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Bands merging

The merging π and π∗ bands at the point K was explained using a
lot of different approaches.

However, the merging at the point K of the σ bands somehow was
not paid enough attention to.

Eugene Kogan Symmetry classification of energy bands in graphene



INTRODUCTION
GROUP THEORY

LCAO
BANDS MERGING FOREVER

Dirac Hamiltonian
SPIN–ORBIT COUPLING

CONCLUSIONS

Energy bands of silicon

Eugene Kogan Symmetry classification of energy bands in graphene



INTRODUCTION
GROUP THEORY

LCAO
BANDS MERGING FOREVER

Dirac Hamiltonian
SPIN–ORBIT COUPLING

CONCLUSIONS

Energy bands of diamond

Eugene Kogan Symmetry classification of energy bands in graphene



INTRODUCTION
GROUP THEORY

LCAO
BANDS MERGING FOREVER

Dirac Hamiltonian
SPIN–ORBIT COUPLING

CONCLUSIONS

Energy bands of graphene
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Group theory and bands classification
Point groups

Little group (group of the wavevector)

Consider a point sub-group R of the space group characterizing
the symmetry of a crystal (we restrict ourselves with the
consideration of symmorphic space groups). Any operation of the
group R (save the unit transformation) takes a general wavevector
k into a distinct one. However, for some special choices of k some
of the operations of the crystal symmetry group will take k into
itself rather than into a distinct wavevector. These particular
operations are called the group of k; it is a subgroup of the group
R. Points (lines) in the Brillouin zone for which the group of the
wavevector contains elements other than the unit element are
called symmetry points (lines).
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Small representation

Suppose that the states ϕkµ of a given k are degenerate in energy:
the operations of the group of k transform ϕkµ into a ϕkλ with the
same k, and the ϕ’s are said to form a representation of the group
of k. The representation is known as the small representation.
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Point groups

The group Cnv contains 2n elements: n rotations about an axis of
the nth order and n reflections σv in the vertical planes.
The group Ci (S2) contains only two elements: E and I .
The group Cs (C1h) contains only two elements: E and σh.
The group Dn contains 2n elements: n rotations about an axis of
the nth order and n rotations through an angle π about horizontal
axes.
The group Dnh contains 4n elements: besides the 2n elements of
the group Dn it contains also n reflections σv and n
rotary-reflection transformations C k

n σh.
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Little groups in graphene

The group of vector k at the point Γ – the center of the Brillouine
zone – is D6h. The group of vector k at the point K (K ′)–corner of
the Brillouine zone – is D3h. The group of vector k at the lines
Γ− K is C2v .
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Irreducible representations of D3h

The representations of the group D3h we can obtain on the basis of
identity

D3h = C3v × Cs .

C3v E 2C3 3σv
A1 1 1 1
A2 1 1 −1
E 2 −1 0

Each representation of the group C3v , say A1, begets two
representations of the group D3h: A

′
1 and A′′

1; prime means that
the representation is even with respect to reflection σh, double
prime means that it is odd.
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Irreducible representations of D6h

Classification of irreducible representations of the group D6h can
be based on each of the following identities

D6h = C6v × Cs , D6h = D6 × Ci .

D6 E C2 2C3 2C6 3U2 3U ′
2

C6v E C2 2C3 2C6 3σv 3σ′v
D3h E σh 2C3 2S3 3U2 3σv

A1 A1 A′
1 1 1 1 1 1 1

A2 A2 A′
2 1 1 1 1 −1 −1

B1 B2 A′′
1 1 −1 1 −1 1 −1

B2 B1 A′′
2 1 −1 1 −1 −1 1

E2 E2 E ′ 2 2 −1 −1 0 0
E1 E1 E ′′ 2 −2 −1 1 0 0

Eugene Kogan Symmetry classification of energy bands in graphene
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Irreducible representations of D6h

