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簡報者
簡報註解
Each carbon atom in graphene is bound to its three nearest neighbors by strong planar σ bonds that involve three of its valence electrons occupying the sp2-hybridized orbitals.  These bonds are responsible for the planar structure of graphene and for its mechanical and thermal properties.  The fourth valence electron which remains in the half-filled 2p_z orbital orthogonal to the graphene plane forms a weak π bond by overlapping with other 2p_z orbitals.  These delocalized π electrons determine the transport properties of graphene.
From a crystallographic point of view, graphene is a 2D honeycomb lattice of carbon atoms with carbon-carbon separation of 1.42 Angstroms that consists of two triangular sublattices.  Graphene’s honeycomb lattice is constructed as a superposition of two triangular sublattices A (yellow spheres) and B (purple spheres), with basis vectors a_1,2.  In other words graphene’s Bravais lattice has a basis of two atoms, and the direct lattice primitive vectors are given on this slide.
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簡報者
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The reciprocal lattice of graphene is also a honeycomb, rotated by Pi/12 with respect to the direct lattice.  The Brillouin zone is a hexagon with corners rotated by Pi/12 with respect to the reciprocal lattice corners. The reciprocal lattice vectors are b1 and b2.  Each Brillouin zone corner coincides with a Dirac point found at the apex of a Dirac cone shown in the next slide.  Only two of these corners are inequivalent, any two which are not connected by a reciprocal lattice vector and are usually referred to as K and K’.
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Graphene’s basic electronic properties are readily understood within the tight-binding model with periodic boundary conditions.  The basis of electron states contains two Pi states belonging to atoms from sublattices A and B.  The nearest-neighbor approximation with hopping parameter t, couples states on the A sublattice to states on the B sublattice and vice versa.  There are no hopping processes within the sublattices.  The fact that nearest-neighbor hopping involves sites on the two different sublattices makes the Hamiltonian matrix off-diagonal.
Near the charge neutrality points, called Dirac points, which are located at the six corners of the hexagonal first Brillouin zone, the lower valence and the upper conduction bands touch.  These bands are symmetric when only nearest-neighbor hopping is taken into account, hence there is an electron-hole symmetry.  Since we are at half-filling, the valence band is completely filled, and the conduction band is empty when the electrons are in the ground state.  The dispersion relation around all six of the Dirac points is linear and thus the Bloch velocity of low-energy electrons (or holes) is independent of energy.
The dispersion relation at low energies is very interesting.  Electrons usually have a quadratic dispersion relation.  A linear dispersion relation is characteristic for massless particles, such as photons.  Spin 1/2-particles with such an energy dispersion relation are called Dirac fermions.  So these low-energy electrons have peculiar properties, generated by the geometry of the honeycomb lattice.  We must treat them as massless relativistic particles.
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The symmetry between conduction and valence bands breaks down when the Hamiltonian is modified to account for next-to-nearest neighbor hopping. But if we expand this new dispersion relation around the Dirac points, just as in the previous case, we obtain in first order approximation a linear dispersion relation.  In the small energy range near the Dirac points the dispersion relation exhibits so-called Dirac cones.
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As it was shown in the previous two slides, the tight-binding approximation leads to linear energy dispersion near the Dirac points for both nearest-neighbor and next nearest-neighbor hopping.  Since only two of the K points, also known as “valleys” are inequivalent we need to focus only on those two.  For the K valley, it is convenient to define the (2D) vector k = K − delk.  Expanding around k = 0, and substituting q → −i hbar (∂x, ∂y) we get the Hamiltonian which corresponds to the effective mass approximation, or k dot p perturbation theory. 
Effective theories are very useful to describe the physics of a certain range of energy in which they appropriately portray the relevant physics.  An interesting approach to studying graphene is using an effective theory to describe the physics in the range of energy near the connection of the upper valence and the lower conduction bands, near the vicinity of the Dirac points K and K’.

*The effective mass approximation makes use of known electronic band structure parameters, such as effective masses, of the perfect crystal and is useful not only for calculating defect energy levels but also for studying properties of electrons under any weak (slowly varying) external perturbation. Main features:
-Original Schrodinger equation to be solved: (H_0+H_1) psi=E psi
Where H_0 (p^2/2m)+ V(r).
-Solution of original schrodinger equation is given by solving
[(-Hbar^2/ (2 m*) Del^2+H_1(r)]F(r)=E F(r)
Where F(r) are the coefficients in the Fourier expansion of psi(r).
