigma \Rightarrow$ we are done!

$$\kappa = \frac{1}{P} \int_0^P \alpha[\phi_s(x)] ds \quad P: \text{period} \quad \phi_s: \text{isom. on } \Sigma \text{ by } s^a$$

(ii) When s^a has No closed orbits \Rightarrow Use Ergodic Theorem!

$$\kappa = \lim_{T \to \infty} \frac{1}{T} \int_0^T \alpha[\phi_s(x)] ds = \frac{1}{\text{Area}(\Sigma)} \int_{\Sigma} \alpha(x) d\Sigma$$

"time-average" \hspace{1cm} "space-average"

— can show that the limit "κ" exists and is constant
Solution to $D > 4$ case:

(i) When s^a has closed orbits on $\Sigma \Rightarrow$ we are done!

$$\kappa = \frac{1}{P} \int_0^P \alpha[\phi_s(x)] ds \quad P : \text{period} \quad \phi_s : \text{isom. on } \Sigma \text{ by } s^a$$

(ii) When s^a has No closed orbits \Rightarrow Use Ergodic Theorem!

$$\kappa = \lim_{T \to \infty} \frac{1}{T} \int_0^T \alpha[\phi_s(x)] ds = \frac{1}{\text{Area}(\Sigma)} \int_{\Sigma} \alpha(x) d\Sigma$$

“time-average”

“space-average”

— can show that the limit “κ” exists and is constant

— can find well-behaved transformation $\Sigma \to \tilde{\Sigma}$
Solution to $D > 4$ case:

— wish to solve equation, $\alpha(x)f(x) - \mathcal{L}_s f(x) = \kappa$

...to find the “correct” horizon Killing field, $\tilde{K}^a = f(x) K^a$
Solution to $D > 4$ case:

— wish to solve equation, $\alpha(x)f(x) - \mathcal{L}_sf(x) = \kappa$

to find the “correct” horizon Killing field, $\tilde{K}^a = f(x)K^a$

Solution:

$$f(x) = \kappa \int_0^\infty P(x,T)dT, \quad P(x,T) = \exp \left(- \int_T^\infty \alpha[\phi_s(x)]ds\right)$$
Solution to $D > 4$ case:

— wish to solve equation, $\alpha(x)f(x) - \mathcal{L}_s f(x) = \kappa$
 to find the “correct” horizon Killing field, $\tilde{K}^a = f(x)K^a$

Solution:

$$f(x) = \kappa \int_{0}^{\infty} P(x, T)dT, \quad P(x, T) = \exp\left(-\int_{T}^{\infty} \alpha[\phi_s(x)]ds\right)$$

— since $\forall \epsilon > 0, P(x, T) < e^{(\epsilon - \kappa)T}$, for sufficiently large T,
 $f(x)$ above is well-defined
Brief sketch of proof of Theorem 2

— wish to show \(t^a = K^a + \Omega_{(1)} \varphi_{(1)}^a + \cdots + \Omega_{(j)} \varphi_{(j)}^a \)
Brief sketch of proof of Theorem 2

— wish to show \(t^a = K^a + \Omega_1(1) \varphi^a_1 + \cdots + \Omega_j(1) \varphi^a_j \)

— Get horizon Killing vector field \(K^a \) by Theorem 1

\(\Rightarrow \) Then \(S^a \equiv t^a - K^a \) generates Abelian group, \(\mathcal{G} \), of isometries on horizon cross-sections \(\Sigma \)
Brief sketch of proof of Theorem 2

— wish to show \(t^a = K^a + \Omega^{(1)} \varphi^{a(1)} + \cdots + \Omega^{(j)} \varphi^{a(j)} \)

— Get horizon Killing vector field \(K^a \) by Theorem 1

⇒ Then \(S^a \equiv t^a - K^a \) generates Abelian group, \(\mathcal{G} \), of isometries on horizon cross-sections \(\Sigma \)

— If \(S^a \) has a closed orbit ⇒ \(\exists U(1) \) we are done!
Brief sketch of proof of Theorem 2

— wish to show $t^a = K^a + \Omega^{(1)} \varphi^{(1)} + \cdots + \Omega^{(j)} \varphi^{(j)}$

— Get horizon Killing vector field K^a by Theorem 1
 ⇒ Then $S^a \equiv t^a - K^a$ generates Abelian group, \mathcal{G}, of isometries on horizon cross-sections Σ

— If S^a has a closed orbit $\Rightarrow \exists U(1)$ we are done!