Each representation of the group D6, say A1, begets two
representations of the group D6h: A1g and A1u, where the letters g
and u in the notation mean that the representation is even or odd
with respect to inversion respectively. One should keep in mind
that even representations having positive character of the
transformation C2 and odd representations having negative
character of the transformation C2 are even with respect to
reflection σh; odd representations having positive character of the
transformation C2 and even representations having negative
character of the transformation C2 are odd with respect to
reflection σh.
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Representation decomposition

Equation

aα =
1

g

∑
G

χ(G )χ∗
α(G ),

shows how many times a given irreducible representation is
contained in a reducible one.
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Atomic orbitals

The tight–binding Hamiltonian includes four orbitals per atom:
ψs , ψpz , ψp± . The structure of graphene can be seen as a
triangular lattice with a basis of two atoms per unit cell, and we
search for the solution of Schrodinger equation as a linear
combination of the functions

ψj
ℓm;k =

∑
Rj

ψℓm (r − Rj) e
ik·Rj , (1)

where j = A or B labels the atoms on the two sublattices A and B
and Rj is the radius vector of an arbitrary carbon atom in
sublattice j .
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π and σ bands

The Hamiltonian being symmetric with respect to reflection in the
graphene plane, the bands built from the ψ2pz orbitals decouple
from those built from the other three orbitals. The former are odd
with respect to reflection, the latter are even. In other words, the
former form π bands, and the latter form σ bands.
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Representation of the group C6v realized by pz and s
orbitals

The transformations C2, C6, σv change sublattices, the characters
corresponding to these transformations are equal to zero.
The transformations E , C3, σv ′ are the identity transformations for
the functions ψj

m=0. Hence, the representation of the group C6v

realized by these functions can be decomposed as

R = A1 + B2.
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Projection operator

The operator

Oα =
nα
g

∑
G

χ∗
α(G )P(G ),

where nα is the dimensionality of the irreducible representation α
and P is the operator corresponding to a given symmetry G ,
projects a given function to the linear space of the representation
α. For a one dimensional representation the operator thus gives
basis of the representation. Acting by projection operators OA and
OB on a function ψj

m=0, we obtain that the irreducible
representation A has symmetric combination of the A and B
orbitals as the basis function, and the irreducible representation B
–the antisymmetric combination. The first representation is
realized at the hole band, and the second - at the electron band.
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Small representations at Γ by pz and s orbitals

Representations A1u and B2g of the group D6h are realized by ψpz

orbitals and representations A1g and B2u – by ψs orbitals. A and B
representations label hole and electron band respectively.
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Representation of the group C6v realized by px ,y orbitals

If C3 is the anticlockwise rotation, then

C3ψ
j
± = e±2πi/3ψj

±.

Hence the representation generated by the quartet can be
decomposed as

R = E1 + E2

Eugene Kogan Symmetry classification of energy bands in graphene
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To find wavefunctions realizing each of the irreducible
representations we apply the projection operator and obtain

OE1ψ
j
± ∼ 2ψj

± − e2πi/3ψj
± − e−2πi/3ψj

±

+e2πi/6ψj
± + e−2πi/6ψj

± + 2ψj
± ∼ ψj

± + ψj
±.

where j = B if j = A, and vice versa. Similarly we obtain

OE2ψ
j
± ∼ ψj

± − ψj
±.

Thus representation E1 is realized by the vector space of sublattice
symmetric combinations of p± orbitals, with the basis vectors
ψA
+ + ψB

+, ψ
A
− + ψB

−, and representation E2 is realized by the vector
space of sublattice antisymmetric combination of the orbitals
ψA
+ − ψB

+, ψ
A
− − ψB

−.