-periodic potential V(r) “disappears” from the problem
-free electron mass is replaced by effective mass
-k_x is replaced by –id_x
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Electronic states in the vicinity of the K and K′ points in reciprocal space are well described by an effective-mass approximation using a 4 by 4 Hamiltonian that consists of two 2 by 2 blocks as shown in this slide. This effective-mass equation is similar to the Dirac-Weil equation that follows from the Dirac equation given on this slide if we set the rest mass of the particle to zero and replace the velocity of light c by the Fermi velocity vF.  The internal degree of freedom which is just spin in real space is the sublattice index in reciprocal space.  The 4-component Dirac spinor wavefunction takes into account both sublattices A and B and both conical points K and K’.  The sublattice index is sometimes called isospin or pseudospin, so that “isospin up” means sublattice A and “isospin down” means sublattice B.
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The effective-mass Hamiltonian of a single electron in graphene in a uniform, perpendicular magnetic field has the form of a 4 by 4 matrix. The presence of a magnetic field introduces a new length scale into the problem and this is the magnetic length, L_B.  In order to describe the coupling to a perpendicular magnetic field B, one may use the so-called Peierls substitution.  This consists of replacing the canonical momentum in the effective Hamiltonian by the gauge-invariant kinetic momentum, Pi =p+eA, where p is the momentum operator, -e is the charge of an electron and A is the vector potential expressed in the Landau gauge.  The use of the Peierls substitution is justified as long as the characteristic magnetic length L_B is much larger than the lattice spacing. This is the case for experimentally accessible fields since a/(L_B) equals 0.005×√B[T].  Notice that because the vector potential is dependent only on the y-component of position, the system remains translation invariant in the x-direction.  This Hamiltonian disregards the spin of electrons.  Taking into account the spin would result in an additional twofold degeneracy of the energy levels.  Note that because of the spatial dependence of the vector potential, the resulting Hamiltonian is no longer translation invariant, and the canonical momentum is no longer a conserved quantity.
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To find the energy eigenvalues and eigenvectors it is convenient to introduce ladder operators in the same manner as for the quantum-mechanical treatment of the one-dimensional harmonic oscillator.  These raising and lowering operators are defined in terms of a new variable in the y-direction, shifted and rescaled by the magnetic length.  These operators play the role of raising and lowering Landau levels.  In the semi-classical picture of cyclotron motion, the motion of charged particles in magnetic fields is described by the center coordinate of the cyclotron motion.  Charged particles orbit around guiding centers following circular paths (yellow curve) while the “guiding centers” move along equipotentials.  The position of the guiding center is a constant of motion.  Translated to quantum mechanics, this means that the operator corresponding to this guiding center commutes with the Hamiltonian.  In a couple of slides, I will return to the guiding-center operator, which has implications on the degeneracy of the eigenstates I am trying to calculate.
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The eigenvalues and eigenvectors of the Hamiltonian in magnetic field can be obtained by solving the eigenvalue equation using a two-component spinor eigenfunction.  Upon substitution we get a system of coupled differential equations.  From here an equation results for the second spinor component.  One can realize that the second spinor component, up to a numerical factor, can be identified with the nth eigenstate of the usual number operator.
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An equation is obtained for the energy which shows that the square of the energy is also proportional to quantum number n.  This equation has two solutions, one positive, corresponding to hole states in the conduction band and one negative, corresponding to electron states in the valence band.  Once the second spinor component is found, the first component is obtained by identifying it with the (n-1) eigenstate of the ladder operators.
Now, let me return to the guiding center, which I mentioned before.  Due to translational invariance in a uniform magnetic field, the energy of an electron does not depend on the position of this guiding center.  In quantum mechanics, this means that one can associate an operator with this guiding center which commutes with the Hamiltonian.  Therefore, the electron wave function in periodic systems in a magnetic field is the eigenfunction of both the
Hamiltonian and the operator of the magnetic translation.  While the guiding center is a constant of the motion, the cyclotron variable describes the dynamics of the electron in a magnetic field and is, classically, the time-dependent component of the position.  The degeneracy of the LLs is related to the guiding-center translation operator.   Thus, a second quantum number m is needed in addition to the Landau level index n to fully describe the quantum states of the system.
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The eigenenergies and eigenvectors of the Landau levels are given by the expressions shown on this slide.  The energy values are directly proportional to the square root of the Landau level index n and the square root of the magnitude of the applied magnetic field.  In a strong magnetic field each LL is highly degenerate.  The degeneracy of the Landau levels, which equals the number of magnetic flux quanta threading the 2D surface occupied by the electron gas (A×B)/(h/e).  Thus, each LL accommodates so many states that all of the free electrons in the system occupy only the first few LLs.  The eigenfunctions corresponding to Landau levels are also given.  There is an expressions for the K valley, and another for the K’ valley.  The eigenfunctions depend in addition to the Landau level index n also on m, which is the index of the guiding center, enumerating electron states on the nth Landau level.  The uniform magnetic field renders the (n−1)-th B-state with isospin down to have the same energy as that of the n-th A-state with isospin up.  The eigenfunctions ϕnm(r) are shifted 1D harmonic oscillator eigenfunctions with the explicit form given at the bottom of this slide.  In this last expression H_n is the nth Hermite polynomial.