— even if not \Rightarrow closure of \mathcal{G} on compact space Σ must be a N-torus $\approx U(1)^N$ where $N = \dim(\bar{\mathcal{G}}) \geq 2$
Brief sketch of proof of Theorem 2

— wish to show $t^a = K^a + \Omega_1 \phi_1 + \cdots + \Omega_j \phi_j$

— Get horizon Killing vector field K^a by Theorem 1

\Rightarrow Then $S^a \equiv t^a - K^a$ generates Abelian group, \mathcal{G}, of isometries on horizon cross-sections Σ

— If S^a has a closed orbit $\Rightarrow \exists U(1)$ we are done!

— even if not \Rightarrow closure of \mathcal{G} on compact space Σ must be a N-torus $\approx U(1)^N$ where $N = \dim(\bar{\mathcal{G}}) \geq 2$

— Extend $U(1)^N$ into the entire spacetime by analyticity
Immediate generalizations:

- can apply to \textit{Einstein-Λ-Maxwell} system
e.g., \textit{charged-AdS-BHs}
Remarks

Immediate generalizations:

- can apply to Einstein-Λ-Maxwell system
e.g., charged-AdS-BHs

- combined together with Staticity Theorems

\[d = 4 \quad \text{Sudarsky & Wald (92)} \quad d > 4 \quad \text{Rogatko (05)} \]

⇒ The assertion is rephrased as

Stationary, non-extremal BHs in $D \geq 4$ Einstein-Maxwell system are either static or axisymmetric
Remarks

— can apply to any “horizon” defined as the “boundary” of causal past of a complete timelike orbit γ of t^a
eq e.g., cosmological horizon
Remarks

- can apply to any "horizon" defined as the "boundary" of causal past of a complete timelike orbit γ of t^a
 e.g., cosmological horizon

- can remove analyticity assumption for the BH interior
 by using initial value formulation w/ initial data for K^a on the bifurcate horizon
Remarks

It would not appear to be straightforward to generalize to:

- Theories w/ higher curvature terms and/or exotic source

⇐ Present proof relies on Einstein’s equations
It would **not** appear to be straightforward to generalize to:

- **Theories w/ higher curvature terms and/or exotic source**
- Present proof relies on Einstein’s equations

- **Non-trivial topology** at infinity / BH exterior
- Horizon Killing field K^a may **not** have a single-valued analytic extension
Remarks

It would **not** appear to be straightforward to generalize to:

1. **Theories** w/ higher curvature terms and/or exotic source
 - Present proof relies on Einstein’s equations
2. **Non-trivial topology** at infinity / BH exterior
 - Horizon Killing field K^a may **not** have a single-valued analytic extension
3. **Extremal BHs** (i.e., BHs w/ degenerate horizon $\kappa = 0$)
Interesting questions:

— Does there exist a $D > 4$ BH solution with only two commuting Killing fields (i.e., w/ isom. $\mathbb{R} \times U(1)$)? (Reall 03)
Interesting questions:

— Does there exist a $D > 4$ BH solution with only two commuting Killing fields (i.e., w/ isom. $\mathbb{R} \times U(1)$)? (Reall 03)

— as it has now been shown that a general, stationary BH has $\mathbb{R} \times U(1)$ symmetry by Rigidity, but all known $D > 4$ BH solutions have multiple rotational symmetries
Interesting questions:

— Does there exist a $D > 4$ BH solution with only two commuting Killing fields (i.e., w/ isom. $\mathbb{R} \times U(1)$)? (Reall 03)

— as it has now been shown that a general, stationary BH has $\mathbb{R} \times U(1)$ symmetry by Rigidity, but all known $D > 4$ BH solutions have multiple rotational symmetries

\Rightarrow Hunt new (less-symmetric) black objects!
Summary

4D Black holes:
Summary

- $4D$ Black holes: Restricted by Uniqueness Theorems
Summary

- $4D$ Black holes: Restricted by Uniqueness Theorems
 ⇒ “Special” in many respects
Summary

- $4D$ Black holes: Restricted by Uniqueness Theorems
 \Rightarrow "Special" in many respects

- $D > 4$ Black holes:
Summary

- $4D$ Black holes: Restricted by Uniqueness Theorems
 \Rightarrow “Special” in many respects

- $D > 4$ Black holes: More varieties
Summary

- $4D$ Black holes: Restricted by Uniqueness Theorems
 ⇒ “Special” in many respects

- $D > 4$ Black holes: More varieties
 ⇒ More “surprises” await us!