Eugene Kogan Symmetry classification of energy bands in graphene
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Small representations at Γ by px ,y orbitals

Representations E1u and E2g of the group D6h label hole and
electron bands respectively.
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Representation of the group C3v realized by pz and s
orbitals

The nature of the representation generated by the functions ψj
0;K

follows from the transformation law of the exponentials e iK·Rj

under the group symmetry operations. Rotation of the radius
vector by the angle 2π/3 anticlockwise, is equivalent to rotation of
the vector K in the opposite direction, that is to substitution of the
three equivalent corners of the Brillouin zone:
K → K2 → K3 → K. Hence, rotation multiplies each function by
the factor e2πi/3, and

aE =
1

3

(
2− e2πi/3 − e−2πi/3

)
= 1; (2)

the functions ψj
0;K realize representation E of the group C3v .
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Small representation at K by pz orbitals

Representation E ′′ of the group D3h describes merging of π and π∗

bands.
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Representation of the group C3v realized by px ,y orbitals

Combining law of transformations of the functions ψj
±;K with the

law of transformation of the exponents, we obtain that the
representation generated by the quartet can be decomposed as

R = A1 + A2 + E . (3)

Acting by projection operators we obtain that for K =
(
2π
3a ,

2π
3
√
3a

)
the representation A1 is realized by the vector space with the basis
vector ψA

+,K + ψB
−,K, and the representation A2 is realized by the

vector space with the basis vector ψA
−,K − ψB

+,K. The vector spaces
realizing representations A1 and A2 being found, the representation
E is obviously realized by the vector space, with the basis vectors
ψA
+,K − ψB

−,K, ψ
A
−,K + ψB

+,K.

Eugene Kogan Symmetry classification of energy bands in graphene
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Representation of the group C3v realized by s and px ,y
orbitals

Because the irreducible representation E is realized both by ψs

orbitals and by ψp± orbitals, representations realized by all these
orbitals should be considered together. The matrix representing an
arbitrary element of such a representation has the form

D(g) =


D(A1)(g)

D(A2)(g)

D(E)(g)

D(E)(g)

 .

Eugene Kogan Symmetry classification of energy bands in graphene
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Wigner theorem

H =



H(A1)

H(A2)

H
(E)
11 H

(E)
12

H
(E)
11 H

(E)
12

H
(E)
21 H

(E)
21

H
(E)
21 H

(E)
22


.

For complete digitalization of the Hamiltonian matrix one needs
additional transformation in the space of basis vectors,
corresponding to the same irreducible representation (E ).

Eugene Kogan Symmetry classification of energy bands in graphene
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Additional diagonalization

After diagonalizing the matrix

(
H11 H12

H21 H22

)
we get

H =


H(A1)

H(A2)

H
(E)
1

H
(E)
2

 .

Eugene Kogan Symmetry classification of energy bands in graphene
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Small representations at K by s and px ,y orbitals

Representations A′
1 and A′

2 of the group D3h label hole and
electron band. Representations E ′′ describe merging of σ bands.
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Compatibility relations

The symmetry of the electron bands at the points Γ and K being
determined, the symmetry at the lines Γ− K follows unequivocally
from the compatibility relations.

C2v D6h D3h

Rep Compatible with

A1 A1g ,B2u,E1u,E2g A′
1,E

′

A2 A1u,B2g ,E1g ,E2u A′′
1,E

′′

B1 B1u,A2g ,E1u,E2g A′
2,E

′

B2 A2u,B1g ,E1g ,E2u A′′
2,E

′′

Eugene Kogan Symmetry classification of energy bands in graphene
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C2v E C2 σxyv σxzv
A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1

-20

-15

-10

-5

0

5

10

15

Γ K M Γ

E
n
er
gy

(e
V
) B2B2u

E1u

A1u

A2

A1g

A1

B1

A1

B1

B2g

E
′′

E2g

E
′

A
′

1

A
′

2

E
′

A1

B1

Eugene Kogan Symmetry classification of energy bands in graphene



INTRODUCTION
GROUP THEORY

LCAO
BANDS MERGING FOREVER

Dirac Hamiltonian
SPIN–ORBIT COUPLING

CONCLUSIONS

The structure of graphene can be seen as a triangular lattice with
a basis of two atoms per unit cell, displaced from each other by
any one (fixed) vector connecting two sites of different sub-lattices,
say δ = −a (1, 0).
Tight binding, nearest and next–nearest neighbor hopping

H = −t
∑

<ij>,σ

(
a†σ,ibσ,j + H.c .