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This slide compares the LL energy eigenvalue spectrum of single layer graphene and a classical 2DEG.  In the LL energy spectrum for monolayer graphene there is a level located at zero energy, E_0 unlike in the case of the 2DEG.  Also, in contrast to the case of a conventional 2DEG, the Landau levels in monolayer graphene are not equidistant and the largest energy separation is between the zero and the first Landau level.  The equations describing the energy levels are also given.  For relativistic particles the cyclotron energy scales like the square root of B, in contrast to classical particles where the cyclotron energy is linear in B.  It has to also be noted that the two LL energy plots are not drawn to scale.  The energy scale associated with Dirac fermions is rather different from the one found in the classical 2D electron gas.  For instance, for fields of the order of B=10 T, the cyclotron energy in the 2D electron gas is of the order of 10 K.  In contrast, for Dirac fermions int the same magnetic field, the cyclotron energy is of the order of 1000 K, that is, two orders of magnitude larger.  This fact has strong implication for the observation of the quantum Hall effect at room temperature in graphene.
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The potential form investigated corresponds to a 2D square array of quantum dots or antidots.  Here V_0 is the modulation amplitude, d_x and d_y are the modulation periods in the x and y directions, respectively, and N is an integer that constrols the steepness of the potential.  In the presence of the periodic two-dimensional scatter-potential modulation we rewrite the Hamiltonian operator as shown on this slide. 
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Let us investigate what happens when the 2D electrons of graphene’s honeycomb lattice are subjected to a perpendicular magnetic field are placed in a periodic potential.  It is known that a periodic potential leads to an energy band structure, while I showed two slides ago that the non-periodic vector potential leads to the formation of discrete energy levels.  The parameter playing an important role in the problem is the flux ratio, defined as the magnetic flux penetrating the lattice elementary cell divided by the flux quantum.  If the flux ratio is a rational number, which means that p and q are relative primes, it is possible to define a new set of translations on the lattice, called magnetic translations.  For the vector potential chosen in this problem that was written in the Landau gauge A = (-yB,0,0) a simple magnetic translation consists of replacing x by x + ud_x and y by y + qvd_y, where u and v are integers.  So, we introduce a magnetic unit cell which is q times larger in the y direction.  The equivalent construction in k-space is the magnetic Brillouin zone (MBZ) which contains all k vectors with x and y components shown on this slide. The electron wavefunction gains an additional phase under the magnetic translation.  This last relation between the translated and the initial wavefunctions in a magnetic field is known as the generalized Bloch-Peierls condition.
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We can apply the generalized Bloch-Peierls condition in a form that is appropriate to the problem at hand.  We summarize the sources of degeneracy of the Landau levels.  The degeneracy related to the guiding-center translation operator is introduced by the quantum number m and by shifting the argument of the Hermite polynomials in the eigenfuctions.  If the flux through the elementary cell area of the modulating potential is equal to a rational number, a magnetic translation can be defined.  This effective enlargement of the potential’s period in the y direction induces additional gaps: the Landau bands split into p magnetic subbands.
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One can express the generalized  eigenfunctions of the graphene Hamiltonian in a perpendicular magnetic field in the presence of modulation as the superposition of the Landau eigenstates obtained earlier as shown on this slide.  Since the wave functions at the K and K’ points are decoupled for single-layer graphene, we will focus on the K-point only.  Here, Ny is the number of unit cells in the y-direction, Lx/y is the sample length in the x/y-direction, Gx is a reciprocal lattice vector, and m is the quantum number labeling split subbands of a kx-degenerated Landau level, whose values are determined by the value of p.
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簡報者
簡報註解
We use the eigenfunction expansion shown in the previous slide to diagonalize the Hamiltonian.  This slide shows how the matrix elements of the diagonal potential terms are calculated.



Other notation introduced on previous slide 
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簡報者
簡報註解
A lengthy, but straightforward, calculation leads to the explicit form of the matrix elements of the modulation potential.  The matrix elements’ dependence on the quantum numbers n, m and p are explicitly shown on this slide.



Magnetic band structure 
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簡報者
簡報註解
The magnetic band structure of graphene’s electrons subject to a perpendicular magnetic field and a 2D periodic potential are calculated by solving the determinenetal equation shown on this slide.  The explicit form of the coefficient matrix with the potential matrix elements is shown on this slides.  My preliminary band structure calculation for a 2DEG compared to graphene’s is shown.  I am confident that the 2DEG plot is correct.  I am still working on troubleshooting the graphene band structure plot.
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