)
− t ′

∑
<<ij>>,σ

(
a†σ,iaσ,j + b†σ,ibσ,j + H.c .

)
The general Hamiltonian for the π bands is

H = −
( ∑

a t
′(a)e ik·a

∑
a t(a+ δ)e ik·(a+δ)∑

a t
∗(a+ δ)e−ik·(a+δ)

∑
a t

′(a)e ik·a

)

Eugene Kogan Symmetry classification of energy bands in graphene
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Tight binding hamiltonian for σ bands

Ĥ(k) is a 2× 2 Hermitian matrix. The dispersion law is

ε± =
H11 + H22 ±

√
(H11 − H22)

2 + |H12|2

2
.

Merging of the bands demands three conditions: H11 = H22 and
H12 = 0. We have only two parameters: (k1, k2), hence generally
the bands don’t merge.
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Tight binding hamiltonian for σ bands

Ĥ(k) = E0(k)Î + R(k) · σ̂,

where E0(k) and R(k) = (R1(k),R2(k),R3(k)) are real functions of
k, and σ = (σ1, σ2, σ3) are the Pauli matrices.
The dispersion law

ε±(k) = E0(k)± |R(k)|

shows that a contact takes place where R(k) = 0, that is three
conditions (R1 = R2 = R3 = 0) should be satisfied.
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Symmetry

Let the Hamiltonian Ĥ(k) be invariant under a symmetry operation
A. The operation can be unitary

ÛĤ(k)Û−1 = Ĥ(k)

or antiunitary

ÛĤ∗(k)Û−1 = Ĥ(k)

Eugene Kogan Symmetry classification of energy bands in graphene
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Symmetry and constraints

Ĥ = E0 Î + R · σ̂ ⇐⇒ Ĥ∗ = E0 Î − σ2(R · σ̂)σ2,

ÛĤ∗(k)Û−1 = Ĥ(k) ⇐⇒
{
Ûσ2,R · σ̂

}
= 0

Any 2× 2 unitary matrix can be expressed as

Û = e iϕ
(
ω0 Î + iω · σ̂

)
{
Ûσ2,R · σ̂

}
= 0 ⇐⇒ ω2R = 0, s · R = 0,

where s = (ω3, ω0,−ω1).
Eugene Kogan Symmetry classification of energy bands in graphene
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Let A is a product of spacial inversion I and time inversion T .
Both I and T give rise to the inversion of k-points k ↔ −k, and
thus the general k-points are kept unchanged after the space–time
inversion.
Since (IT )2 = I , we get

ÛÛ∗ = I ⇐⇒ Û = ÛT ⇒ ω2 = 0.

Hence we get a single constraint on R

s · R = 0.

Because

Ĥ(k) = E0(k)Î + R(k) · σ̂,

where R(k) = (R1(k),R2(k),R3(k)), it is plausible to expect that
the bands merge at some point (points).
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In the vicinity of a merging point

H =

(
H11 H12

H21 H22

)
, (4)

where each element is a linear function of kx , ky

E = ciki ±
√

dijkikj . (5)

Eugene Kogan Symmetry classification of energy bands in graphene
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Because any vector in the kx , ky plane compatible with the
symmetry C3v is identically equal to zero, and any tensor of rank
two compatible with the symmetry is proportional to the unity
tensor, the dispersion law is just

E =∼ ±|k|, (6)

and can be presented by two circular cones, with the axis
perpendicular to the kx , ky plane.
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Degenerate k · p perturbation theory

H =
p̂2

2m
+ U(r)

The dispersion law in the vicinity of the point k0 is given by the
effective Hamiltonian

Heff (k) =
k · p
m

,

more explicitly

Heff (k) = Â·k,
where

Aµµ′ =
1

m
< k0µ|p|k0µ′ > .
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Dirac Hamiltonian

From the symmetry considerations follows that

{
Âx , Âx

}
=

{
Ây , Ây

}
∼ I ,

{
Âx , Ây

}
= 0.

Hence effective Hamiltonian can be written as

Heff (k) = vσ · k,

or as

Heff (k) = vσ∗·k.
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In the absence of spin–orbit coupling electron spin can be taken
into account in a trivial way: any degeneracy which we spoke about
previously should be multiplied by factor of two. Thus at a general
point of the zone the representation which was singly degenerate in
the absence of spin, becomes doubly degenerate. This degeneracy
remains even when spin–orbit coupling is taken into account.
However, at points of high symmetry in the zone spin–rbit coupling
may cause partial splitting. We’ll restrict ourselves by the analysis
of the splitting of the states realizing representations E ′ and E ′′ at
the point K in the framework of group theory.
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Let the coordinate parts of the wave–functions realize a
representation Ri of the group of wave vector. The spin functions
transform like D1/2 representation of the rotation group, thus
spin–dependent wave–functions realize representation, which is just
the direct product of the above mentioned ones: Ri × D1/2.
Because D1/2 is a two–valued irreducible representation, we get a
two valued representation of the group of wave vector. This
two–valued representation of the space group is an irreducible
representation at a general point of the zone, but is typically a
reducible representation in the points of high symmetry. To find
(the characters of) two–valued irreducible representations, it is
convenient to introduce the concept of a new element of the group
(denoted by Q); this is a rotation through an angle 2π about an
arbitrary axis, and is not the unit element, but gives the latter
when applied twice: Q2 = E .
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The decomposition of the representation Ri × D1/2 with respect to
two–valued irreducible representations of the group of the wave
vector. can be readily obtained by using the tables of the
characters. The characters of the group D1/2 follow from the
general results for the representations DJ :

χj(ϕ) =
sin

(
J + 1

2

)
ϕ

sin 1
2ϕ

(7)

S(ϕ) = IC (ϕ+ π), (8)

where π is the angle of rotation about the axis, and the inversion I
multiplies all ψJM by ±1.
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D3h E 2C3 2S3
E ′ 2 −1 −1
E ′′ 2 −1 1

O(3) E Q C3 C 2
3 S3 S2

3

C 2
3Q C3Q S2

3Q S3Q

D1/2 2 −2 1 −1 −
√
3

√
3

D ′
3h E Q σh C3 C 2

3 S3 S2
3 3U2 3σv

σhQ C 2
3Q C3Q S2

3Q S3Q 3U2Q 3σvQ

E ′
1 2 −2 0 1 −1 −

√
3

√
3 0 0

E ′
2 2 −2 0 1 −1

√
3 −

√
3 0 0

E ′
3 2 −2 0 −2 2 0 0 0 0
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Splitting of the levels at the point K due to spin–orbit
coupling

E ′ = E ′
2 + E ′

3

E ′′ = E ′
1 + E ′

3.

Thus the four–fold degeneracy (including spin) of the bands which
were merging at the point K is partially removed, and only
two–fold (Kramers) degeneracy is left. In other words, spin–orbit
coupling in graphene open a gap and give fermionic excitations a
small mass.
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WE (HOPEFULLY) GOT AN ADDITIONAL MOTIVATION TO
STUDY IN DEPTH GROUP THEORY AND TO APPLY IT TO
SOLID STATE PHYSICS.

I ENJOYED YOUR PATIENCE AND YOUR QUESTIONS AND
HOPE TO SEE YOU AGAIN AT THE NEXT TAINAN
WORKSHOP.
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